
BIMM 143
Find a Gene Assignment

Lecture 10

Barry Grant

http://thegrantlab.org/bimm143

Find-a-Gene Project Assignment

• A total of 20% of the course grade will be assigned based on the
“find-a-gene project assignment”

• The objective with this assignment is for you to demonstrate your
grasp of database searching, sequence analysis, structure analysis
and the R environment that we have covered to date in class.

• You may wish to consult the scoring rubric (in the linked project
description) and the example report for format and content
guidance.
➡ Your responses to questions Q1-Q4 are due at the beginning of

class Thursday February 22nd (02/22/18).
➡ The complete assignment, including responses to all questions,

is due at the beginning of class Thursday March 13th (03/13/18).

Q1Questions:
[Q1] Tell me the name of a protein you are interested in. Include the species and the accession
number. This can be a human protein or a protein from any other species as long as it's function
is known.
If you do not have a favorite protein, select human RBP4 or KIF11. Do not use beta globin as
this is in the worked example report that I provide you with online.

[Q2] Perform a BLAST search against a DNA database, such as a database consisting of
genomic DNA or ESTs. The BLAST server can be at NCBI or elsewhere. Include details of the
BLAST method used, database searched and any limits applied (e.g. Organism).

Also include the output of that BLAST search in your document. If appropriate, change the font
to Courier size 10 so that the results are displayed neatly. You can also screen capture a
BLAST output (e.g. alt print screen on a PC or on a MAC press ⌘-shift-4. The pointer becomes
a bulls eye. Select the area you wish to capture and release. The image is saved as a file called
Screen Shot [].png in your Desktop directory). It is not necessary to print out all of the
blast results if there are many pages.

On the BLAST results, clearly indicate a match that represents a protein sequence,
encoded from some DNA sequence, that is homologous to your query protein. I need to
be able to inspect the pairwise alignment you have selected, including the E value and
score. It should be labeled a "genomic clone" or "mRNA sequence", etc. - but include no
functional annotation.

In general, [Q2] is the most difficult for students because it requires you to have a “feel”
for how to interpret BLAST results. You need to distinguish between a perfect match to
your query (i.e. a sequence that is not “novel”), a near match (something that might be
“novel”, depending on the results of [Q4]), and a non-homologous result.
If you are having trouble finding a novel gene try restricting your search to an organism
that is poorly annotated.

[Q3] Gather information about this “novel” protein. At a minimum, show me the protein
sequence of the “novel” protein as displayed in your BLAST results from [Q2] as FASTA
format (you can copy and paste the aligned sequence subject lines from your BLAST
result page if necessary) or translate your novel DNA sequence using a tool called
EMBOSS Transeq at the EBI. Don’t forget to translate all six reading frames; the ORF
(open reading frame) is likely to be the longest sequence without a stop codon. It may
not start with a methionine if you don’t have the complete coding region. Make sure the
sequence you provide includes a header/subject line and is in traditional FASTA format.

Here, tell me the name of the novel protein, and the species from which it derives. It is
very unlikely (but still definitely possible) that you will find a novel gene from an
organism such as S. cerevisiae, human or mouse, because those genomes have
already been thoroughly annotated. It is more likely that you will discover a new gene in
a genome that is currently being sequenced, such as bacteria or plants or protozoa.

[Q4] Prove that this gene, and its corresponding protein, are novel. For the purposes of
this project, “novel” is defined as follows. Take the protein sequence (your answer to
[Q3]), and use it as a query in a blastp search of the nr database at NCBI.
• If there is a match with 100% amino acid identity to a protein in the database, from the

same species, then your protein is NOT novel (even if the match is to a protein with a
name such as “unknown”). Someone has already found and annotated this sequence,
and assigned it an accession number.

• If the top match reported has less than 100% identity, then it is likely that your protein
is novel, and you have succeeded.

• If there is a match with 100% identity, but to a different species than the one you
started with, then you have likely succeeded in finding a novel gene.

• If there are no database matches to the original query from [Q1], this indicates that
you have partially succeeded: yes, you may have found a new gene, but no, it is not
actually homologous to the original query. You should probably start over.

[Q5] Generate a multiple sequence alignment with your novel protein, your original
query protein, and a group of other members of this family from different species. A
typical number of proteins to use in a multiple sequence alignment for this assignment
purpose is a minimum of 5 and a maximum of 20 - although the exact number is up to
you. Include the multiple sequence alignment in your report. Use Courier font with a size
appropriate to fit page width.
Side-note: Indicate your sequence in the alignment by choosing an appropriate name
for each sequence in the input unaligned sequence file (i.e. edit the sequence file so
that the species, or short common, names (rather than accession numbers) display in
the output alignment and in the subsequent answers below). The goal in this step is to
create an interesting an alignment for building a phylogenetic tree that illustrates
species divergence.

What is Git?
(1) An unpleasant or contemptible

person. Often incompetent,
annoying, senile, elderly or
childish in character.

(2) A modern distributed version
control system with an emphasis
on speed and data integrity.

What is Git?
(1) An unpleasant or contemptible

person. Often incompetent,
annoying, senile, elderly or
childish in character.

(2) A modern distributed version
control system with an emphasis
on speed and data integrity.

Version Control
Version control systems (VCS) record changes
to a file or set of files over time so that you can

recall specific versions later.

There are many VCS available, see:
https://en.wikipedia.org/wiki/Revision_control

Client-Server vs Distributed VCS

Distributed version control systems (DCVS) allows
multiple people to work on a given project without

requiring them to share a common network.

Client-server approach Distributed approach

http://tinyurl.com/distributed-advantages http://tinyurl.com/distributed-advantages

Git offers:
• Speed
• Backups
• Off-line access
• Small footprint
• Simplicity*
• Social coding

Git is now the most popular free VCS!

Why use Git?
Q. Would you write your lab book in
 pencil, then erase and overwrite it
 every day with new content?

Q. Would you write your lab book in
 pencil, then erase and overwrite it
 every day with new content?

Version control is the lab notebook of the digital
world: it’s what professionals use to keep track of
what they’ve done and to collaborate with others.

Why use Git?
• Provides ‘snapshots’ of your project during development

and provides a full record of project history.

• Allows you to easily reproduce and rollback to past
versions of analysis and compare differences. (N.B. Helps
fix software regression bugs!)

• Keeps track of changes to code you use from others such
as fixed bugs & new features

• Provides a mechanism for sharing, updating and
collaborating (like a social network)

• Helps keep your work and software organized and available

Obtaining Git Obtaining Git
https://git-scm.com/downloads

Configuring Git Configuring Git

First tell Git who you are
> git config --global user.name “Barry Grant”
> git config --global user.email “bjgrant@ucsd.edu”

Do it Yourself!

(RStudio > Tools > Shell)

Using Git Using Git
1. Initiate a Git repository.
2. Edit content (i.e. change some files).
3. Store a ‘snapshot’ of the current file state.*

Using Git with RStudio

2: File > New Project > New Directory > Empty Project
1: RStudio > Tools > Global Options > Git/SVN

1 2

Two initial steps:

Make sure these are ticked!
http://tinyurl.com/rclass-github

Your Turn:

Step 3-4 only please!
(We have already done steps 1 & 2)

GitHub & Bitbucket
GitHub and Bitbucket are two popular hosting services for
Git repositories. These services allow you to share your
projects and collaborate with others using both ‘public’ and
‘private’ repositories*.

https://github.com https://bitbucket.org

What is the big deal?

• At the simplest level GitHub and Bitbucket offer backup of
your projects history and a centralized mechanism for
sharing with others by putting your Git repo online.

• GitHub in particular is often referred to as the “nerds
FaceBook and LinkedIn combined”.

• At their core both services offer a new paradigm for open
collaborative project development, particularly for software.

• In essence they allow anybody to contribute to any
public project and get acknowledgment.

First sign up for a GitHub account
https://github.com

Pick the FREE plan! Your GitHub homepage
Check your email for verification request

Skip the hello-world tutorial
https://guides.github.com/activities/hello-world/

Name your repo
test

http://tinyurl.com/rclass-github
Your Turn:

Step 6 only please!
(We have already done steps 1 to 5)

Side-note: How to edit online
Specifically lets add some Markdown content

Summary
• Git is a popular ‘distributed’ version control

system that is lightweight and free

• GitHub and BitBucket are popular hosting
services for git repositories that have changed the
way people contribute to open source projects

• Introduced basic git and GitHub usage within
RStudio and encouraged you to adopt these ‘best
practices’ for your future projects.

Learning Resources
• Set up Git. If you will be using Git mostly or entirely via

GitHub, look at these how-tos.
< https://help.github.com/categories/bootcamp/ >

• Getting Git Right. Excellent Bitbucket git tutorials
< https://www.atlassian.com/git/ >

• Pro Git. A complete, book-length guide and reference to Git,
by Scott Chacon and Ben Straub.

< http://git-scm.com/book/en/v2 >

• StackOverflow. Excellent programming and developer Q&A.
< http://stackoverflow.com/questions/tagged/git >

Learning git can be painful!
However in practice it is not nearly as crazy-making as
the alternatives:

• Documents as email attachments

• Hair-raising ZIP archives containing file salad

• Am I working with the most recent data?

• Archaelogical “digs” on old email threads and
uncertainty about how/if certain changes have been
made or issues solved

Finally Please remember that GitHub
and BitBucket are PUBLIC and that
you should cultivate your professional

and scholarly profile with intention!

Side-Note: Changing your
default git text editor

• You can configure the default text editor that will
be used when Git needs you to type in a
message.

> git config --global core.editor nano

• If not configured, Git uses your system’s default
editor, which is generally Vim.

Using Command Line Git
1. Initiate a Git repository.
2. Edit content (i.e. change some files).
3. Store a ‘snapshot’ of the current file state.*

Initiate a Git repository Initiate a Git repository
> cd ~/Desktop
> mkdir git_class # Make a new directory
> cd git_class # Change to this directory
> git init # Our first Git command!
> ls -a # what happened?

Do it Yourself!

Side-Note: The .git/ directory

• Git created a ‘hidden’ .git/ directory inside your
current working directory.

• You can use the ‘ls -a’ command to list (i.e. see)
this directory and its contents.

• This is where Git stores all its goodies - this is Git!

• You should not need to edit the contents of the .git
directory for now but do feel free to poke around.

Important Git commands
> git status # report on content changes

> git add <filename> # stage/track a file
> git commit -m “message” # snapshot

Important Git commands
> git status # report on content changes

> git add <filename> # stage/track a file
> git commit -m “message” # snapshot

You will use these three commands again and again in your Git workflow!

Git TRACKS your directory content

• To get a report of changes (since last commit) use:
 > git status

• You tell Git which files to track with:
 > git add <filename>
 This adds files to a so called STAGING AREA
 (akin to a “shopping cart” before purchasing).

• You tell Git when to take an historical SNAPSHOT of
your staged files (i.e. record their current state) with:

 > git commit -m ‘Your message about changes’

Eva creates a README text file
(this starts as untracked)

Adds file to STAGING AREA*
(tracked and ready to take a snapshot)

Commit changes*
(records snapshot of staged files!)

Example Git workflow Example Git workflow
• Eva creates a README text file

• Adds file to STAGING AREA*

• Commit changes*

• Eva modifies README and adds a ToDo text file

• Adds both to STAGING AREA*

• Commit changes*

Hands on example!

1. Eva creates a README file

> # cd ~/Desktop/git_class
> # git init

> echo "This is a first line of text." > README
> git status # Report on changes
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)

Do it Yourself!
2. Adds to ‘staging area’

> git add README # Add README file to staging area
> git status # Report on changes
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: README

3. Commit changes

> git commit -m “Create a README file” # Take snapshot
[master (root-commit) 8676840] Create a README file
1 file changed, 1 insertion(+)
create mode 100644 README

> git status # Report on changes
On branch master
nothing to commit, working directory clean

4. Eva modifies README file
and adds a ToDo file

> echo "This is a 2nd line of text." >> README
> echo "Learn git basics" >> ToDo

> git status # Report on changes
On branch master

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: README

Untracked files:
(use "git add <file>..." to include in what will be committed)

ToDo

no changes added to commit (use "git add" and/or "git commit -a")

5. Adds both files to ‘staging area’

> git add README ToDo # Add both files to ‘staging area’
> git status # Report on changes
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: README
new file: ToDo

6. Commits changes

> git commit -m "Add ToDo and modify README"
[master 7b679fa] Add ToDo and modify README
2 files changed, 2 insertions(+)
create mode 100644 ToDo

> git status
On branch master
nothing to commit, working directory clean

Example Git workflow
• Eva creates a README text file

• Adds file to STAGING AREA*

• Commit changes*

• Eva modifies README and adds a ToDo text file

• Adds both to STAGING AREA*

• Commit changes*

1.

2.

3.

4.

5.

6.

…But, how do we see the history of our project changes?

> git log
commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170
Author: Barry Grant <bjgrant@umich.edu>
Date: Thu Jul 30 11:43:40 2015 -0400

Add ToDo and finished README

commit 86768401610770ae32e2fd4faee07d1d5c68619c
Author: Barry Grant <bjgrant@umich.edu>
Date: Thu Jul 30 11:26:40 2015 -0400

Create a README file
#

git log: Timeline history of
snapshots (i.e. commits)

> git log
commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170
Author: Barry Grant <bjgrant@umich.edu>
Date: Thu Jul 30 11:43:40 2015 -0400

Add ToDo and finished README

commit 86768401610770ae32e2fd4faee07d1d5c68619c
Author: Barry Grant <bjgrant@umich.edu>
Date: Thu Jul 30 11:26:40 2015 -0400

Create a README file
#

git log: Timeline history of
snapshots (i.e. commits)

Past

Side-Note: Git history is akin
 to a graph

7b67…

8676…

HEAD
Nodes are commits labeled by their

unique ‘commit ID’.

(This is a CHECKSUM of the commits
author, time, commit msg, commit content

and previous commit ID).

HEAD is a reference (or ‘pointer’) to the
currently checked out commit (typically the

most recent commit).

Time

Projects can have complicated
graphs due to branching

7b67…

8676…

HEAD

Master

59d6…

Feature BugFix

1g9k…

39x2…

Branches allow you to work independently
of other lines of development we will talk

more about these later!

Key Points:

You explicitly and iteratively tell git what files to
track (“git add”) and snapshot (“git commit”).

Git keeps an historical log “(git log”) of the
content changes (and your comments on these

changes) at each past commit.

It is good practice to regularly check the status
of your working directory, staging arena repo

(“git status“)

Break
> git status # Get a status report of changes since last commit

> git add <filename> # Tell Git which files to track/stage

> git commit -m ‘Your message’ # Take a content snapshot!

> git log # Review your commit history

> git diff <commit.ID> <commit.ID> # Inspect content differences

> git checkout <commit.ID> # Navigate through the commit history

Summary of key Git commands:

Your
Directory

‘Staging
Area’

Local
Repository

add

commit

checkout

diff

diff <commit.ID>

status

log

> git diff 8676 7b67
diff --git a/README b/README
index 73bc85a..67bd82c 100644
--- a/README
+++ b/README
@@ -1 +1,2 @@
This is a first line of text.
+This is a 2nd line of text.
diff --git a/ToDo b/ToDo
new file mode 100644
index 0000000..14fbd56
--- /dev/null
+++ b/ToDo
@@ -0,0 +1 @@
+Learn git basics

git diff: Show changes
between commits

7b67…

8676…

> git diff 7b67 8676
diff --git a/README b/README
index 67bd82c..73bc85a 100644
--- a/README
+++ b/README
@@ -1,2 +1 @@
This is a first line of text.
-This is a 2nd line of text.
diff --git a/ToDo b/ToDo
deleted file mode 100644
index 14fbd56..0000000
--- a/ToDo
+++ /dev/null
@@ 1 +0,0 @@
-Learn git basics

git diff: Show changes
between commits

7b67…

8676…

> git diff 8676 ## Difference to current HEAD position!
diff --git a/README b/README
index 73bc85a..67bd82c 100644
--- a/README
+++ b/README
@@ -1 +1,2 @@
This is a first line of text.
+This is a 2nd line of text.
diff --git a/ToDo b/ToDo
new file mode 100644
index 0000000..14fbd56
--- /dev/null
+++ b/ToDo
@@ -0,0 +1 @@
+Learn git basics

HEAD

git diff: Show changes
between commits

7b67…

8676…

HEAD advances automatically with
each new commit

HEAD 7b67…

8676…

To move HEAD (back or forward)
on the Git graph (and retrieve the
associated snapshot content) we

can use the command:

> git checkout <commit.ID>

> more README
This is a first line of text.
This is a 2nd line of text.

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

git checkout: Moves HEAD

7b67…

8676…

HEAD

> more README
This is a first line of text.
This is a 2nd line of text.

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

> git checkout 86768
You are in 'detached HEAD' state…<cut>…
HEAD is now at 8676840... Create a README file

> more README
This is a first line of text.

> git log --oneline
8676840 Create a README file

7b67…

8676…HEAD

git checkout: Moves HEAD
(e.g. back in time)

Do it Yourself!

> git checkout master
Previous HEAD position was 8676840... Create a README file
Switched to branch 'master'

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

> more README
This is a first line of text.
This is a 2nd line of text.

7b67…

8676…

HEAD

git checkout: Moves HEAD
(e.g. back to the future!)

Side-Note: There are two* main ways to
use git checkout

• Checking out a commit makes the entire working
directory match that commit. This can be used to
view an old state of your project.

> git checkout <commit.ID>

• Checking out a specific file lets you see an old
version of that particular file, leaving the rest of
your working directory untouched.

> git checkout <commit.ID> <filename>

You can discard revisions
with git revert

• The git revert command undoes a committed
snapshot.

• But, instead of removing the commit from the
project history, it figures out how to undo the
changes introduced by the commit and appends
a new commit with the resulting content.

> git revert <commit.ID>

• This prevents Git from losing history!

Removing untracked files
with git clean

• The git clean command removes untracked files from
your working directory.

• Like an ordinary rm command, git clean is not
undoable, so make sure you really want to delete the
untracked files before you run it.

> git clean -n # dry run display of files to be ‘cleaned’

> git clean -f # remove untracked files

GUIs
Tower (Mac only)

GitHub_Desktop (Mac, Windows)
SourceTree (Mac, Windows)

SmartGit (Linux)
RStudio

Demo Tower

https://git-scm.com/downloads/guis

