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NEXT UP:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
» Composition, form, forces and dynamics

» Representing and interpreting protein
structure

* Modeling energy as a function of structure

» Example application areas

- drug discovery & Predicting functional dynamics



THE TRADITIONAL EMPIRICAL PATH TO
DRUG DISCOVERY

Compound library
(commercial, in-house,

synthetic, natural)\

High throughput screening

(HTS) \
Hit confirmation

N\

Lead compounds

(e.g., uM Ky) \

Lead optimization
(Medicinal chemistry)

v

Animal and clinical€—potent drug candidates
evaluation (nM Ky)



COMPUTER-AID

D LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Ensemble Docking

v
Scoring

v
Visual

anaiysis
in vitro
assays
000 +00ZINC

v

in vitro
assays

Reduce chemical waste

Facilitate faster progress



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based
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Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex



PROT

—IN-LIGAN

D

DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy

Potential function

Energy as function of structure

Q—0
VDW

Q—
Screened Coulombic

Dihedral



STRUCTURE-BAS

D VIRTUAL SCREENING

Compound 3D structure of target
database (crystallography, NMR,

bioinformatics
modeling)

Virtual screening
(e.g., computational
docking)

/ Candidate ligands

Ligand optimization

Med chem, Experimental assay
crystallography, modelmg l

ngands —>3  Drug
candidates



COMPOUND LIBRARIES
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FRAGMENTAL STRUCTURE-BAS
SCREENING

[T
W,

“Fragment” library 3D structure of target

N «

Fragment docking

|

Compound design

|

Experimental assay and ligand optimization

Med chem, crystallography, modeling - Drud candidates
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http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html



http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html

Multiple non active-site pockets identified

Small organic probe fragment affinities map multiple potential
binding sites across the structural ensemble.
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Ensemble docking & candidate inhibitor testing

Top hits from ensemble docking against distal pockets were tested for
inhibitory effects on basal ERK activity in glioblastoma cell lines.

Ensemble computational docking Compound effect on U251 cell line
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Compound testing in
cancer cell lines

PLoS One (2011, 2012)



Proteins and Ligand are Flexible

Protein




COMMON SIMPLIFICATIONS USED IN
PHYSICS-BASED DOCKING

Quantum effects approximated classically
Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Hand-on time!

https://bioboot.github.io/bimmi143_S18/lectures/#12

You can use the classroom computers or your own
laptops. If you are using your laptops then you will need
to install VMD and MGLTools


https://bioboot.github.io/bimm143_S18/lectures/#12

Bio3D view()

e |f you want the 3D viewer in your R
markdown you can install the
development version of Bio3D

e For MAC:

e For Windows:

[ See: Appendix | in Lab Sheet ]



Proteins and Ligand are Flexible

Protein




1T TP/29.177.232.111:3848/PCA-APP/

H T TP//BIO3D.UCSD.EDU/PCA-APP/



http://129.177.232.111:3848/pca-app/
http://BIO3D.ucsd.eDU/PCA-APP/

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Scenario 2
Structure of Targeted Protein Unknown:
Ligand-Based Drug Discovery

e.g. MAP Kinase Inhibitors ~
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Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don't
bind tightly enough

A company wants to work around another company’s chemical
patents

An high-affinity ligand is toxic, is not well-absorbed, difficult to
synthesize etc.



LIGAND-BAS

D VIRTUAL SCREENING

Compound Library Known Ligands

N e

Molecular similarity
Machine-learning
Etc.

v

/ Candidate ligands
Optimization l

Med chem, crystallography, Assay

modeling \ l

Actives ——3Potent drug candidates



LIGAND-

Compounds
(available/synthesizable)

~

D
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MILARITY

DISCOVERY

Different

mssssn) Don’t bother

Test experimentally



CHEMICAL FINGERPRINTS
BINARY STRUCTURE KEYS

Molecule 2 - i u




CHEMICAL SIMILARITY FROM
FINGERPRINTS

Molecule 2 - i __.

Tanimoto Similarity T & =025
(or Jaccard Index), T N,

Intersection .::h
I BN =

Union

_ N




Pharmacophore Models
dappako (drug) + dopa (carry)

Bulky
A 3-point pharmacophore hydrophobe




Molecular Descriptors
More abstract than chemical fingerprints

Physical descriptors
molecular weight

it A OO
dipole moment P ("
|

| S
number of H-bond donors/acceptors /4) “Q
number of rotatable bonds Q\ * Rotatable bonds
hydrophobicity (log P and clogP)

Topological
branching index

measures of linearity vs interconnectedness

Etc. etc.



A High-Dimensional “Chemical Space”

Each compound is at a point in an n-dimensional space
Compounds with similar properties are near each other

Descriptor 3

Q@ o o

Descriptor 2

Point representing a
® compound in descriptor
space

Apply multivariate statistics and machine learning for descriptor-
selection. (e.g. partial least squares, PCA, support vector machines,
random forest, deep learning etc.)



Approved drugs and clinical candidates

* Catalogue approved drugs and clinical candidates from
FDA Orange Book, and USAN applications

* Small molecules and biotherapeutics
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LIPINSKI'S RULE OF FIVE

Lipinski’s rule of five states that, in general, an orally active drug
has no more than one violation of the following criteria:

* Not more than 5 hydrogen bond donors (nitrogen or oxygen

atoms with one or more hydrogen atoms)

* Not more than 10 hydrogen bond acceptors (nitrogen or

oxygen atoms)
e A molecular mass less than 500 daltons

* An octanol-water partition coefficient log P not greater than 5



Set of approved drugs or medicinal chemistry compounds
and their targets can be used to derive rules for drug
discovery success (or failure):

What features make a successful drug target?

What features make a protein druggable by small
molecules?

What features of a compound contribute to good oral
bioavailability?

What chemical groups may be associated with toxicity?



Druggability prediction
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NEXT UP:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure

» Composition, form, forces and dynamics

» Representing and interpreting protein
structure

* Modeling energy as a function of structure

» Example application areas

* Drug discovery & predicting functional dynamics




PREDICTING FUNCTIONAL DYNAMICS

* Proteins are intrinsically flexible molecules with
internal motions that are often intimately coupled to

their biochemical function
— E.g. ligand and substrate binding, conformational
activation, allosteric regulation, etc.

* Thus knowledge of dynamics can provide a deeper
understanding of the mapping of structure to
function

— Molecular dynamics (MD) and normal mode analysis
(NMA) are two major methods for predicting and
characterizing molecular motions and their properties




MOLECULAR DYNAMICS SIMULATION

e Use force-field to find
Potential energy between
all atom pairs

e Move atoms to next state

* Repeat to generate
trajectory

McCammon, Gelin & Karplus, Nature (1977)
| See: https://www.youtube.com/watch?v=ui1ZysMFcKKk |



https://www.youtube.com/watch?v=ui1ZysMFcKk

KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based
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DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

Energy

Structure/Conformation



KEY CONCEPT. POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

Energy

Structure/Conformation



PHYSICS-BASED POTENTIALS

ENERGY TERMS FROM PHYSICAL THEORY

UR) = X K=o+ X K- 60 + \/ |em-
é)onds < angles . . b'o'
U'b:z d U a:g le
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A E Tij Tij i J¢l€ru do G
U'no;;mnd
U, .4 = oscillations about the equilibrium bond length \}V'—‘
Uangle = oscillations of 3 atoms about an equilibrium bond angle - N\ #
U ginedra) = torsional rotation of 4 atoms about a central bond \ 7\

U = non-bonded energy terms (electrostatics and Lenard-Jones)

nonbond

CHARMM RE. function, see: http://www.charmm.org/



http://www.charmm.org
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TOTAL PROTENTIAL ENERGY

*The total potentioal energy
or tnthﬂlpﬂ Full-j detines the

system , (.

*Tle lorces are the
grocients of the eneragy .

F{ﬂ'-}= 'JWCI‘H: ® e energy is G sum of
ﬂ‘ - independent terms for:
P & Bond, Bond snafes,
: / | Torsion anales and non—
bonded atom pairs.

Slide Credit: Michael Levitt



MOVING OVER THE ENERGY SURFACE
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Slide Credit: Michael Levitt



PHYSICS-ORIENT

D APPROACHES

Weaknesses
Fully physical detail becomes computationally intractable
Approximations are unavoidable
(Quantum effects approximated classically, water may be treated crudely)
Parameterization still required

Strengths
Interpretable, provides guides to design
Broadly applicable, in principle at least
Clear pathways to improving accuracy

Status

Useful, widely adopted but far from perfect

Multiple groups working on fewer, better approxs
Force fields, quantum
entropy, water effects

Moore’s law: hardware improving
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SIDE-NOTE: GPUS AND ANTON
SUPERCOMPUTER
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SIDE-NOTE: GPUS AND ANTON
SUPERCOMPUTER
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KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based




KNOWLEDGE-BASED DOCKING POTENTIALS

Pistidine

Ligand
carboxylate

y Aromatic
_ - ¢ stacking
TR I A




ENERGY DETERMINES PROBABILITY
(STABILITY)

Basic i1dea: Use probability as a proxy for energy

\/\/\/ Boltzmann:
—E(r)/RT

p(r) e

Inverse Boltzmann:

E(r)=-RTIn|p(r)]

%

Probability Energy

X

Example: ligand carboxylate O to protein histidine N

Find all protein-ligand structures in the PDB with a ligand carboxylate O
1. For each structure, histogram the distances from O to every histidine N
2. Sum the histograms over all structures to obtain p(ro.y)

3. Compute E(ro.y) from p(ro.y)



PMF (kcal/mol)

3.0

2.0 -

1.0

0.0 }

I
—
o

-2.0

KNOWL

DG

POT

—-BASE

D
-NTIALS

DOCKING

“PMF", Muegge & Martin, J. Med. Chem. (1999) 4279 |
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KNOWLEDGE-BAS

D POTENTIALS

Weaknesses
Accuracy limited by availability of data

Strengths
Relatively easy to implement
Computationally fast

Status
Useful, far from perfect
May be at point of diminishing returns
(not always clear how to make improvements)



MD Prediction of Functional Motions

“close”

0.00 ns

60.00 ns

w
£
o
<
©

Yao and Grant, Biophys J. (2013)




COARSE GRAINING: NORMAL MODE ANALYSIS
(NMA)

* MD is still time-consuming for large systems

* Elastic network model NMA (ENM-NMA) is an example
of a lower resolution approach that finishes in seconds
even for large systems.

* 1 bead/

| 1 amino acid
"”T » Connected by
springs

Atomistic Coarse Gralned



NMA models the protein as a network of elastic strings

Proteinase K




Hand-on time!

https://bioboot.github.io/bimmi143_S18/lectures/#12

Focus on section 3 & 4 exploring PCA and NMA apps


https://bioboot.github.io/bimm143_S18/lectures/#12

ACHIEVEMENTS CHALLENGES

llan Samish et al. Bioinformatics 2015;31:146-150




INFORMING SYSTEMS BIOLOGY?

Literature and ontologies

T
M “" - L

DNA & RNA sequence

Gene expression

Protein sequence

DNA & RNA structure

Protein families,
motifs and domains

Protein interactions

Pathways

Systems



SUMMARY

Structural bioinformatics is computer aided structural biology

Described major motivations, goals and challenges of structural
bioinformatics

Reviewed the fundamentals of protein structure

Introduced both physics and knowledge based modeling
approaches for describing the structure, energetics and
dynamics of proteins computationally

Introduced both structure and ligand based bioinformatics
approaches for drug discovery and design



