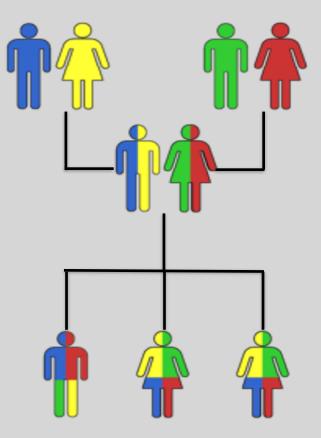
BIMM 143 Genome Informatics Lecture 13

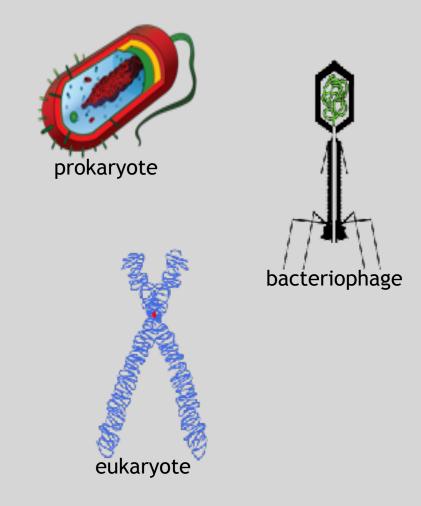
> Barry Grant UC San Diego

http://thegrantlab.org/bimm143

TODAYS MENU:

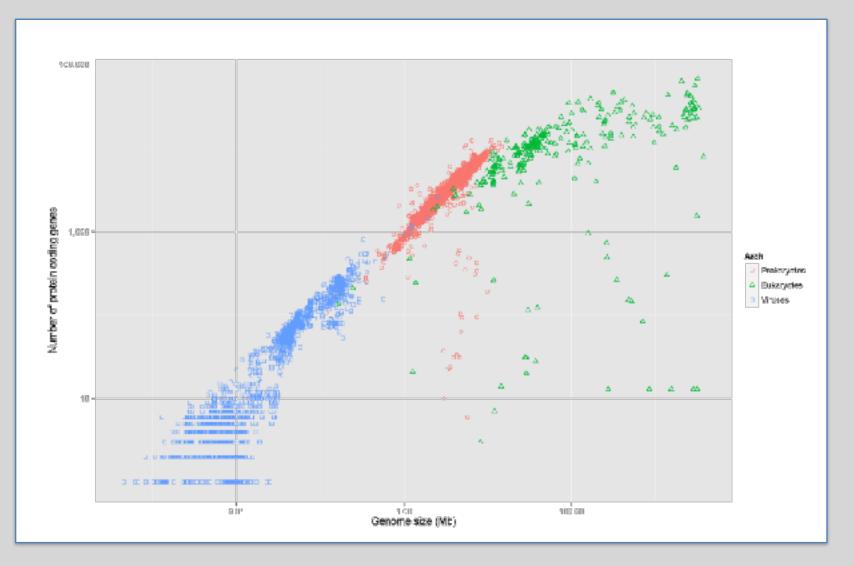

- What is a Genome?
 - Genome sequencing and the Human genome project
- What can we do with a Genome?
 - Compare, model, mine and edit
- Modern Genome Sequencing
 - 1st, 2nd and 3rd generation sequencing
- Workflow for NGS
 - RNA-Sequencing and Discovering variation

Genetics and Genomics


- Genetics is primarily the study of individual genes, mutations within those genes, and their inheritance patterns in order to understand specific traits.
- **Genomics** expands upon classical genetics and considers aspects of the <u>entire genome</u>, typically using computer aided approaches.

What is a Genome?

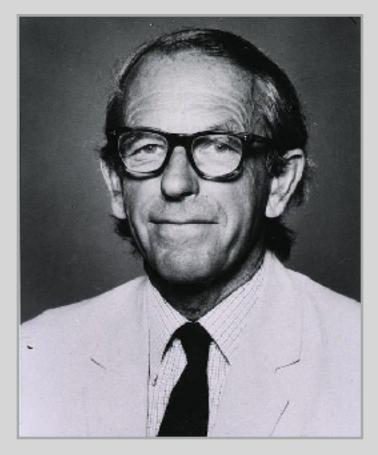
The total genetic material of an organism by which individual traits are encoded, controlled, and ultimately passed on to future generations



Genomes come in many shapes

- Primarily DNA, but can be RNA in the case of some viruses
- Some genomes are circular, others linear
- Can be organized into discrete units (chromosomes) or freestanding molecules (plasmids)

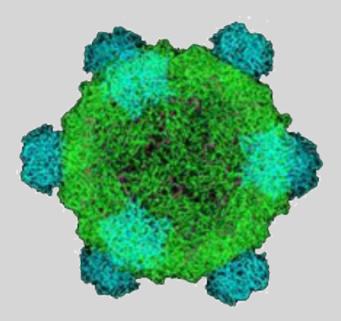
Genomes come in many sizes


Genome Databases

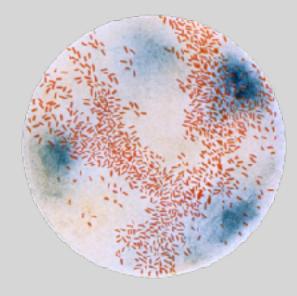
NCBI Genome:

http://www.ncbi.nlm.nih.gov/genome

SINCE Research B Hev	1.0			Egelin für SCH		
Genome	v= 8			Brenk		
	Units Acvan	end		they be		
		Genome This one area organizes information and dates	to genomen inducting experioes, may	a, shronoecnee, assembles, and		
Using Genama		Guistom resources	Other Res	eL/re25		
ENG		Kuman Sphone	ALC: NO.			
Excesse ky Organism		Mosbes	BioPiciest			
Desclored 1919		Oueslin	Bic/Campio			
Devriced RAD		Vinue	Mag: Viewer			
Submit a genome		Prokarystic reference periotres	Prese Curr	8		
Genome Tools		Genome Annotation and Analy	vis External R	asources		
ELAST the Human Genome		Eularyofic Became Arrelation	GOLD - Desc	GOLD - Descrine Online Saturate		
Manufalat Nuclea tide: NJ ANT		Enders in General Academics	Econolis Dee	Economic Democra Research		
TacRet/Dwardenore.Corps	caeca	PASC (Fairwise Separce Competitor)	Bacteria Garry	Bacieria Goromea at Sungar		
				a-Scale Sename Sequencing (NHSRI)		
Yes an ion. NOI - Generatik Me	ut =@ecena			Te in in Ini Help Dans.		
GETTING STARTED	ABBOURGES	POPULAR	PEATURED	HOBI INFORMATION		
NOB Education NOB Help Manual	Chumiesh & Diseaseys Data & Schwarp	PubMed Ecolored	Centile Testing Repairy Publics Health	Association (NOD)		
NCB Handson	DEA.8 TRA	PubMed Certail	Gerlank	ICEI Parts		
Training & Tworlebs	Demains & Onvolumes	PubMed Health	Refivence Securices	HOB FTP Gits		
	Ganas & Expression	BLACT	Gane Expression Oracleus	CELC And Address of Concentration		
	Genetics & Nivelone	Mucheoficie	Map Weares	HOBIOT Twitter		
	Conomes & Uses	Cename SNP	Human General Mouse Genores	NOBINE VesTues		
	Humology Literature	SNP Date	Incuse Senome			
	Petitine	Engle Ditas BAST				
	Tensoria Analysis	Publichers	Department Finant Architect			
	Texorony					
	Training & Turlanian					
	Volation					
Celyape Decision Penacy in Second Center in Reservoiring vity		time.		IN CO. Chtu		
6500 Rocimile Film, Bernarch MO. 20				🎬 🙆 (f. 1810).		


Early Genome Sequencing

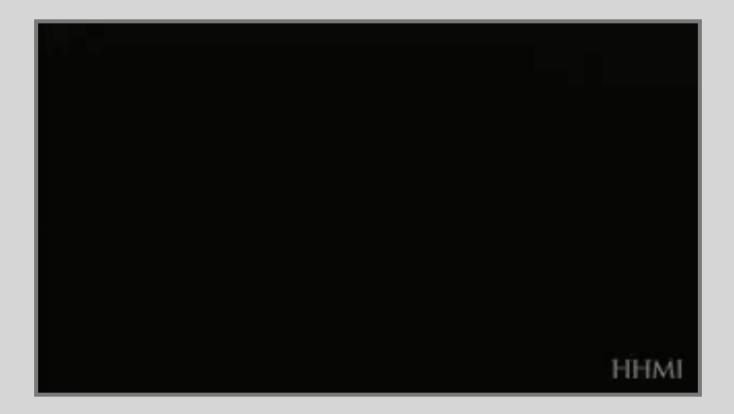
- Chain-termination "Sanger" sequencing was developed in 1977 by Frederick Sanger, colloquially referred to as the "Father of Genomics"
- Sequence reads were typically 750-1000 base pairs in length with an error rate of ~1 / 10000 bases


http://en.wikipedia.org/wiki/Frederick_Sanger

The First Sequenced Genomes

Bacteriophage φ-X174

- Completed in 1977
- 5,386 base pairs, ssDNA
- 11 genes


Haemophilus influenzae

- Completed in 1995
- 1,830,140 base pairs, dsDNA
- 1740 genes

The Human Genome Project

- The Human Genome Project (HGP) was an international, public consortium that began in 1990
 - Initiated by James Watson
 - Primarily led by Francis Collins
 - Eventual Cost: \$2.7 Billion
- Celera Genomics was a private corporation that started in 1998
 - Headed by Craig Venter
 - Eventual Cost: \$300 Million
- Both initiatives released initial drafts of the human genome in 2001
 - ~3.2 Billion base pairs, dsDNA
 - 22 autosomes, 2 sex chromosomes
 - ~20,000 genes

Modern Genome Sequencing

- Next Generation Sequencing (NGS) technologies have resulted in a paradigm shift from long reads at low coverage to short reads at high coverage
- This provides numerous opportunities for new and expanded genomic applications

Reference	
Reads	

Rapid progress of genome sequencing

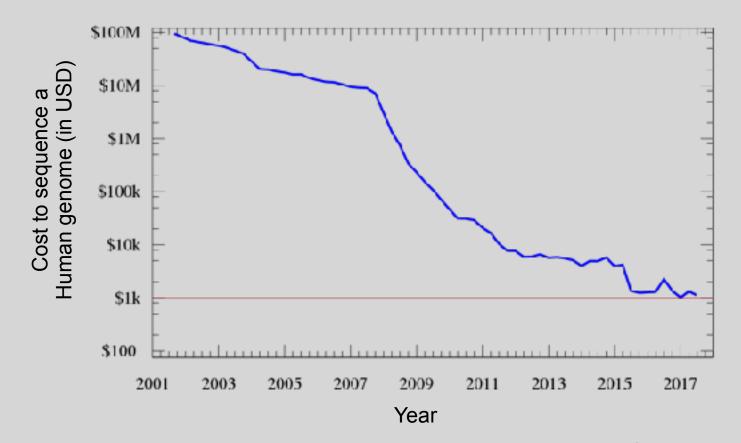


Image source: <u>https://en.wikipedia.org/wiki/Carlson_curve</u>

Rapid progress of genome sequencing

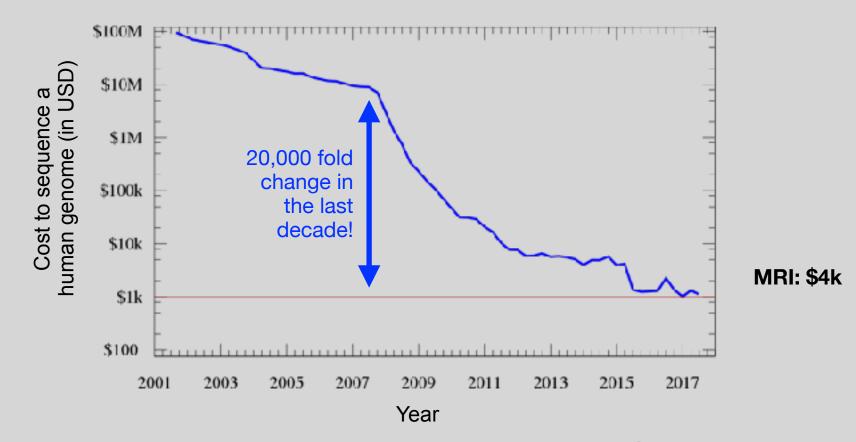
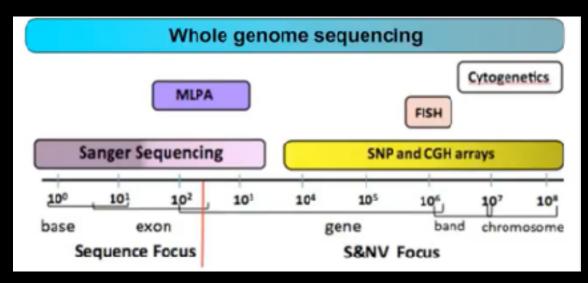
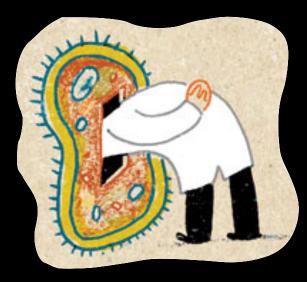



Image source: https://en.wikipedia.org/wiki/Carlson_curve

Whole genome sequencing transforms genetic testing


- 1000s of single gene tests
- Structural and copy number variation tests
- Permits hypothesis free diagnosis

Major impact areas for genomic medicine

- Cancer: Identification of driver mutations and drugable variants, Molecular stratification to guide and monitor treatment, Identification of tumor specific variants for personalized immunotherapy approaches (precision medicine).
- Genetic disease diagnose: Rare, inherited and so-called 'mystery' disease diagnose.
- Health management: Predisposition testing for complex diseases (e.g. cardiac disease, diabetes and others), optimization and avoidance of adverse drug reactions.
- Health data analytics: Incorporating genomic data with additional health data for improved healthcare delivery.

Goals of Cancer Genome Research

- Identify changes in the genomes of tumors that drive cancer progression
- Identify new targets for therapy
- Select drugs based on the genomics of the tumor
- Provide early cancer detection and treatment response monitoring
- Utilize cancer specific mutations to derive neoantigen immunotherapy approaches

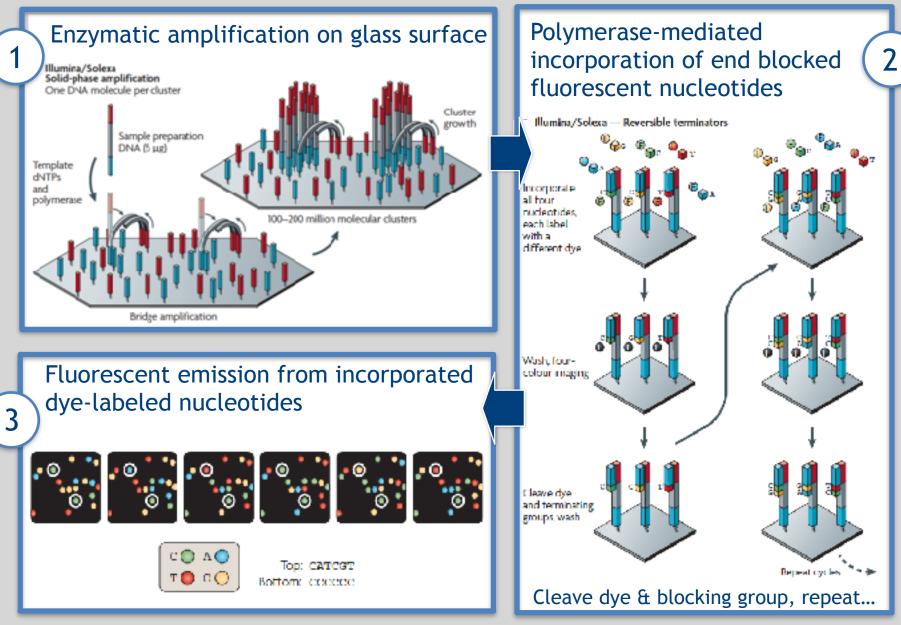
What can go wrong in cancer genomes?

Type of change	Some common technology to study changes
DNA mutations	WGS, WXS
DNA structural variations	WGS
Copy number variation (CNV)	CGH array, SNP array, WGS
DNA methylation	Methylation array, RRBS, WGBS
mRNA expression changes	mRNA expression array, RNA-seq
miRNA expression changes	miRNA expression array, miRNA-seq
Protein expression	Protein arrays, mass spectrometry

WGS = whole genome sequencing, WXS = whole exome sequencing RRBS = reduced representation bisulfite sequencing, WGBS = whole genome bisulfite sequencing

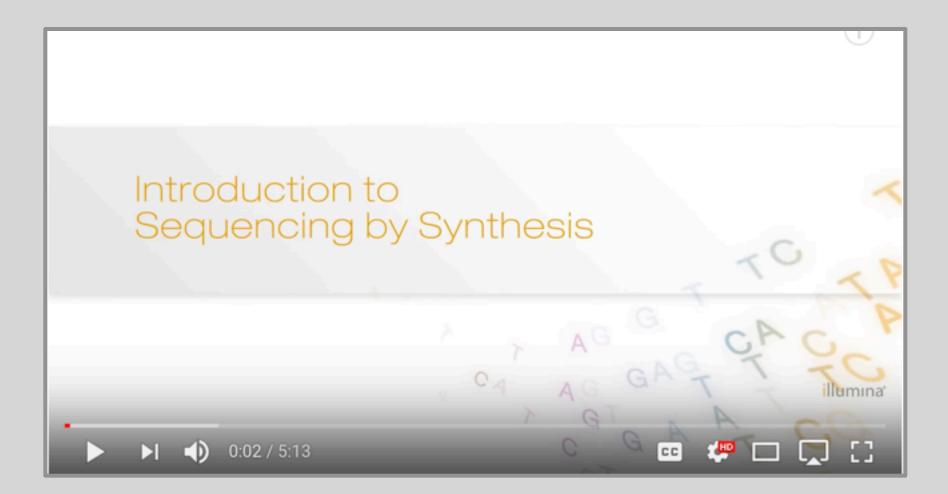
DNA Sequencing Concepts

 Sequencing by Synthesis: Uses a polymerase to incorporate and assess nucleotides to a primer sequence


– 1 nucleotide at a time

- Sequencing by Ligation: Uses a ligase to attach hybridized sequences to a primer sequence
 - -1 or more nucleotides at a time (e.g. dibase)

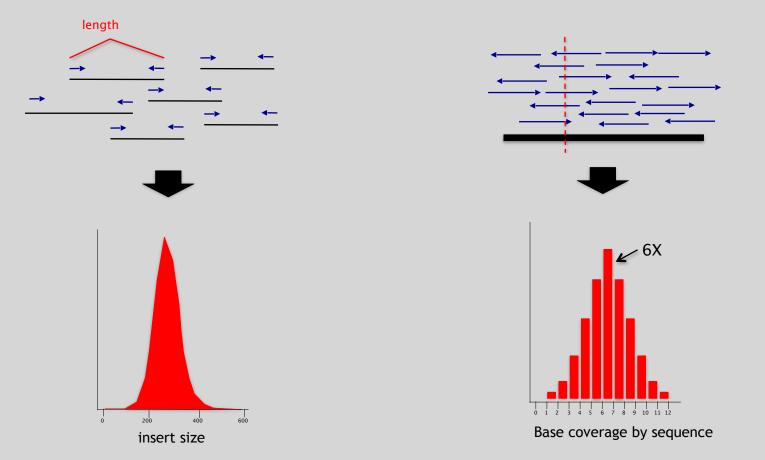
Modern NGS Sequencing Platforms


	Roche/454	Life Technologias SOLiD	Illumina Hi-Seq 2000
Library amplification method	emPCR* on bead surface	emPCR* on bead surface	Enzymatic amplification on glass surface
Sequencing method	Polymerase-mediated incorporation of unlabelled nucleotides	Ligase-mediated addition of 2-base encoded fluorescent oligonucleotides	Polymerase-mediated incorporation of end- blocked fluorescent nucleotides
Detection method	Light emitted from secondary reactions initiated by release of PPi	Fluorescent emission from ligated dye-labelled oligonucleotides	Fluorescent emission from incorporated dye-labelled nucleotides
Post incorporation method	NA (unlabelled nucleotides are added in base-specific fashion, followed by detection)	Chemical cleavage removes fluorescent dye and 3' end of oligonucleotide	Chemical cleavage of fluorescent dye and 3' blocking group
Error model	Substitution errors rare, insertion/ deletion errors at homopolymers	End of read substitution errors	End of read substitution errors
Read length (fragment/paired end)	400 bp/variable length mate pairs	75 bp/50+25 bp	150 bp/100+100 bp

Illumina - Reversible terminators

Images adapted from: Metzker, ML (2010), Nat. Rev. Genet, 11, pp. 31-46

Illumina Sequencing - Video



https://www.youtube.com/watch?src_vid=womKfikWlxM&v=fCd6B5HRaZ8

NGS Sequencing Terminology

Insert Size

Sequence Coverage

Summary: "Generations" of DNA Sequencing

	First generation	Second generation ⁶	Third generation ^a
Fundamental technology	Size-separation of specifically end- labeled DNA fragments, produced by SBS or degradation	Wash-and-sean SBS	SBS, by degradation, or direct physica inspection of the DNA molecule
Resolution	Averaged across many copies of the DNA molecule being sequenced	Averaged across many copies of the DNA molecule being sequenced	Single-molecule resolution
Current raw read accuracy	High	High	Moderate
Current read length	Moderate (800-1000 bp)	Short, generally much shorter than Sanger sequencing	Long, 1000 bp and longer in commercial systems
Current throughput	Law	High	Moderate
Current cost	High cost per base	Low cost per base	Low-to-moderate cost per base
	Low cost per run	High cost per run	Low cost per run
RNA-sequencing method	eDNA sequencing	cDNA sequencing	Direct RNA sequencing and cDNA sequencing
Time from start of sequencing reaction to result	Hours	Days	Hours
Sample preparation	Moderately complex, PCR amplification not required	Complex, PCR amplification required	Ranges from complex to very simple depending on technology
Data analysis	Routine	Complex because of large data volumes and because short reads complicate assembly and alignment algorithms	Complex because of large data volume and because technologies yield new types of information and new signa processing challenges
Primary results	Base calls with quality values	Base calls with quality values	Base calls with quality values, potentially other base information such as kinetics

Third Generation Sequencing

- Currently in active development
- Hard to define what "3rd" generation means
- Typical characteristics:
 - Long (1,000bp+) sequence reads
 - Single molecule (no amplification step)
 - Often associated with nanopore technology
 - But not necessarily!

The first direct RNA sequencing by nanopore

Side Nore.

For example this new nanopore sequencing method was just igodolpublished!

https://www.nature.com/articles/nmeth.4577

 "Sequencing the RNA in a biological sample can unlock a wealth of information, including the identity of bacteria and viruses, the nuances of alternative splicing or the transcriptional state of organisms. However, current methods have limitations due to short read lengths and reverse transcription or amplification biases. Here we demonstrate nanopore direct RNA-seq, a highly parallel, real-time, singlemolecule method that circumvents reverse transcription or amplification steps."

SeqAnswers Wiki

Side Nore.

🛃 lines in

A good repository of analysis software can be found at http://seqanswers.com/wiki/Software/list

							6 609		
XX	Page Discussion				Read Yes/aparts	View history		śn	Anarra
II PITAN	Software/list	mailid, dynamic taken oʻtefmanatkin, emakad from	parate in the effet. The	add a surface to the list	ena da febrativo krev				
EQuivolen	new package name	AMB.							
du melgation	GW								
iain page econt changes andem pages						B			
refe	E Hares	B summy	B no tabe	E nen inde	E Features	Langeage	E Literee	8.08	٠
offerane	-speak a	Allows viewing sequencing taxes likes, most security binning, RLASS and experting assumption.	Sequencing	Sequence analysis			Frenzre	Marc D	6 X
Cforum hab rowse setures cforum int	Aà Lage Indal Iloci	Identified deviations is clone-intern. 200 tht: Indicate inter-constructional structure variations compared is a minimum ground.	InDel discovery Sequencing	Mapping		Pet	GPL	Linux I	10
leaffrox	As brained her feel	The BDL D * Small Indel Tao processes the score evidences found in the taking state of the 50, D** Serview Analysis Pipeline Tool (Comma	Includes every Sequencing	Mapaing Alignment		Pell C+#	GP.,	Lina I	ja
that links hore etaiest onanges		Line)							
ipetarpages Preside avelan Presidentifich Downe properties	ABEA	Adversity illocated by Annue and Registrate is a comparative game assembler, which uses amine acid seconders from predicted protons in heightable a before assembly.	Sename Recently	Assembly Scattoring			Anona Leones	tra	
	Authopper	Maps IRVA dog reside to taget generic considering perside multiple mapping to store and spice(protons	Genomics Transcriptomics	Mapaing Alignment		C++ Pet	GPU/3	urus	
	ANES	ABYSE is a dio nero dedecteo dosentiblor dobigeed for anen reads and targe genomes.	Do nove accombin	Assembly De Enujr gaph	Upiner Opiner	C++	Preo for acadomic uso	POEX Linux Max D	
	Advator Terroral	Decrement whether harvesters from the theory	General	Adapter Renamed	Tripanico	deve	Genters License	Linux 7	14

What can we do with all this sequence information?

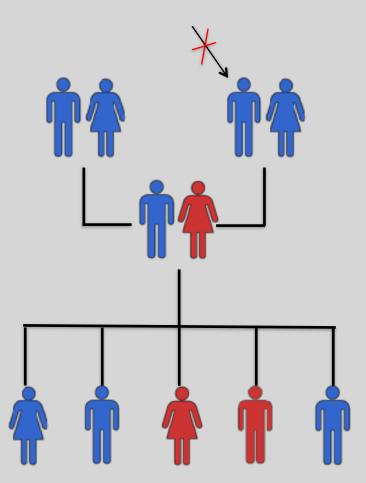
Population Scale Analysis

We can now begin to assess genetic differences on a very large scale, both as naturally occurring variation in human and non-human populations as well somatically within tumors

https://www.genomicsengland.co.uk/the-100000-genomes-project/

"Variety's the very spice of life"

-William Cowper, 1785


"Variation is the spice of life"

-Kruglyak & Nickerson, 2001

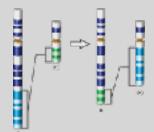

- While the sequencing of the human genome was a great milestone, the DNA from a single person is not representative of the millions of potential differences that can occur between individuals
- These unknown genetic variants could be the cause of many phenotypes such as differing morphology, susceptibility to disease, or be completely benign.

Germline Variation

- Mutations in the germline are passed along to offspring and are present in the DNA over every cell
- In animals, these typically occur in meiosis during gamete differentiation

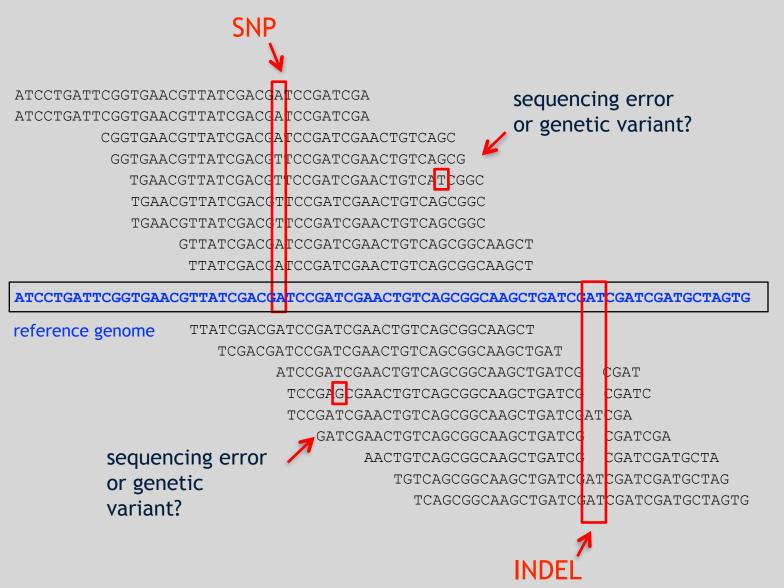
Somatic Variation


- Mutations in non-germline cells that are not passed along to offspring
- Can occur during mitosis or from the environment itself
- Are an integral part in tumor progression and evolution


Types of Genomic Variation

- Single Nucleotide Polymorphisms (SNPs) - mutations of one nucleotide to another
- Insertion/Deletion Polymorphisms (INDELs) - small mutations removing or adding one or more nucleotides at a particular locus
- Structural Variation

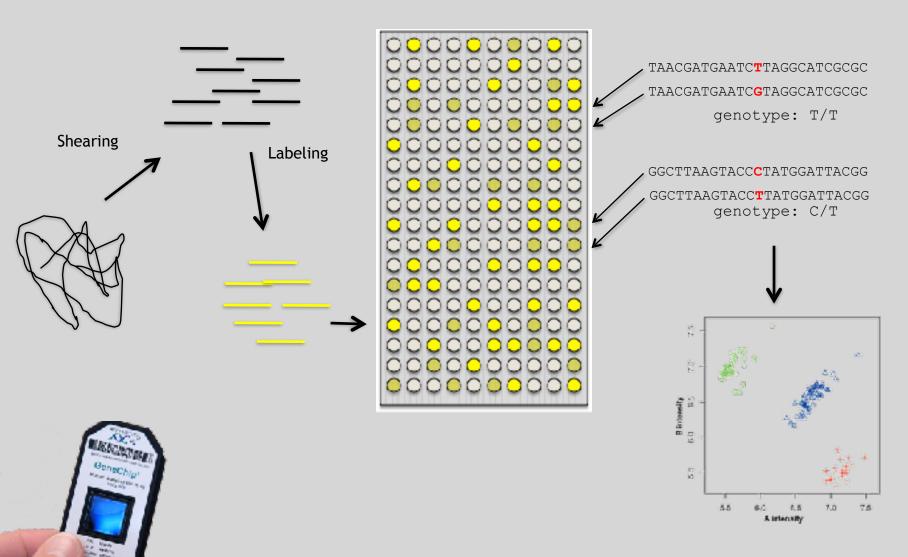
 (SVs) medium to large sized
 rearrangements of chromosomal
 DNA


Differences Between Individuals

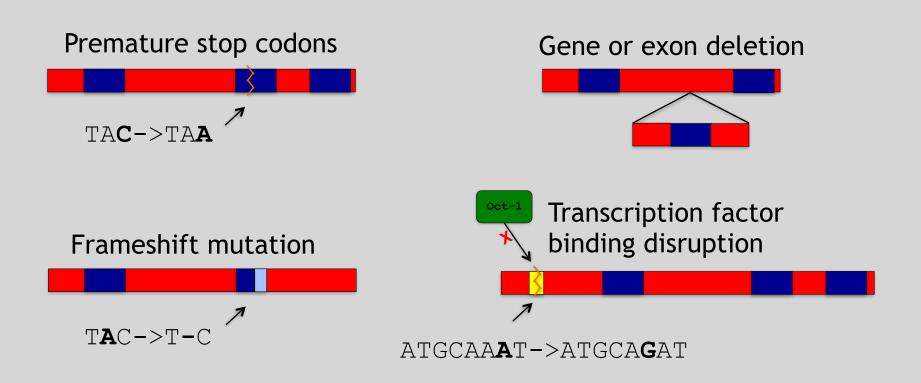
The average number of genetic differences in the germline between two random humans can be broken down as follows:

- 3,600,000 single nucleotide differences
- 344,000 small insertion and deletions
- 1,000 larger deletion and duplications

Numbers change depending on ancestry!


Discovering Variation: SNPs and INDELs

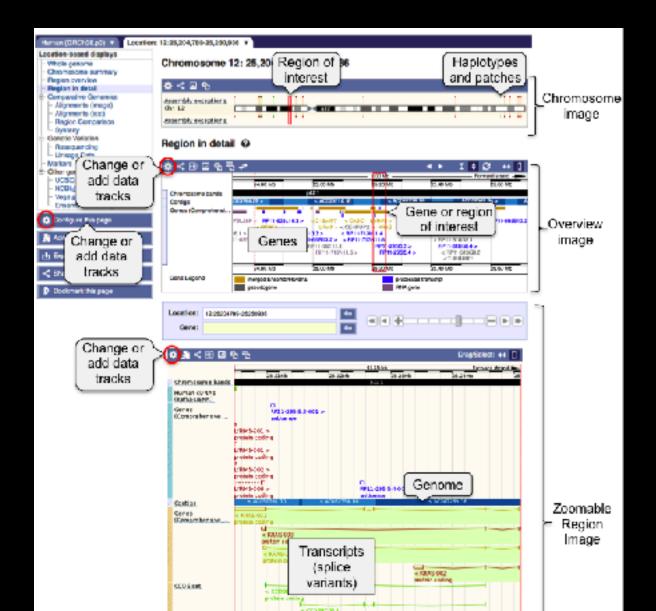
Genotyping Small Variants


- Once discovered, oligonucleotide probes can be generated with each individual allele of a variant of interest
- A large number can then be assessed simultaneously on microarrays to detect which combination of alleles is present in a sample

SNP Microarrays

Impact of Genetic Variation

There are numerous ways genetic variation can exhibit functional effects


Hand-on time!

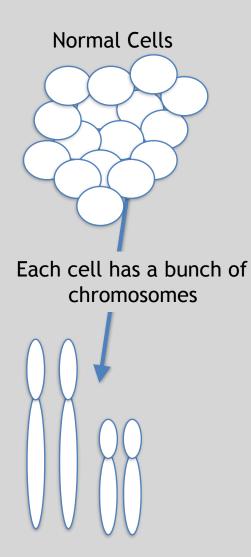
Do it Vourseit.

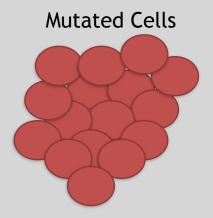
https://bioboot.github.io/bimm143_S18/lectures/#13

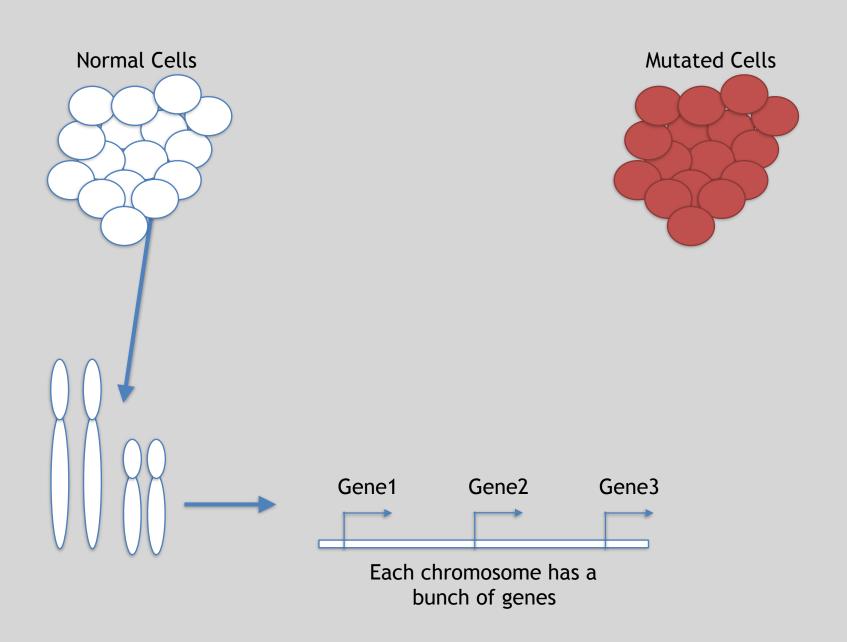
Sections **1** to **3** please (up to running Read Alignment) See IP address on website for **your** Galaxy server

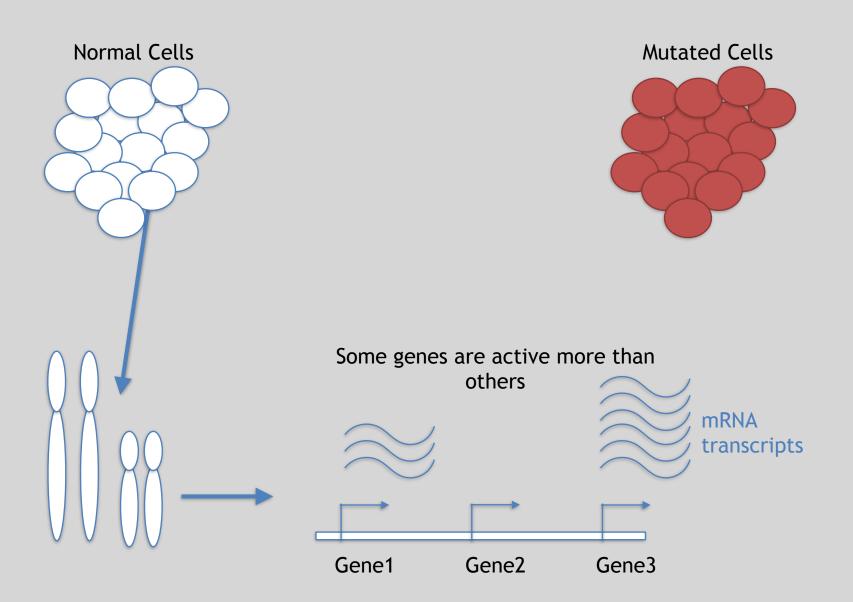
http://uswest.ensembl.org/Help/View?id=140

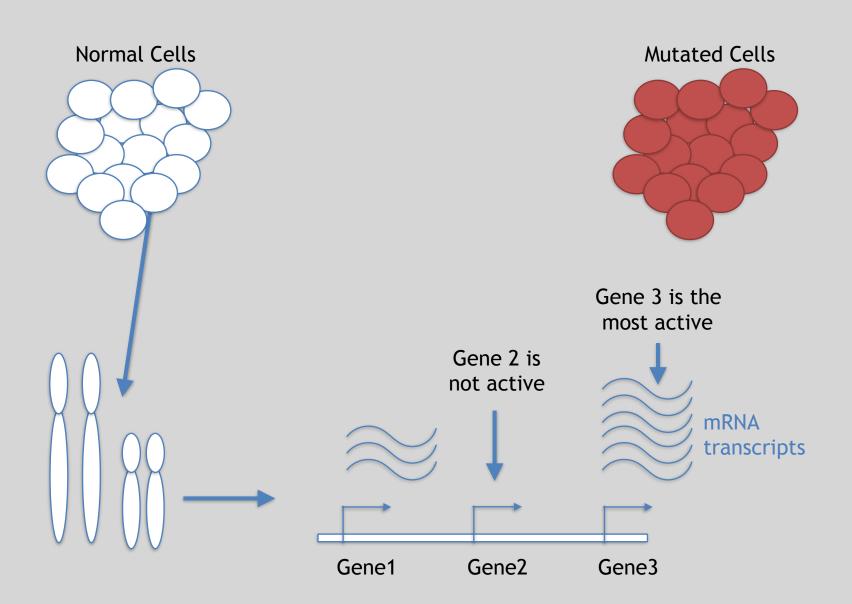
Access a jetstream galaxy instance!

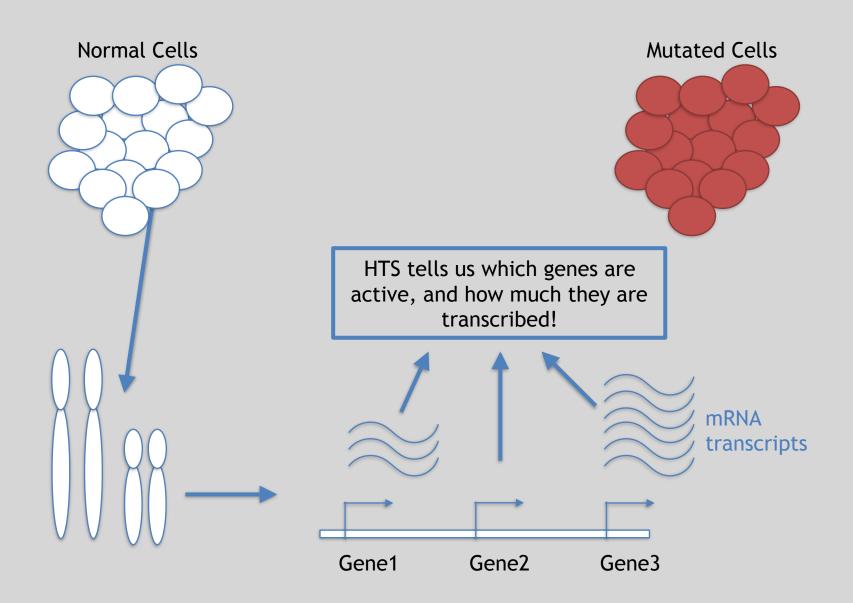

Use assigned IP address

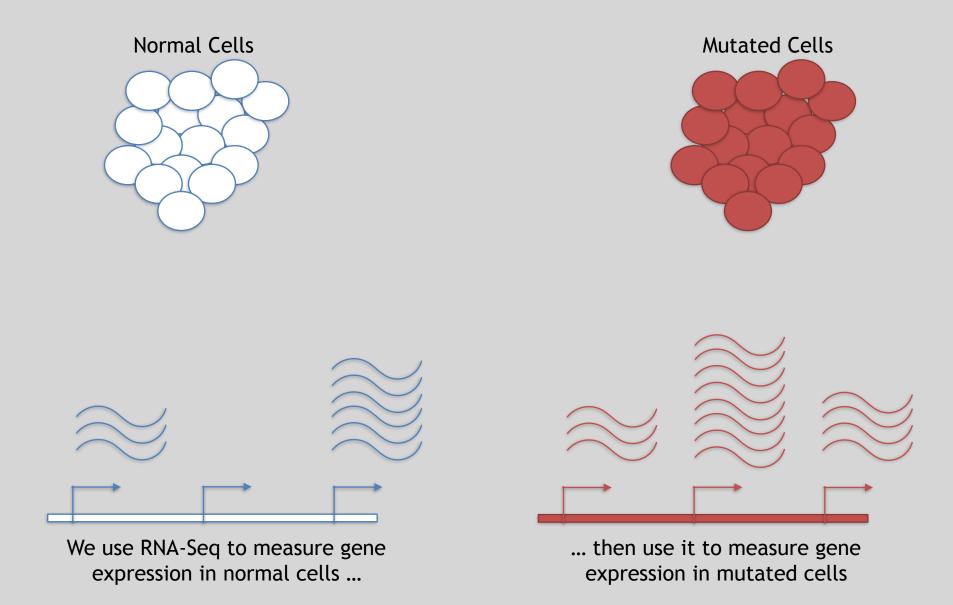

	Access a jetstream galaxy insta	anc	e!	
	Use assigned IP address		S.C.	
●●● / ₹ Galaxy	×			
← → ℃ 0 149.165.169	186		Q 🕁 🗄	
Apos M Gmail I Seminary	Atmosphere [] BGGN 213 - An intr			
= Galaxy	Analyze Data Workflow Shared Data + Visualization + Help + User +		Using 12.3 MB	
-				
Tools	Bowtie2 - map reads against reference genome (Galaxy Version 2.2.6.2)	 Options 	History C O 🗆	
(search tools O)	Is this single or paired library		search datasets O	
Get Data	Single-end		Unnamed history	
Servel Data	FASTQ file		22 slown, 2 <u>perited</u> , 1 <u>histori</u>	
Collection Operations	1 2 1 4: HC00109_2.faxig	•	12.32 M8 🗟 🗣 🗩	
Text Manipulation	Must be of datatype "fastgsanger"		March 1997	
Filter and Sort	Write unaligned reads (in faste format) to separate file(s)		25: vtseq-count on data	
Join, Subtract and Group	Yes No		192	
Convert Formats	-un/-un-conc. This triggersun parameter for single read; andun-conc for paint reads		24: htsep-count on data @ / x	
Extract Features Fetch Sequences	Write aligned reads (in fastg format to separate file(s)		18 and data 17	
Fetch Alignments	Yes No		23: Cufflinks on data 18 @ / x	
Statistics	-al/-al-conc; This triggersal parameter for single reads andal-conc for paired reads		and data 16: Skipped Tra	
Graph/Display Data	Will you select a reference genome from your history or use a built-in index?		nscipts	
FASTA manipulation	Use a built-in genome index	•	21:Cufflinks on data 18 @ / x	
NGS: QC and manipulation	Built-ins were indexed using default options. See "Indexes" sector of help below		and data 16: assembled	
NGS: DeepTools	Select reference genome		transcripts	
NGS: Mazeing	Baboon (Pagio anubis): papitam1	-	20: Cufflinks on data 18 🐵 🖌 🗙 and data 10: transcript e	
Lastz map short reads against	If your genome of interest is not listed, contact the Galaxy team		xpression	
reference sequence	Set read groups information?		19. Cufflinks on data 18 @ / x	
Map with Bowtie for Illumina	Do not set	•	and data 16: gene expre	
Map with BWA for Illumina	Specifying read group information can greatly simplify your downstream analyses by allowing combining multiple datasets.		ssim	
Map with BWA for SOLID	Select analysis mode		575 lines	
Megablist compare short reads	1: Default setting only	•	fornat: tabular, database: hg19	
against htgs, nt, and wgs databases	Do you want to use presets?		cuffinks v2.2.1 cuffinks -qno-update-check -I	
	@ No, just use defaults		301000 -F 0.100000 -j 0.150000 -p	
Parse blast XML output	Overy fast and-to-end (very-fast)		6 -5 /opt/galaxy/galaxy-	
Map with BWA-MEM - map medium and long reads (> 100	O Fast end-to-end (fast)		app/database/datasets/000/dataset_4 /opt/galaxy/galaxy-	
bp) against reference genome	O Sensitive and-to-end (sensitive)		app/database/datasets/000/dataset_4	
Map with EWA - map short reads	O Very sensitive end-to-end (very-sensitive)		50047	
(< 100 p) against reference	Overy fast local (very-fast-local)			
genome	Grast local(fast-local) Sensitive local (sensitive-local)		1 Z 3 traking_id_class_code_nearest_ref_id	
Bowtie2 - map reads against	Overy sensitive local (very-sensitive-local)		22011	
reference genome	Allow selecting among several preset sarameter settings. Choosing between these will result in dramatic changes in runtime. See help between these will result in dramatic changes in runtime.	ow to	CV8502	
NGS: RNA Analysis	understand effects of these presets.		ANKTY1	
4	From the heavily's economic statistics to the bistory		>	

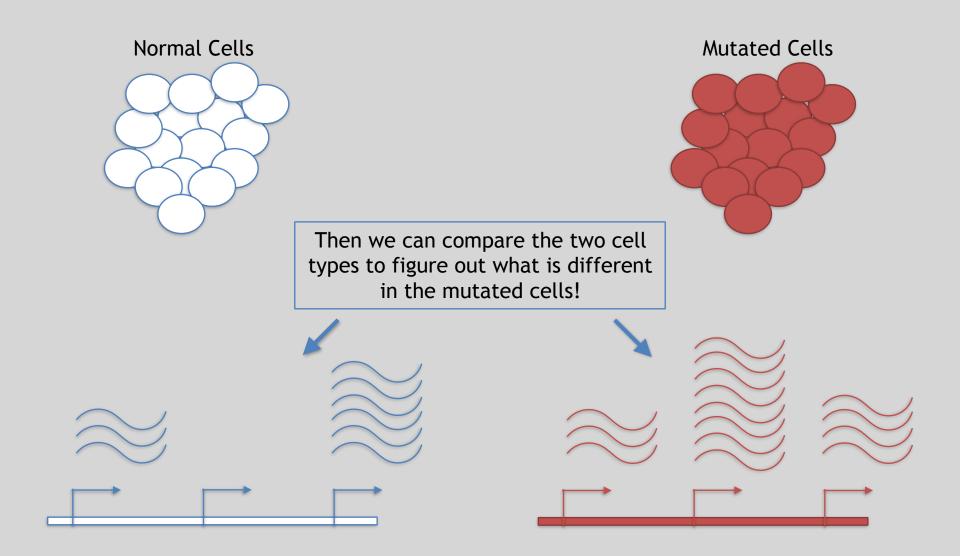

RNA Sequencing The absolute basics

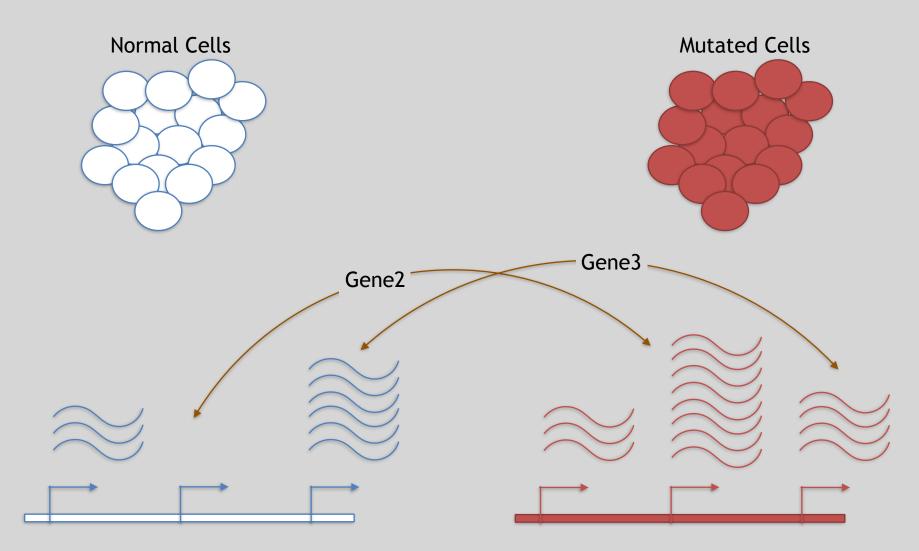



- The mutated cells behave differently than the normal cells
- We want to know what genetic mechanism is causing the difference
- One way to address this is to examine differences in gene expression via RNA sequencing...









Differences apparent for Gene 2 and to a lesser extent Gene 3

3 Main Steps for RNA-Seq:

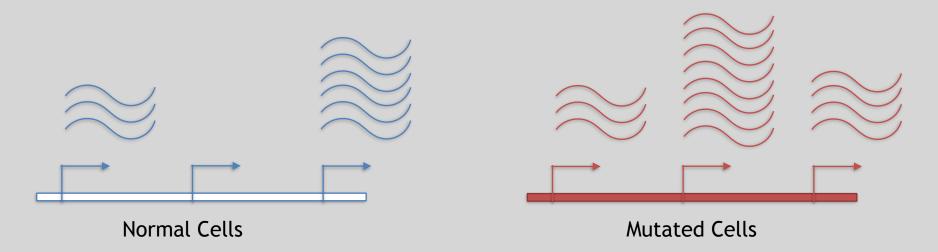
1) Prepare a sequencing library

(RNA to cDNA conversion via reverse transcription)

2) Sequence

(Using the same technologies as DNA sequencing)

3) Data analysis


(Often the major bottleneck to overall success!)

We will discuss each of these steps in detail (particularly the 3rd) next day!

Today we will get to the start of step 3!

Gene	WT-1	WT-2	WT-3	•••
A1BG	30	5	13	•••
AS1	24	10	18	•••
			•••	

We **sequenced**, **aligned**, **counted** the reads per gene in each sample to arrive at our data matrix

TODAYS MENU:

- What is a Genome?
 - Genome sequencing and the Human genome project
- What can we do with a Genome?
 - Comparative genomics
- Modern Genome Sequencing
 - Ist, 2nd and 3rd generation sequencing
- Workflow for NGS
 - RNA-Sequencing and discovering variation

Additional Reference Slides

Do it vous self

(On FASTQ format, ASCII Encoded Base Qualities, FastQC, Alignment and SAM/BAM formats)

Hands-on worksheet:

https://bioboot.github.io/bimm143_W18/lectures/#13

Raw data usually in FASTQ format

3

Each sequencing "read" consists of 4 lines of data :

- The first line (which always starts with '@') is a unique ID for the sequence that follows
- 2 The second line contains the bases called for the sequenced fragment
- 3 The third line is always a "+" character
- The forth line contains the quality scores for each base in the sequenced fragment (these are ASCII encoded...)

ASCII Encoded Base Qualities

• Each sequence base has a corresponding numeric quality score encoded by a single ASCII character typically on the 4th line (see ④ above)

- ASCII characters represent integers between 0 and 127
- Printable ASCII characters range from 33 to 126
- Unfortunately there are 3 quality score formats that you may come across...

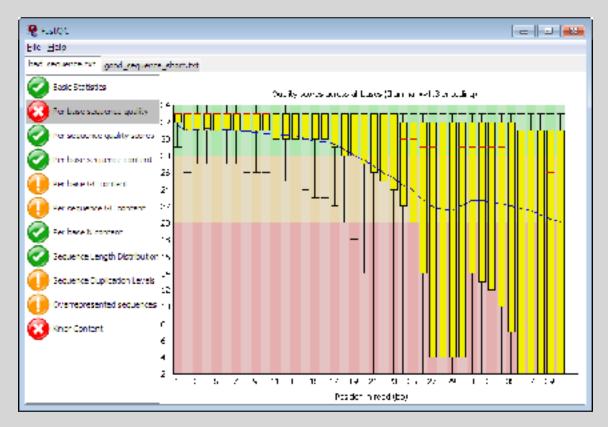
Interpreting Base Qualities in R

		ASCII Range	Offset	Score Range
Sanger, Illumina (Ver > 1.8)	fastqsanger	33-126	33	0-93
Solexa, Ilumina (Ver < 1.3)	fastqsolexa	59-126	64	5-62
Illumina (Ver 1.3 -1.7)	fastqillumina	64-126	64	0-62

- > library(seqinr)
- > library(gtools)
- > phred <- asc(s2c("DDDDCDEDCDDDDBBDDDCC@")) 33</pre>
- > phred

```
## D D D C D E D C D D D D B B D D D C C @
## 35 35 35 35 34 35 36 35 34 35 35 35 35 35 33 35 35 35 34 34 31
```

```
> prob <- 10**(-phred/10)</pre>
```


FastQC Report

Per base sequence quality									
	Quali	ty scores across all bases (Sanger / Illumina 1.9	encoding)						
40 99 95 94 94 92 90 29 28 24 20 19									
18	PHRED Quality Score	Probability of incorrect base call	Base call accuracy						
14	10	1 in 10	90 %						
12	20	1 in 100	99 %						
10	30	1 in 1000	99.9 %						
8	40	1 in 10000	99.99 %						
6	50	1 in 100000	99.999 %						
4	While scores of higher th	an 50 in raw reads are rare, with post	-processing (such as read						
2		cores of as high as 90 are possible.							
0 123456789 11	13 15 17 19 21 23 25 27		9 51 53 55 57 59 61 63 65 67 69 71 73 75						
110430705 11		Position in read (bp)							

FASTQC

FASTQC is one approach which provides a visual interpretation of the raw sequence reads

- <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc/</u>

Sequence Alignment

- Once sequence quality has been assessed, the next step is to align the sequence to a reference genome
- There are *many* distinct tools for doing this; which one you choose is often a reflection of your specific experiment and personal preference

BWA	BarraCUDA	RMAP
Bowtie	CASHx	SSAHA
SOAP2	GSNAP	etc
Novoalign	Mosiak	
mr/mrsFast	Stampy	
Eland	SHRiMP	
Blat	SeqMap	
Bfast	SLIDER	

SAM Format

 <u>Sequence Alignment/Map</u> (SAM) format is the almost-universal sequence alignment format for NGS

– binary version is BAM

- It consists of a header section (lines start with '@') and an alignment section
- The official specification can be found here:
 - -<u>http://samtools.sourceforge.net/SAM1.pdf</u>

Example SAM File

Header section

(dHD)	VN:1.0	SO:coordinate							
0SQ	SN:1	LN:249250621	AS:NCBI37	UR:file:/data/local/	/ref/GATK/human_g1k_v	v37.fasta	M5:1b22b98cdeb4a930	4cb5d48026a85128	
0SQ	SN:2	LN:243199373	AS:NCBI37	UR:file:/data/local/	/ref/GATK/human_g1k_v	v37.fasta	M5:a0d9851da00400de	c1098a9255ac712e	
0SQ	SN:3	LN:198022430	AS:NCBI37	UR:file:/data/local/	/ref/GATK/human_g1k_v	v37.fasta	M5:fdfd811849cc2fad	ebc929bb925902e5	
0RG	ID:UM0098:1	PL:ILLUMINA	PU:HWUSI-EAS1707-61	5LHAAXX-L001	LB:80	DT:2010-05-05T20:00:	00-0400	SM:SD37743	CN:UMCORE
0RG	ID:UM0098:2	PL:ILLUMINA	PU:HWUSI-EAS1707-61	5LHAAXX-L002	LB:80	DT:2010-05-05T20:00:	00-0400	SM:SD37743	CN:UMCORE
0PG	ID:bwa	VN:0.5.4							

Alignment section

1:497:R:-272+13M17D24M		113	1	497	37	37M	15	100338662	0
CGGGTCTGACCTGAGGAGAACTG	TGCTCCGCCTTCAG	0;==-==9;>>>>=>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	XT:A:U	NM:i:0	SM:1:37	AM:i:0	X0:i:1	X1:i:0
XM:i:0 XO:	i:0	XG:i:0	MD:Z:37						
19:20389:F:275+18M2D19M	1	99	1	17644	0	37M	=	17919	314
TATGACTGCTAATAATACCTACA	CATGTTAGAACCAT	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>><<>>>:<9	RG:Z:UM0098:1	XT:A:R	NM:i:0	SM:i:0	AM:i:0	X0:i:4
X1:i:0 XM:	i:0	XO:i:0	XG:i:0	MD:Z:37					
19:20389:F:275+18M2D19M	1	147	1	17919	0	18M2D19M	=	17644	-314
GTAGTACCAACTGTAAGTCCTTA	TCTTCATACTTTGT	;44999;499<8<8<<<84	<<>><<>?<;	XT:A:R	NM:i:2	SM:i:0	AM:i:0	X0:i:4	X1:i:0
XM:i:0 XO:	i:1	XG:i:2	MD:Z:18^CA19						
9:21597+10M2I25M:R:-209)	83	1	21678	0	8M2I27M	=	21469	-244
CACCACATCACATATACCAAGCC	TGGCTGTGTCTTCT	<;9<<5><<<>>><<	<><>><9>>>>>	XT:A:R	NM:i:2	SM:i:0	AM:i:0	X0:i:5	X1:i:0
VM·i·O VO·	i • 1	VC·i·2	MD • 7 • 35						

SAM header section

- Header lines contain vital metadata about the reference sequences, read and sample information, and (optionally) processing steps and comments. Each header line begins with an @, followed by a two-letter code that distinguishes the different type of metadata records in the header. Following this two-letter code are tab-delimited key-value pairs in the format KEY:VALUE (the SAM format specification names these tags and values).
- Because SAM files are plain text (unlike their binary counterpart, BAM), we can take a peek at a few lines of the header with head, See:

https://bioboot.github.io/bggn213_f17/class-material/sam_format/

SAM Utilities

 <u>Samtools</u> is a common toolkit for analyzing and manipulating files in SAM/ BAM format

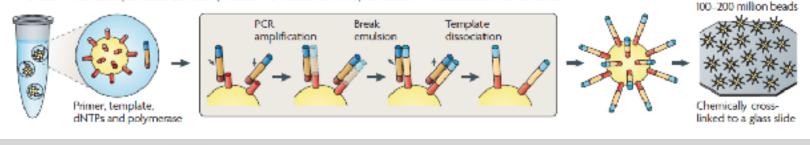
- http://samtools.sourceforge.net/

- Picard is a another set of utilities that can used to manipulate and modify SAM files <u>http://picard.sourceforge.net/</u>
- These can be used for viewing, parsing, sorting, and filtering SAM files as well as adding new information (e.g. Read Groups)

Genome Analysis Toolkit (GATK)

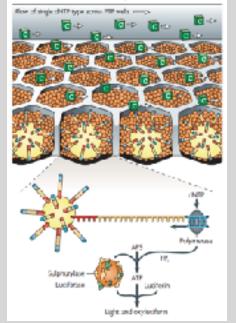
- Developed in part to aid in the analysis of 1000 Genomes Project data
- Includes many tools for manipulating, filtering, and utilizing next generation sequence data
- <u>http://www.broadinstitute.org/gatk/</u>

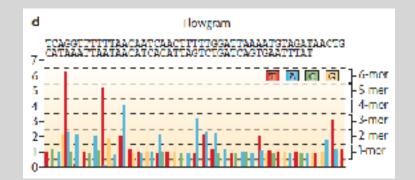
Additional Reference Slides on Sequencing Methods


Do it L'OUTS OFFI

Roche 454 - Pyrosequencing

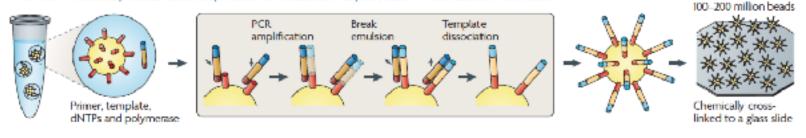
a Roche/454, Life/APG, Polonator

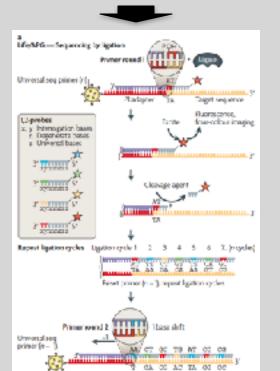

Emulsion PCR


One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion

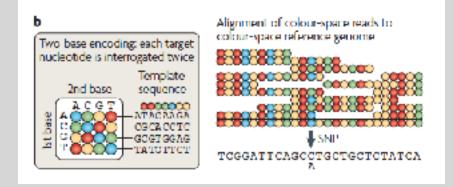
s Nochay/154 — Pyrcorquereing

1-2 million template heads loaded into PIP wells.

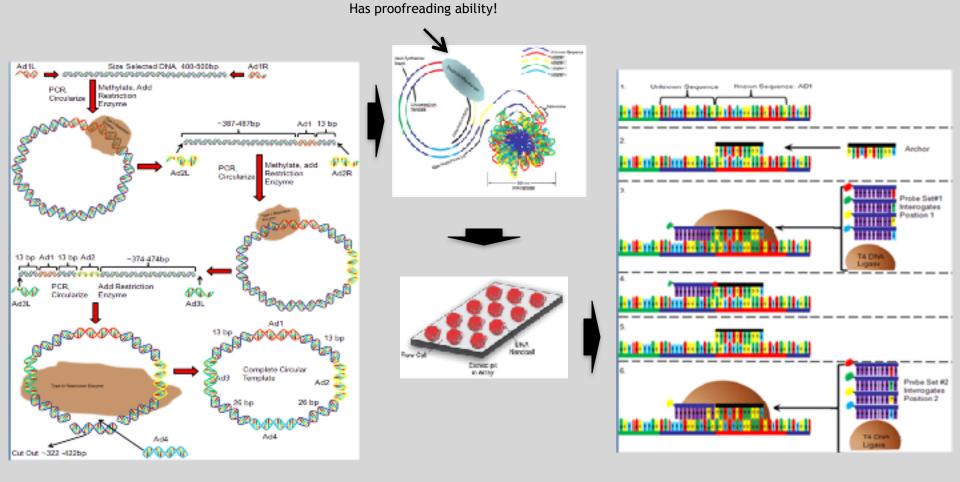



Life Technologies SOLiD - Sequence by Ligation

a Roche/454, Life/APG, Polonator

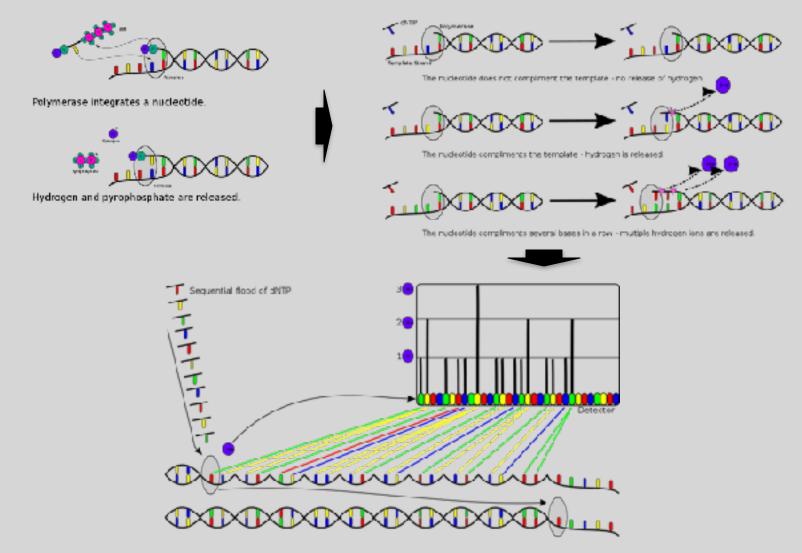

Emulsion PCR

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion



Reset primer three more times

Complete Genomics - Nanoball Sequencing


"Benchtop" Sequencers

- Lower cost, lower throughput alternative for smaller scale projects
- Currently three significant platforms
 - Roche 454 GS Junior
 - Life Technology Ion Torrent
 - Personal Genome Machine (PGM)
 - Proton
 - Illumina MiSeq

Platform	List price	Approximate cost per run	Minimum throughput (read length)	Run time	Cost/Mb	Mb/h
454 GS Junior Ion Torrent PGM	\$108,000	\$1,100	35 Mb (400 bases)	8 h	\$31	4.4
(314 chip) (316 chip)	\$80,490 ^{a,b}	\$225° \$425	10 Mb (100 bases) 100 Mb ^d (100 bases)	3 h 3 h	\$22.5 \$4.25	3.3 33.3
(318 chip)		\$625	1,000 Mb (100 bases)	3 h	\$0.63	333.3
MiSeq	\$125,000	\$750	1,500 Mb (2 × 150 bases)	27 h	\$0.5	55.5

Loman, NJ (2012), *Nat. Biotech.*, 5, pp. 434-439

PGM - Ion Semiconductor Sequencing

