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In silico

RNA sequencing overview
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Goal: RNA guantification, transcript discovery, variant identification
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Quantification

Absolute read counts 15
totalTranscriptReads
mappedReads(millions) x transcriptLength(Kb)

Normalized read counts RPKM =
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Variant discovery

SNP identification: C/T
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...Now what?
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Install DESeq2

Bioconductor Setup Link

source("http://bioconductor.org/biocLite.R")
biocLite()

biocLite("DESeq2")

Background to Today's Data

Data from: Himes et al. "BRNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a
Glucocorticoid Responsive Gene that Modulates Cytokine Function in Airwa
Smooth Muscle Cells." PLoS ONE. 2014 Jun 13;9(6):99625.

Glucocorticoids inhibit inflammatory processes, often used to treat asthma because
of their anti-inflammatory effects on airway smooth muscle (ASM) cells.

RNA-seq to profile gene expression changes in 4 ASM cell lines treated with
dexamethasone (a common synthetic glucocorticoid).

Used Tophat and Cufflinks and found many differentially expressed genes. Focus on
CRISPLD2 that encodes a secreted protein involved in lung development

SNPs in CRISPLD2 in previous GWAS associated with inhaled corticosteroid
resistance and bronchodilator response in asthma patients.

Confirmed the upregulated CRISPLD2 with gPCR and increased protein expression
with Western blotting.




Data pre-processing

Analyzing RNA-seq data starts with sequencing reads.

Many different approaches, see references on class website.

Our workflow (previously done):

* Reads downloaded from GEO (GSE:GSE52778)
e Quantify transcript abundance (kallisto).
* Summarize to gene-level abundance (txImport)

Our starting point is a count matrix: each cell indicates the
number of reads originating from a particular gene (in rows)
for each sample (in columns).

Data structure: counts + metadata

countData colData

gene |ctrl_1 |ctrl_2 exp_1|exp_1 id [treatment| sex
geneA| 10 11 56 45 ctrl_1| control | male | ...
geneB| O 0 128 54 ctrl_2| control |female| ...
geneC| 42 41 59 41 exp_1|treatment | male | ...
geneD| 103 122 1 23 exp_2|treatment |female| ...
geneE| 10 23 14 56

geneF| 0 1 5 0 Sample names:

ctrl_1, ctrl_2, exp_1, exp_2

colData describes metadata
about the columns of countData

countData is the count matrix
(number of reads coming from
each gene for each sample)

First column of colData must match column names of countData (-1st)

Counting is (relatively) easy:
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Counts:

Gene B: 4

Hands-on time!

https://bioboot.qithub.io/bimm143 W18/lectures/#14




Count Normalization

Normalization is required to make comparisons
in gene expression

» Between 2+ genes in one sample
* Between genes in 2+ samples

Genes will have more reads mapped in a sample
with high coverage than one with low coverage

« 2x depth = 2x expression

Longer genes will have more reads mapped
than shorter genes

» 2x length = 2x more reads

Normalization: RPKM, FPKM & TPM

* N.B. Some tools for differential expression analysis such as
edgeR and DESeq2 want raw read counts - i.e. non normalized
input!

* However, often for your manuscripts and reports you will want
to report normalized counts

* RPKM, FPKM and TPM all aim to normalize for sequencing
depth and gene length. For the former:

* Count up the total reads in a sample and divide that
number by 1,000,000 - this is our “per million” scaling.

+ Divide the read counts by the “per million” scaling
factor. This normalizes for sequencing depth, giving you
reads per million (RPM)

 Divide the RPM values by the length of the gene, in
kilobases. This gives you RPKM.

FPKM was made for paired-end RNA-seq

With paired-end RNA-seq, two reads can
correspond to a single fragment

The only difference between RPKM and
FPKM is that FPKM takes into account that
two reads can map to one fragment (and so
it doesn’t count this fragment twice).

* TPM is very similar to RPKM and FPKM. The only
difference is the order of operations:

* First divide the read counts by the length of each
gene in kilobases. This gives you reads per kilobase
(RPK).

* Count up all the RPK values in a sample and divide
this number by 1,000,000. This is your “per million”
scaling factor.

+ Divide the RPK values by the “per million” scaling
factor. This gives you TPM.

* Note, the only difference is that you normalize for gene
length first, and then normalize for sequencing depth
second.




Fold change (log ratios)

* When you use TPM, the sum of all TPMs in

each sample are the same.
* To a statistician fold change is sometimes considered

. : . . meaningless. Fold change can be large (e.g. >>two-fold up-
This makes it easier to Lol pielts the or down-regulation) without being statistically significant

proportion of reads that mapped to a gene (e.g. based on probability values from a t-test or ANOVA).

in each sample.
To a biologist fold change is almost always considered

e In contrast. with RPKM and FPKM. the sum important for two reasons. First, a very small but
> . ’ statistically significant fold change might not be relevant to
of the normalized reads in each Sample may a cell’s function. Second, it is of interest to know which
be different, and this makes it harder to genes are most dramatically regulated, as these are often

compare samples directly. thought to reflect changes in biologically meaningful
) transcripts and/or pathways.

Volcano plot: significantly

regulated genes vs. fold change Recent developments in RNA-Seg

* Long read sequences:
= PacBio and Oxford Nanopore [Recent Paper]

* Single-cell RNA-Seq: [Review article]
= Observe heterogeneity of cell populations
= Detect sub-population

Fold-change (Down syndrome vs. euploid)

_ * Alignment-free quantification:
¢ A volcano plot shows fold change (x-axis) versus p value ) .
from ANOVA (y-axis). Each point is the expression level of = Kallisto [Software link]
a transcript. Points high up on the y-axis (above the pale = Salmon [Software link, Blog post]
green horizontal line) are significantly regulated.




Public RNA-Seq data sources

Gene Expression Omnibus (GEO):

= http://www.ncbi.nlm.nih.gov/geo/

= Both microarray and sequencing data

Sequence Read Archive (SRA):
= http://www.ncbi.nlm.nih.gov/sra

= All sequencing data (not necessarily RNA-Seq)

ArrayExpress:

= https://www.ebi.ac.uk/arrayexpress/

= European version of GEO

All of these have links between them

[Muddy Point Feedback Link]




