Recap From Last Time:

* Sequence alignment is a fundamental operation underlying
much of bioinformatics.

Introduced dot matrices, dynamic programing and the

- 25 J BLAST heuristic approaches.
Lecture ?{( Key point: Even when optimal solutions can be obtained they

‘ are not necessarily unique or reflective of the biologically
4 ar'r @I ,) correct alignment.
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Introduced classic global and local alignment algorithms
"ﬁCSan‘Ele

‘ (Needleman-Wunsch and Smith—-Waterman) and their major

\}" application areas.
htto //\heqrantlab org/bimm143 Hourist ] o datab
euristic approaches are necessary for large database
"I . U searches and many genomic applications.
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By default BLASTp match scores come from the Protein Scoring matrices reflect the
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Protein scoring matrices reflect the
properties of amino acids
tiny

slishatic ﬁ; P small N.B. BLOUSM62 does not take the local

\® context of a particular position into account
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(i.e. all like substitutions are scored the same
| regardless of their location in the molecules).
NI ————
hydrophobic / S
aromatic positive

We will revisit this later...

Key Trend: High scores for amino acids in the same biochemical group and
low scores for amino acids from different groups.
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Functional cues from conservation patterns...

Many DNA patterns are binding sites for
Transcription Factors.

» E.g., The Gal4 binding sequence
-N(11)-C-C-G

Gal4
g TATA-box ’: Gene
* %k % *.%k %

GAL3 CGGTCCACTGTGTG
GAL7 CGGAGCACTGTTG

GCY1l CGGGGCAGACTATT
GALl1 CGGATTAGAAGCCG
GAL10 CGGAGGAGAGTCTT
GAL2 CGGAAAGCTTCCTT
PCL10 CGGAGTATATTGC

CGG CcCG

Functional cues from conservation patterns

Within a protein or nucleic acid sequence there may be a small number of
characteristic residues that occur consistently. These conserved “sequence
fingerprints” (or motifs) usually contain functionally important elements

» E.g., the amino acids that are consistently found at enzyme active sites or the
nucleotides that are associated with transcription factor binding sites.

ATP/GTP-binding proteins: G-x(4)-G-K-T

* * k%

G GKT

Conservation [B—p

Representing recurrent sequence patterns
Beyond knowledge of invariant residues we can define position-based
representations that highlight the range of permissible residues per position.

» Pattern: Describes a motif using a qualitative consensus sequence
(e.g., IUPAC or regular expression). N.B. Mismatches are not tolerated!

[LFI]-x-G-[PT]-P-G-x-G-K-[TS]-[AGSI]
» Profile: Describes a motif using quantitative information captured in a position
specific scoring matrix (weight matrix).

Profiles quantify similarity and often span larger stretches of sequence.

* Logos: A useful visual representation of sequence motifs.

Image generated by:
weblogo.berkeley.edu




PROSITE is a protein pattern and profile database

Currently contains > 1790 patterns and profiles: http://prosite.expasy.org/
Example PROSITE patterns:

PS00087; SOD_CU_ZN_1
[GA]-[IMFAT]-H-[LIVF]-H-{S}-x-[GP]-[SDG]-x-[STAGDE]
The two Histidines are copper ligands

» Each position in the pattern is separated with a hyphen
* X can match any residue

» [] are used to indicate ambiguous positions in the pattern
e.g., [SDG] means the pattern can match S, D, or G at this position

» {} are used to indicate residues that are not allowed at this position
e.g., {S} means NOT S (not Serine)

* () surround repeated residues, e.g., A(3) means AAA

Information from http://ca.expasy.org/prosite/prosuser.html

Pattern advantages and disadvantages

Advantages:
+ Relatively straightforward to identify (exact pattern matching is fast)

» Patterns are intuitive to read and understand

+ Databases with large numbers of protein (e.g., PROSITE) and DNA sequence
(e.g., JASPER and TRANSFAC) patterns are available.

Disadvantages:
+ Patterns are qualitative and deterministic
(i.e., either matching or not!)

» We lose information about relative frequency of each residue at a position
E.g., [GAC] vs 0.6 G,0.28 A,and 0.12C

+ Can be difficult to write complex motifs using regular expression notation

» Cannot represent subtle sequence motifs

Defining sequence patterns

There are four basic steps involved in defining a new PROSITE style pattern:

1. Construct a multiple sequence alignment (MSA)

2. Identify conserved residues

3. Create a core sequence-pattern (i.e. consensus sequence)

4. Expand the pattern to improve sensitivity and specificity for detecting desired
sequences - more on this shortly...

T
T
T
T
T

Y
3. 1-G-pg-GKta--g-

4. [LFI]-x-G-x-[PI]-[GF]-x-G-K-[TS] <«——

Side note: pattern sensitivity, specificity, and PPV

In practice it is not always possible to define one single regular expression type
pattern which matches all family sequences (true positives) while avoiding
matches in unrelated sequences (true negatives).

I:l True
negatives

False
B positives

O True
positives

O Matching [5) False
pattern negatives
Sensitivity = TP/ (TP+FN)
Specificity = TN/ (TN+FP) PPV = TP/ (TP+FP)

The positive predictive value (or PPV) assesses how big a proportion of the
sequences matching the pattern are actually in the family of interest.
(i.e., the probability that a positive result is truly positive!)

ROC plot example



ROC plot of sequence searching performance...

H3 (HMMERS3) has a much higher search sensitivity and specificity than BLASTp

In each benchmark, true positive subsequences have been selected to be no more than
25% identical to any sequence in the query alignment ... (see paper for details).

See: Eddy (2011) PLoS Comp Biol 7(10): e1002195

Sequence profiles

A sequence profile is a position-specific scoring matrix (or PSSM, often
pronounced 'possum’) that gives a quantitative description of a sequence motif.

Unlike deterministic patterns, profiles assign a score to a query sequence and are
widely used for database searching.

A simple PSSM has as many columns as there are positions in the alignment, and
either 4 rows (one for each DNA nucleotide) or 20 rows (one for each amino acid).

Sequence position, k ——

(]

T . / Pk-\

N M, =log L — )

0% j

— & . ’

é e My My; score for the jth nucleotide at position k
l Pxj probability of nucleotide j at position k

PSSM P; ‘“background” probability of nucleotide j

See Gibskov et al. (1987) PNAS 84, 4355
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Computing a transcription factor bind site PSSM

Alignment Counts Matrix:

I

Position k = 1 2 3 4 5 11 12 13

6 7 8 9 o
A: 0 0 6 10 5 0 1 5 0 3 10 8 10
C: 9 10 1 0 0 0 0 2 1 1 0 0 0
G: 0 0 0 0 0 0 0 1 9 5 0 0 0
T: 1 0 3 0 5 10 9 2 0 1 0 2 0
Consensus: C C [ACT] A [AT] T T N G N A [AT] A
I ( Dy \ Cy+p; Cx; Number of jth type nucleotide at position k
M, =log| — Py=—"
ki g ) I Z+1 Z  Total number of aligned sequences
p g q
J
P; ‘“background” probability of nucleotide j
{ij +p; /1 Z+ 1) Pxj probability of nucleotide j at position k

n )

Adapted from Hertz and Stormo,
Bioinformatics 15:563-577



Computing a transcription factor bind site PSSM...

Alignment Matrix: Cyj

Position k = 1 2 3 4 5 6 7 8 9 10 11 12
A: 0 0 6 10 5 0 1 5 0 3 10 8
C: 9 10 1 0 0 0 0 2 1 1 0 0
G: 0 0 0 0 0 0 0 1 9 5 0 0
T: 1 0 3 0 5 10 9 2 0 1 0 2

C,+p,/Z+1 25/10+1
k=1,j=A: M, = log(L\ =1o (M) =24
’ D, 0.25
C,+p,/Z+1 25/10+1
k=1, j= Mkj—log{%\ =1lo (M) =12
P, 0.25
_ g(CU+p,/Z+1\=10 (1+0.25/10+1)=_0.8
p; 0.25

3 4 5 6 7 8 9 10 11 12
0.8 1.3 0.6 -24 -0.8 0.6 -24 0.2 1.3 1.1
-0.8 -24 -24 -24 -24 -02 -0.8 -08 -24 -24
-24 -24 -24 -24 -24 -08 1.2 0.6 -24 -24
0.2 -24 0.6 1.3 12 -02 -24 -08 -24 -0.2

Scoring a test sequence

Query Sequence

eel. |

PSSM:
Position k = 1 2 3 4 5 6 12

7 8 9 10 11

A: 24 24 08 El 06 -24 -0.8 24 02 El 11
c E”El 0.8 24 -24 -24 -24 -02 -0.8 -0.8 -24 -2.4
G: 24 24 24 -24 24 08 El 24 24

- 2.4
T 08 -24 [02] -24 E”El 02 24 -08 -24 2.4

2.4
Testseq: C cC T A T T T A G G A T

Query Score = 1. 1. 0.6 + 1.3 + 1.2
+ + +

2+ 1.3 +
0.6 + 1.3 + -0.2 + 1.3

Q. Does the query sequence match the DNA sequence profile?

13
10

13
1.3
-2.4
-2.4
-2.4

13

[

-2.4
-2.4

A

Scoring a test sequence

Query Sequence

eel. |

PSSM:
Position k = 1 2 3 4 5 6 0 11 12

7 8 9 1

A: 24 24 08 El 06 -24 -0.8 24 02 El 11
c El El 0.8 24 -24 -24 -24 -02 -0.8 -0.8 -24 -2.4
G: 24 24 24 24 - 24 24 -08 El 24 24
T 08 -24 [02] -24 El El 02 24 -08 -24

2.4
Testseq: C cC T A T T T A G G A T

Query Score = 1. 0.6 + 1.3 + 1.2
+ +

-0.2 + 1.3

Scoring a test sequence...

Query Sequence Best Possible Sequence

cclNARNNA AR ccanl@iacGAAA

PSSM:

Position k = 1 6 10 11 12

2 3 4 5 7 8 9
s 21 20 [Ga][33] o6 2« oo [68] 24 oz [3] [1a] i3]

c El El 08 24 -2.4 -24 24 -02 -08 -08 -24 -2.4
G: 24 24 24 24 -24 -24 -24 -08 El 24 24
0 0.8 -24 02 -24 El El 0.2 -24 -08 -24 -0.2

Max Score: C C A A T T T A G G A A

Max Score = 1.
+

N+
+ o
o
o +
+ -
— W
W+
+ o
N
.
+ -
- W
w +

A. Following method in Harbison et al. (2004) Nature 431:99-104

Heuristic threshold for match = 60% x Max Score = (0.6 x 13.8 = 8.28);
11.9 > 8.28; Therefore our query is a potential TFBS!

13

[

-2.4
-2.4
-2.4

A

13

-2.4
-2.4
-2.4

A



Picking a threshold for PSSM matching

Again, you want to select a threshold that minimizes FPs (e.g., how many shuffled
or random sequences does the PSSM match with that score) and minimizes FNs
(e.g., how many of the ‘real’ sequences are missed with that score).

m True
negatives

False
= positives

O True
positives

® False
negatives

FP=0, FN=7, TP=5
FP=1, FN=1, TP=11
FP=5, FN=0, TP=12

Q. Which threshold has the best PPV (TP/(TP+FP)) ?

Side note: Building PSSMs from unaligned sequences

Patterns and profiles are most often built on the basis of known site equivalences
(i.e. from a pre-calculated MSA).

However, a number of programs have been developed that employ local multiple
alignments to search for common sequence elements in unaligned sequences.

————

Global similarity Local non-consistent similarity

Gibbs sampling methods:
Motif Sampler - http://bayesweb.wadsworth.org/gibbs/gibbs.html

AlignAce - http://atlas.med.harvard.edu/cgi-bin/alignace.pl

Expectation maximization method:
MEME - http://meme.sdsc.edu/

See: Lawrence et al. (1993) Science. 262, 208-14

Searching for PSSM matches

If we do not allow gaps (i.e., no insertions or deletions):
» Perform a linear scan, scoring the match to the PSSM at each position in the
sequence - the “sliding window” method

CCTATTAGCAATAGC....

——

If we allow gaps:

+ Can use dynamic programming to align the profile to the protein sequence(s)
(with gap penalties)
We will discuss PSI-BLAST shortly...
see Mount, Bioinformatics: sequence and genome analysis (2004)

* Can use hidden Markov Model-based methods

We will cover HMMs in the next lecture...
see Durbin et al., Biological Sequence Analysis (1998)

Profiles software and databases

Pftools is a package to build and search with profiles,
http://www.isrec.isb-sib.ch/ftp-server/pftools/

The package contains (among other programs):
» pfmake for building a profile starting from multiple alignments
» pfsearch to search a protein database with a profile
» pfscan to search a profile database with a protein

PRINTS database of PSSMs
http://bioinf.man.ac.uk/dbbrowser/PRINTS

Collection of conserved motifs used to characterize a protein
» Uses fingerprints (conserved motif groups).
» Very good to describe sub-families.

BLOCKS is another PSSMs database similar to prints
http://www.blocks.fhcrc.org

ProDom is collection of protein motifs obtained automatically using PSI-BLAST
http://prodes.toulouse.inra.fr/prodom/doc/prodom.html




Profiles software and databases...

InterPro is an attempt to group a number of protein domain databases.
http://www.ebi.ac.uk/interpro

It currently includes:
» Pfam
PROSITE
PRINTS
ProDom
SMART
TIGRFAMSs

InterPro tries to have and maintain a high quality of annotation
+ The database and a stand-alone package (iprscan) are available for UNIX
platforms, see:
ftp://ftp.ebi.ac.uk/pub/databases/interpro

Hands-on sections 1 & 2:
Comparing methods and the trade-off
between sensitivity, selectivity and
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By default BLASTp match scores come from the PSI-BLAST: Position specific iterated
BLOSUM62 matrix BLAST

cl =
S -1 @ .
i * The purpose of PSI-BLAST is to look deeper
Acmo-1d into the database for matches to your query
R R Note. All matches of Alanine for Alani : : :
Bomozzom Score +4 regardliess of their position or protein sequence by employing a scoring
=4 01112 oms  contextinthe molecule. matrix that is customized to your query
Q-3 0-1-1-1-2 0 C & 5
: :; i 1 gij om0 w — PSI-BLAST constructs a multiple sequence
M 111213222 0-2-1-18 alignment from the results of a first round BLAST
- MR - £ search and then creates a “profile” or specialized
A e T ERER position-specific scoring matrix (PSSM) for
¥2-2-2-32-32-2-2-1 B2-2-1-1-1-1 83 subsequent search rounds

C S T P A GNUDEU QHU RIKMMTIILUVTFEFYW

Inspect the blastp output to identify empirical “rules”

regarding amino acids tolerated at each position AR NDGCOEGEHTITLEXKMEFTE RS STUWGYV

1M 1-2
2K -1 1
3 W @3 -3 -4-5-3-2-3-3 . . 1 -3 -3 12 2 -3
730496 66  FTVDENGQMSATAKGRVRLFNNWDVCADMIGSFTDTEDFAKFKMKYUGVASFLQKGNDDH 125 4V 0 -3 -3 -4 -1 -3 -3 -4 20 amino acids 8 -2 0 -3 -1 4
200679 63  FSVDEKGHMSATAKGRVRLLSNWEVCADMVGTFTDTEDPAKFKMKYUGVASFLQRGNDDH 122 5w -3 -3 -4 -5 -3 -2 -3 -3 =F—=—F—=o—T—9—T—4 -3 -3 12 2 -3
206588 34  FSVDEKGHMSATAKGRVRLLSNWEVCADMVGTFTDTEDPAKFKMKYUGVASFLQRGNDDH 93 6 A 5§ -2 -2 -2 -1-1-1 0-2-2-2-1-1-3-11 0-3-2 0
2136812 2 M5 ATAKGRVRLLNNWDYVCADMVGTF TD TEDP AKFKMKYUGVASFLQKGNDDH S3 7L M2 -2 -4 -4 -1 -2 -3 -4-3 2 4-3 2 0-3-3-1-2-1 1
132408 65  FKIEDNGKTTATAKGRVRILDKLELCANMVGTF IETNDPAKYRMKYHGALAILERGLDDH 124 s M1 -3 -3 -4 -1 -3-3-4-3 2 2-3 1 3-3-2-1-2 0 3
267584 44  FSVDESGKVTATAHGRYVIILNNWEMCANMFGTFEDTPDPAKFKMRYUGAASYLQTGNDDH 103 or M1 -3 -2 -4 -1 -2 -3-4-3 2 4-3 2 0-3-3-1-2-1 2
267585 44  FSVDGSGKVTATAQGRVIILNNWEMNCANNFGTFEDTPDPAKFKMRYWGAAAYLQSGNDDH 103
8777608 63  FTIHEDGANTATAKGRVIILNNWENMCADMMATFETTPDPAKFRMRYUGAASYLQTGNDDH 122 12 JI; _g :g :‘21 :3 :1 :i :i _3 :; _g _3 :i _i _g ::15 _i _é :g :;‘ 3
6687453 60  FKVEEDGTHTATAIGRVIILNNWENMCANMFGTFEDTEDPAKFKMKYWGAAAYLQTGYDDH 119
10637027 81  FKVQEDGTMTATATGRVIILNNWENCANNFGTFEDTEEPARFKMKYUGAAAYLQTGYDDH 140 12 a 5p2=2-2-1-1-1.0-2-2-2-1-1-3-1 1 0-3-20
13645517 1 MVGTF TDTEDP AKFRMKYUGVASFLQKGNDDH 32 13 W -2 All the amino acids from -3 2 1-3-3-27 00
13925316 38  FSVDGSGKMTATAQGRVIILNNWEMCANMFGTFEDTPDP AKFKMRYUGAAAYLQSGNDDH 97 142 3 iy 1-2-3-1 1-1-3-3-1
131643 65  YTVEEDGTMTASSKGRVKLFGFUVICADMAAQYTDPTTPAKMYMTYQGLASYLSSGGDNY 126 12 : i position 1 to N (the end 2 ‘i ‘g ‘1 i g ‘g '2 ‘i
. of your query protein)
37 s 2-T 0-1-1 0 0 0-1-2-3 0-2-3-1 4 1-3-2-2
38 G 0-3-1-2-3-2-2 6-2-4-4-2-3-4-2 0-2-3-3-4
39T 0-1 0-1-1-1-1-2-2-1-1-1-1-2-1 1 5-3-2 0
RIK c DET KRT NLYG 40 W -3 -3 -4-5-3-2-3-3-3-3-2-3-2 1-4-3-3 9 2-3
] 1= Ll y=r T 41y @2 -2 -2 -3-3-2-2-3 2-2-1-2-1 3-3-2-2 2 7-1
42 a 4-2-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0



A R N D
1M -1 -2 -2 -3
2K -1 1 0 1
3W -3 -3-4-5
4v 0 -3-3 -4
5W -3 -3 -4 -5
6A [5]2-2-2
7L -2 -2 -4 -4
8L -1-3-3-4
9L -1-3-4-4
0L -2 -2-4-4
11 a -2 -2 -2
12 A —2 -2 -2
13 W -2 -3 -4 -4
14 a
15 a
16 A
37s 2-1 0-1
383G 0 -3-1-2
39T 0-1 0 -1
40W -3 -3 -4-5;
a1y -2 -2 -2 -3
42a [4]2-2 -2

-3 -3 3 -
-3 -2-3-2 1
-1 -3-3-4-4 3 1-3
-3 -2-3-2 1
-1 -1-1 0-2-2-2 -1
-1 -2-3-4-3 2 4-3 2 0
2 2 -3

a 2 2 A 2 2 4 2 2 o,

1 Note: A given amino
] acid (such as alanine) in
1 your query protein can

312 -1 -2 . .
-1 o 41 | receive different scores
"2 - for matching alanine

1 depending on the
1 position in the protein

P S
-3 -2
-1 0
-4 -3
-3 -2
-4 -3
-1 1
-3 -3
-3 -2

3 -3

3 -3

11

11

3 -3

1 1

1 3

11

-1-1-1 0-2-2-2-1-1-3

1 4
2 0
11
4 -3
3 -2
-1 1

PSI-BLAST: Position-Specific Iterated BLAST

OCOOHMNWHOWMWWKRECJ

Many proteins in a database are too distantly related to a query to be detected

using standard BLAST. In many other cases matches are detected but are so distant

that the inference of homology is unclear. Enter the more sensitive PSI-BLAST

3.

BLAST input sequence to
find significant alignments

A

Construct a multiple
sequence alignment (MSA)

!

Construct a PSSM | 5.

v

BLAST PSSM profile to
search for new hits

lterate

(see Altschul et al., Nuc. Acids Res. (1997) 25:3389-3402)

A R N D C Q E G H I

L KM F P S T W Y V

1M . . .
2 K The PSI-BLAST PSSM is essentially a query customized
3 W scoring matrix that is more sensitive than BLOSUM.
4 v
5W -3 -3-4-5-3-2-3-3-3-3-2-3-2 1-4-3-312 2 -3
é6a [5}2-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0
7L -2 -2 -4 -4 -1-2-3-4-3 2 4-3 2 0-3-3-1-2-11
8 L -1 -3-3-4-1-3-3-4-3 2 2-3 1 3-3-2-1-2 0 3
9 L -1 -3 -4 -4 P22t .° L _" Qellewy3 -3 -1 -2 -1 2
0L -2 -2-4-4{Note: Agiven amino 3-3-1-2-1 1
11 A -2 -2 -2 A . . . 1 1 0-3-2 0
12 2 _2 -2 -2 Jacid (such as alanine)in|; 1 ¢ -3 -2 o
13w -2 -3 -4 -4 {your query proteincan [3-3-2 7 0 0
14 A 32 -1 -2 4 . . 1 1-1-3-3-1
15 a _1 o 41 | receive different scores |1 3 0 -3 -2 -2
162 "2 - for matching alanine 11 0-3-2-1
37s 2 -1 o -1 {depending on the 1 4 1-3-2-2
38 G 0 -3 -1 -2 4 Y H H 2 0-2 -3 -3 -4
397 o -1 o .1 lpositionin the protein 11 5-3-2 0
40 W -3 -3 -4 -5 A 4 -3 -3 9 2 -3
41 Y -2 -2 -2 -3 ——— 3-2-2 2 7-1
42a [4}2-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0

Start search with single © o0 (S) @)

human RBD sequence




Result of initial blastp
search

Odorant kinding protein
Potential Lipocalins? N

Result of later
PSI-BLAST
iteration (note,
potential
Retinol-binding “corruption”!)

Apolipoprotein D

OOO 9) Q)O Result of

subsequent PSI-
BLAST iteration
(note, many

) more lipocalin

Retinol-binding protein K hits returned!)

Apolipoprotein D

PSI-BLAST returns dramatically more hits

PSI-BLAST frequently returns many more hits with significant E-values than blastp

The search process is continued iteratively, typically about five times, and at each

step a new PSSM is built.

*  You must decide how many iterations to perform and which sequences to
include!
You can stop the search process at any point - typically whenever few new
results are returned or when no new “sensible” results are found.

Iteration glgsowsgg glgsowsgg
1 34 61
2 314 79
3 416 57
4 432 50
5 432 50

Human retinol-binding protein 4 (RBP4; P02753) was used as a query in a PSI-
BLAST search of the RefSeq database.



638.1| apolipoprotein D precursor [Homo sapiens]

(c) lteration 3
£INP_000597.

blastp E-value for
this hit was 0.27

Profile advantages and disadvantages

Advantages:

Quantitate with a good scoring system

Weights sequences according to observed diversity
Profile is specific to input sequence set

Very sensitive
Can detect weak similarity

Relatively easy to compute
Automatic profile building tools available

Disadvantages:

If a mistake enters the profile, you may end up with irrelevant data
The corruption problem!

Ignores higher order dependencies between positions
i.e., correlations between the residue found at a given position and those found
at other positions (e.g. salt-bridges, structural constraints on RNA etc...)

Requires some expertise and oversight to use proficiently

PSI-BLAST errors: the corruption problem

The main source of error in PSI-BLAST searches is the spurious amplification of
sequences that are unrelated to the query.

There are three main approaches to stopping corruption of PSI-BLAST queries:
» Perform multi-domain splitting of your query sequence
If a query protein has several different domains PSI-BLAST may find database
matches related to both individually. One should not conclude that these hits
with different domains are related.
- Often best to search using just one domain of interest.

* Inspect each PSI-BLAST iteration removing suspicious hits.
E.g., your query protein may have a generic coiled-coil domain, and this may
cause other proteins sharing this motif (such as myosin) to score better than
the inclusion threshold even though they are not related.
- Use your biological knowledge!

* Lower the default expect level (e.g., E = 0.005 to E = 0.0001).
This may suppress appearance of FPs (but also TPs)

Todays Menu

Sequence motifs and patterns: Simple approaches for
finding functional cues from conservation patterns

Sequence profiles and position specific scoring matrices
(PSSMs): Building and searching with profiles, Their
advantages and limitations

PSI-BLAST algorithm: Application of iterative PSSM
searching to improve BLAST sensitivity

Hidden Markov models (HMMs): More versatile probabilistic
model for detection of remote similarities



Hands-on sections 3 & 4:
Comparing methods and the trade-off

between sensitivity, selectivity and
performance

Markov chains: Positional dependencies \/

The connectivity or topology of a Markov chain can easily be designed to capture
dependencies and variable length motifs.

WEIRD

WEIRD M4 Ms
WEIQH |Mo M1 M2 M3 M6
WEIRD Start M’4 M’s End
WEIQH

Recall that a PSSM for this motif would give the sequences WEIRD and WEIRH
equally good scores even though the RH and QR combinations were not observed

Problems with PSSMs: Positional dependencies

Do not capture positional dependencies

WEIRD D 0.6
WEIRD E !
WEIQH T | 0.4
WEIRD Q 0.4
WEIQH R 0.6

W1 |

Note: We never see QD or RH, we only see RD and QH.
However, P(RH)=0.24, P(QD)=0.24, while P(QH)=0.16

Use of HMMER

Widely used by protein family
databases
Use ‘seed’ alignments
Until 2010
Computationally expensive O
Restricted to HMMs constructed from
multiple sequence alignments

Command line application




on shuffled target sequences

04 A L
NCBI BLASTP
VS -
@ o
2 0] WU BLASTP [
HMMER BLAST % e
# 10e] HVMMER2 [
Program PHMMER BIASTP JU——" 000w
SAM
Query Single sequence 10" 3
Target Sequence database
Database “ 10 100 1000
Program HMMSCAN RPSBIAST query length M (residues)
Query Single sequence monoshuffled negatives;
two homologous regions per positive
Target Profile HMM database, PSSM database, 1guul L L L
Database e.g. Pfam e.g.CDD
Program HMM SEARCH PSI-BIAST y H3 (no filters)
»
3
Query Profile HMM PSSM =
3
Target Sequence database 2
Database %
Program JCKHMMER PSI-BIAST 5 03
g 0.
Query Single sequence £
Target Sequence database
Database T T
0.001 0.01 0.1 1 10

mean false positives per search

Modified from: S. R. Eddy
PLoS Comp. Biol., 7:e1002195, 2011.

Visualization of Results — By Score
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Fast Web Searches

* Parallelized searches across compute farm
* Average query returns ~1 sec

* Range of sequence databases
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Visualization of Results — By Score

- -
N N I b

V |Q16IUS_AEDAE® | SH2/SH3 adaptor protein = Aedes aegyptidd 2.5e-31 @
Target Target
Query 9% Identil E-value
Envelope Alignment entity % Similarity Bit
= J Bias/iAccuracy (count) (count) Score
start end start end start end Ind. Cond.
7 62 4 81 9 63 0.02 0.81 36.4 (20) 50.9 (28) 19.5 0.2 0.00011

Query 7 lpnlfIlIEVISIdntISItlIIlrilgynhngIcealt oo 62

d va yd+ a g 1 + ktet+ +1 q n g+vpsny+

Target 9 DVC--DSKHWVQNsH_K 63

PP 5566799 **k*kkkkkkkkkkk*k*%*987775..455677766516777T****x***96




Visualization of Results — By Taxonomy
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Species Distribution
Species Count View
Rattus norvegicus& 115 Show
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Mus musculus @ 83 Show
Sarcophilus harrisii&? 72 Show
Ornithorhynchus anatinus & 65 Show
Cricetulus griseus& 46 Show
[ stow At visivie |

Search Details
Jump to threshold page

PFAM: Protein Family Database of Profile HMMs

Comprehensive compilation of both multiple sequence alignments and profile
HMMs of protein families.

http://pfam.sanger.ac.uk/

PFAM consists of two databases:

+ Pfam-A is a manually curated collection of protein families in the form of
multiple sequence alignments and profile HMMs. HMMER software is used to
perform searches.

» Pfam-B contains additional protein sequences that are automatically aligned.
Pfam-B serves as a useful supplement that makes the database more
comprehensive.

+ Pfam-A also contains higher-level groupings of related families, known as clans

Visualization of Results — By

D mMAain
HMMER

biosequence analysis using profile hidden Markov models.

Home ~ Search Results  Software  Help  About
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HMM limitations

HMMs are linear models and are thus unable to capture higher order
correlations among positions (e.g. distant cysteins in a disulfide bridge, RNA
secondary structure pairs, etc).

Another flaw of HMMs lies at the very heart of the mathematical theory behind
these models. Namely, that the probability of a sequence can be found from the
product of the probabilities of its individual residues.

This claim is only valid if the probability of a residue is independent of the
probabilities of its neighbors. In biology, there are frequently strong dependencies
between these probabilities (e.g. hydrophobic residues clustering at the core of
protein domains).

These biological realities have motivated research into new kinds of statistical
models. These include hybrids of HMMs and neural nets, dynamic Bayesian nets,
factorial HMMs, Boltzmann trees and stochastic context-free grammars.

See: Durbin et al. “Biological Sequence Analysis”

Side Note: Orthologs vs Paralogs
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That’s it!

Sequence comparison is most
informative when it detects homologs

Homologs are sequences that have common origins
i.e. they share a common ancestor

- They may or may not have common activity

Common Time
Ancestor

CTCGTTA Can be used
| to establish
evolutionary

/\ relationships
Recent
Species »* /

CACTGTA CATGTTA



Key terms

When we talk about related sequences we use
specific terminology.

Homologous sequences may be either:
— Orthologs or Paralogs
(Note. these are all or nothing relationships!)

Any pair of sequences may share a certain level of:
— Identity and/or Similarity

(Note. if these metrics are above a certain level we
often infer homology)

Paralogs tend to have slightly different
functions

Paralogs: are homologs produced by gene
duplication. They represent genes derived from a
common ancestral gene that duplicated within an
organism and then subsequently diverged by
accumulated mutation.

— Para = [greek: along side of]

Single Duplication
Spedie

Divergence
CACTGTA

Orthologs tend to have similar function

Orthologs: are homologs produced by speciation that
have diverged due to divergence of the organisms
they are associated with.

— Ortho = [greek: straight] ... implies direct descent

Common Time
Ancestor
CTCGTTA

k Speciation
Recent
Species } J

CACTGTA CATGTTA

Orthologs vs Paralogs

* In practice, determining ortholog vs paralog
can be a complex problem:
— gene loss after duplication,
— lack of knowledge of evolutionary history,
— weak similarity because of evolutionary distance
* Homology does not necessarily imply exact
same function

— may have similar function at very crude level but
play a different physiological role



