
BIMM 143
Data visualization with R

Lecture 5

Barry Grant

http://thegrantlab.org/bimm143

Recap From Last Time:
• What is R and why should we use it?

• Familiarity with R’s basic syntax.

• Familiarity with major R data structures namely vectors
and data.frames.

• Understand the basics of using functions (arguments,
vectorizion and re-cycling).

• Appreciate how you can use R scripts to aid with
reproducibility.

[MPA Link]

Today’s Learning Goals
• Appreciate the major elements of exploratory data analysis

and why it is important to visualize data.

• Be conversant with data visualization best practices and
understand how good visualizations optimize for the human
visual system.

• Be able to generate informative graphical displays including
scatterplots, histograms, bar graphs, boxplots, dendrograms
and heatmaps and thereby gain exposure to the extensive
graphical capabilities of R.

• Appreciate that you can build even more complex charts with
ggplot and additional R packages such as rgl.

Today’s Learning Goals
• Appreciate the major elements of exploratory data analysis

and why it is important to visualize data.

• Be conversant with data visualization best practices and
understand how good visualizations optimize for the human
visual system.

• Be able to generate informative graphical displays including
scatterplots, histograms, bar graphs, boxplots, dendrograms
and heatmaps and thereby gain exposure to the extensive
graphical capabilities of R.

• Appreciate that you can build even more complex charts with
ggplot and additional R packages such as rgl.

Why visualize at all?

x y
1 5.00 0.00
2 4.18 2.75
3 1.98 4.59
4 -0.86 4.92
5 -3.43 3.64
6 -4.86 1.16
7 -4.70 -1.70
8 -2.99 -4.01
9 -0.30 -4.99
10 2.49 -4.34
11 4.46 -2.25
12 4.97 0.57
13 3.84 3.20
14 1.45 4.79
15 -1.42 4.79

x y

Min. -4.86 -4.99

1st Qu. -2.21 -1.98

Median 1.45 1.16

Mean 0.65 0.87

3rd Qu. 4.01 4.12

Max. 5.00 4.92

●

●

●●

●

●

●

●

●
●

●

●

●

●●

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

x

y

●

●

●●

●

●

●

●

●
●

●

●

●

●●

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

x

y

https://bioboot.github.io/bimm143_S18/class-material/05_draw_circle_points/ Exploratory Data Analysis
• ALWAYS look at your data!

• If you can’t see it, then don’t believe it!

• Exploratory Data Analysis (EDA) allows us to:

1. Visualize distributions and relationships

2. Detect errors

3. Assess assumptions for confirmatory analysis

• EDA is the first step of data analysis!

Exploratory Data Analysis 1977

• Based on insights developed at Bell Labs

in the 60’s
• Techniques for visualizing and

summarizing data

• What can the data tell us? (in contrast to

“confirmatory” data analysis)
• Introduced many basic techniques:

• 5-number summary, box plots, stem

and leaf diagrams,…
• 5 Number summary:

• extremes (min and max)

• median & quartiles

• More robust to skewed & longtailed

distributions

16

Chart types
• Box-and-whisker plot : a graphical form of 5-number

summary (Tukey)

Side-note: boxplots

boxplot(rnorm(1000,0))

summary(); hist()

The Trouble with Summary Stats Looking at Data

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Key point: You need to visualize your data!
https://github.com/stephlocke/datasauRus

Today’s Learning Goals
• Appreciate the major elements of exploratory data analysis

and why it is important to visualize data.

• Be conversant with data visualization best practices and
understand how good visualizations optimize for the human
visual system.

• Be able to generate informative graphical displays including
scatterplots, histograms, bar graphs, boxplots, dendrograms
and heatmaps and thereby gain exposure to the extensive
graphical capabilities of R.

• Appreciate that you can build even more complex charts with
ggplot and additional R packages such as rgl.

Key Point:
Good visualizations optimize
for the human visual system.

Key Point: The most important measurement should
exploit the highest ranked encoding possible

• Position along a common scale

• Position on identical but nonaligned scales

• Length

• Angle or Slope

• Area

• Volume or Density or Color saturation/hue

• Position along a common scale

• Position on identical but nonaligned scales

• Length

• Angle or Slope

• Area

• Volume or Density or Color saturation/hue

Key Point: The most important measurement should
exploit the highest ranked encoding possible

• Position along a common scale

• Position on identical but nonaligned scales

• Length

• Angle or Slope

• Area

• Volume or Density or Color saturation/hue

Key Point: The most important measurement should
exploit the highest ranked encoding possible

luminance

saturation

hue

Observation: Alphabetical is
almost never the correct ordering

of a categorical variable.

If we did not have the legend would you know which was low or high mpg?

The most important measurement should
exploit the highest ranked encoding possible.

• Position along a common scale

• Position on identical but nonaligned scales

• Length

• Angle or Slope

• Area

• Volume or Density or Color saturation/hue

The most important measurement should
exploit the highest ranked encoding possible.

• Position along a common scale

• Position on identical but nonaligned scales

• Length

• Angle or Slope

• Area

• Volume or Density or Color saturation/hue

If growth (slope) is
important, plot it directly.

The most important measurement should
exploit the highest ranked encoding possible.

• Position along a common scale

• Position on identical but nonaligned scales

• Length

• Angle or Slope

• Area

• Volume or Density or Color saturation/hue

Observation: Pie charts
are ALWAYS a mistake.

Apart from MPAs :-)

Piecharts are the information visualization
equivalent of a roofing hammer to the
frontal lobe. They have no place in the world
of grownups, and occupy the same semiotic
space as short pants, a runny nose, and
chocolate smeared on one’s face. They are as
professional as a pair of assless chaps.

http://blog.codahale.com/2006/04/29/google-analytics-the-goggles-they-do-nothing/

Piecharts are the information visualization
equivalent of a roofing hammer to the
frontal lobe. They have no place in the world
of grownups, and occupy the same semiotic
space as short pants, a runny nose, and
chocolate smeared on one’s face. They are as
professional as a pair of assless chaps.

http://blog.codahale.com/2006/04/29/google-analytics-the-goggles-they-do-nothing/

Tables are preferable to graphics for many
small data sets. A table is nearly always better
than a dumb pie chart; the only thing worse
than a pie chart is several of them, for then the
viewer is asked to compare quantities located
in spatial disarray both within and between
pies... Given their low data-density and failure
to order numbers along a visual dimension, pie
charts should never be used.

-Edward Tufte, The Visual Display of Quantitative Information

Tables are preferable to graphics for many
small data sets. A table is nearly always better
than a dumb pie chart; the only thing worse
than a pie chart is several of them, for then the
viewer is asked to compare quantities located
in spatial disarray both within and between
pies... Given their low data-density and failure
to order numbers along a visual dimension, pie
charts should never be used.

-Edward Tufte, The Visual Display of Quantitative Information

Clinton Trump
Among Democrats 99% 1%
Among Republicans 53% 47%

Who do you think did a better
job in tonight’s debate?

Afghanistan

Albania

Algeria

Angola

Argentina

Australia

Austria

Bahrain

Bangladesh

Belgium

Benin

Bolivia

Bosnia and Herzegovina

Botswana

Brazil

Bulgaria

Burkina Faso

Burundi

Cambodia

Cameroon

All good pie charts are jokes… The most important measurement should
exploit the highest ranked encoding possible.

• Position along a common scale

• Position on identical but nonaligned scales

• Length

• Angle or Slope

• Area

• Volume or Density or Color saturation/hue

11 mpg

The most important measurement should
exploit the highest ranked encoding possible.

• Position along a common scale

• Position on identical but nonaligned scales

• Length

• Angle or Slope

• Area

• Volume or Density or Color saturation/hue

Observation: Comparison is
trivial on a common scale.

Today’s Learning Goals
• Appreciate the major elements of exploratory data analysis

and why it is important to visualize data.

• Be conversant with data visualization best practices and
understand how good visualizations optimize for the human
visual system.

• Be able to generate informative graphical displays including
scatterplots, histograms, bar graphs, boxplots, dendrograms
and heatmaps and thereby gain exposure to the extensive
graphical capabilities of R.

• Appreciate that you can build even more complex charts with
ggplot and additional R packages such as rgl.

Different graphs for different purposes

17

Exploratory graphs: many images for a narrow audience (you!)
Presentation graphs: single image for a large audience

Ah ha!
Ooh!

Roles of graphics in data analysis
• Graphs (& tables) are forms of communication:
� What is the audience?
� What is the message?

Analysis graphs: design to see
patterns, trends, aid the process of
data description, interpretation

Presentation graphs: design to attract
attention, make a point, illustrate a
conclusion

Roles of graphics in data analysis

Exploratory (for you!)

Info for others,
publications &
sharing etc.

Core R Graph Types

Fl
or
id
a

N
or

th
 C

ar
ol

in
a

C
al
ifo
rn
ia

M
ar
yl
an
d

A
riz
on
a

N
ew

 M
ex

ic
o

D
el
aw
ar
e

A
la
ba
m
a

Lo
ui
si
an
a

Ill
in
oi
s

N
ew

 Y
or

k
M
ic
hi
ga
n

N
ev
ad
a
A
la
sk
a

M
is
si
ss
ip
pi

S
ou

th
 C

ar
ol

in
a

W
as
hi
ng
to
n

O
re
go
n

W
yo
m
in
g

O
kl
ah
om
a

V
irg
in
ia

R
ho

de
 Is

la
nd

M
as
sa
ch
us
et
ts

N
ew

 J
er

se
y

M
is
so
ur
i

A
rk
an
sa
s

Te
nn
es
se
e

G
eo
rg
ia

C
ol
or
ad
o

Te
xa
s

Id
ah
o

N
eb
ra
sk
a

K
en
tu
ck
y

M
on
ta
na
O
hi
o

U
ta
h

In
di
an
a

K
an
sa
s

C
on
ne
ct
ic
ut

P
en
ns
yl
va
ni
a
H
aw
ai
i

W
es

t V
irg

in
ia

M
ai
ne

S
ou

th
 D

ak
ot

a
N

or
th

 D
ak

ot
a

V
er
m
on
t

M
in
ne
so
ta

W
is
co
ns
in

Io
w
a

N
ew

 H
am

ps
hi

re

0
50

10
0

15
0

Cluster Dendrogram

hclust (*, "average")
dist(USArrests)

H
ei
gh
t

cr
iti
ca
l

ad
va
nc
e

pr
iv
ile
ge
s

ra
tin
g

co
m
pl
ai
nt
s

le
ar
ni
ng

ra
is
es

raises

learning

complaints

rating

privileges

advance

critical

Etc.

The R Painters Model

Side-Note: “Red and green should never be seen”

Base plot

Overlays

Extras

Core Graph Types

• Local options to change a specific plot
• Global options to affect all graphs

Common Options

• Axis scales
– xlim c(min,max)
– ylim c(min,max)

• Axis labels
– xlab(text)
– ylab(text)

• Plot titles
– main(text)
– sub(text)

• Plot characters
– pch(number)
– cex(number)

• Local options to change a specific plot
• Global options to affect all graphs

Plot Characters

plot(1:5, pch=1:5, cex=1:5)

Plot Type Specific Options

Plot (scatterplots and line graphs)

• Input: Almost anything. 2 x Vectors
• Output: Nothing
• Options:
– type l=line, p=point, b=line+point
– lwd line width (thickness)
– lty line type (1=solid,2=dashed,3=dotted etc.)

plot(c(1:10)^2, typ="b", lwd=4, lty=3)

Barplot (bar graphs)

• Input: Vector (single) or Matrix (stack or group)
• Output: Bar centre positions
• Options:
– names.arg Bar labels (if not from data)
– horiz=TRUE Plot horizontally
– beside=TRUE Plot multiple series as a group not stacked

barplot(VADeaths, beside = TRUE)

Hist (histograms)

• Input: Vector
• Output: Summary of binned data
• Options:
– breaks Number or limits of bins
– probability Y axis is probability, not freq
– labels Per bin text labels

hist(c(rnorm(1000,0), rnorm(1000,4)), breaks=20)

Boxplot

• Input: Vector, List or formula (data~factor)
• Output: Summary of the boxplot parameters
• Options:
– range Sensitivity of whiskers
– varwidth Width represents total observations
– horizontal Plot horizontally

boxplot(cbind(rnorm(1000,0), rnorm(1000,4)))

Controlling plot area options
with par

Par

• The par function controls global
parameters affecting all plots in the
current plot area

• Changes affect all subsequent plots

• Many par options can also be passed to
individual plots

?par

Par examples

• Reading current value
– par()$cex

• Setting a value
– par(cex=1.5) -> old.par

• Restoring a value
– par(old.par)
– dev.off()

Par options

• Margins
– mai (set margins in inches)
– mar (set margins in number of lines)
– mex (set lines per inch)
– 4 element vector (bottom, left, top, right)

• Warning
– Error in plot.new() : figure margins too large

par(mar=c(2, 10, 1, 1))

Par options

• Fonts and labels
– cex – global char expansion
• cex.axis
• cex.lab
• cex.main
• cex.sub

par(cex.main=1.5, cex.axis=0.5, cex.lab=2)

Par options

• Multi-panel
– par(mfrow(rows,cols))

par(mfrow(3 , 4))

Exercise 1 Using Color

Specifying colors

• Hexadecimal strings
– #FF0000 (red)
– #0000FF (blue)
– #CC00CC (purple)

• Controlled names
– “red” “green” etc.
– colors()

Built in color schemes

• Functions to generate colors
• Pass in number of colors to make
• Functions:
– rainbow()
– heat.colors()
– cm.colors()
– terrain.colors()
– topo.colors()

rainbow(7)

rainbow(7)

Color Packages

• Color Brewer
– Set of pre-defined, optimized palettes
– library(RColorBrewer)
– brewer.pal(n_colours, palette)

• ColorRamps
– Create smooth palettes for ramped color
– Generates a function to make actual color vectors
– colorRampPalette(c(“red”,”white”,”blue”))
– colorRampPalette(c(“red”,”white”,”blue”))(5)

Applying Color to Plots

• Vector of numbers or specified colors
passed to the col parameter of a plot
function

• Vector of factors used to divide the data
– Colors will be taken from the set color palette
– Can read or set using pallete function
• palette()
• palette(brewer.pal(9,”Set1”)

plot(1:5, col=1:5, pch=15, cex=2)

Dynamic use of color

• Coloring by density
– Pass data and palette to densCols()
– Vector of colors returned

• Coloring by value
– Need function to map values to colors

https://www.rdocumentation.org/packages/grDevices/versions/3.4.3/topics/densCols

Exercise 2

Q: 2B. stringsAsFactors = TRUE vs stringsAsFactors = FALSE

Exercise 2C Revisited

• Open your previous Lecture5 RStudio project
(and your saved R script)

• Locate and open in RStudio the downloaded file
color_to_value_map.r

• This is an example of a poorly written function
typical of something you might get from a lab
mate that knows some R…

(POOR!) Color Mapping Function

map.colors <- function (value,high.low,palette) {
 proportion <- ((value-high.low[1])/(high.low[2]-high.low[1]))
 index <- round ((length(palette)-1)*proportion)+1
 return (palette[index])
}

Talking point:
• Can you figure out what this function it is supposed to do?
• What format should the inputs be in order to work?
• How could we improve this function?

1. What are the function inputs?

Let’s first space things out so it is easier for us to read and then
change to use x as our numeric input vector.

map.colors2 <- function(x, high.low, palette) {

 proportion <- ((x - high.low[1])/(high.low[2] - high.low[1]))

 index <- round((length(palette)-1) * proportion)+1

 return(palette[index])
}

1. What are the function inputs?

Let’s first space things out so it is easier for us to read and then
change to use x as our numeric input vector.

We can guess that high.low is a two element numeric vector
and palette is probably a vector of colors

map.colors2 <- function(x, high.low, palette) {

 proportion <- ((x - high.low[1])/(high.low[2] - high.low[1]))

 index <- round((length(palette)-1) * proportion)+1

 return(palette[index])
}

2. What is the function doing?

Let’s add a comment to explain the logic of the first line

map.colors2 <- function(x, high.low, palette) {

 # Determine precent values of the 'high.low' range
 proportion <- ((x - high.low[1])/(high.low[2] - high.low[1]))

 index <- round((length(palette)-1) * proportion)+1

 return(palette[index])
}

2. What is the function doing?

Let’s change the object name from proportion to precent so it is
more meaningful for us. Remember to change it everywhere ;-)

map.colors2 <- function(x, high.low, palette) {

 # Determine precent values of the 'high.low' range
 precent <- ((x - high.low[1])/(high.low[2] - high.low[1]))

 index <- round((length(palette)-1) * precent)+1

 return(palette[index])
}

2. What is the function doing?

Perhaps we can simplify the next line, which determines the
corresponding index position in the color 'palette' vector?

map.colors2 <- function(x, high.low, palette) {

 # Determine precent values of the 'high.low' range
 precent <- ((x - high.low[1])/(high.low[2] - high.low[1]))

 #index <- round((length(palette)-1) * precent)+1
 index <- round(length(palette) * precent)

 return(palette[index])
}

2. What is the function doing?

Doh! What happens if our precent value is zero or very small?

We will get an index value of zero, will cause a problem when
accessing palette[index] in the last line

map.colors2 <- function(x, high.low, palette) {

 # Determine precent values of the 'high.low' range
 precent <- ((x - high.low[1])/(high.low[2] - high.low[1]))

 #index <- round((length(palette)-1) * precent)+1
 index <- round(length(palette) * precent)

 return(palette[index])
}

2. What is the function doing?

Add a comment again to describe the logic of what our code is doing

map.colors2 <- function(x, high.low, palette) {

 # Determine precent values of the 'high.low' range
 precent <- ((x - high.low[1])/(high.low[2] - high.low[1]))

 # Find corresponding index position in the color ‘palette'
 # note catch for 0 precent values to 1
 index <- round((length(palette)-1) * precent)+1

 return(palette[index])
}

3. How could we improve this function?

Make more user friendly in lots of ways including adding more
description, input argument defaults, error checking of inputs etc.

map.colors2 <- function(x, high.low, palette) {

 ## Description: Map the values of the input vector 'x'
 ## to the input colors vector ‘palette'

 # Determine precent values of the 'high.low' range
 precent <- ((x - high.low[1])/(high.low[2] - high.low[1]))

 # Find corresponding index position in the color ‘palette'
 # note catch for 0 precent values to 1
 index <- round((length(palette)-1) * precent)+1

 return(palette[index])
}

3. How could we improve this function?

map.colors3 <- function(x,
 low.high = range(x),
 palette = cm.colors(100)) {

 ## Description: Map the values of the input vector 'x'
 ## to the input colors vector ‘palette'

 # Determine precent values of the 'high.low' range
 precent <- ((x - low.high[2])/(low.high[1] - low.high[2]))

 # Find corresponding index position in the color ‘palette'
 # note catch for 0 precent values to 1
 index <- round((length(palette)-1) * precent)+1

 return(palette[index])
}

Make more user friendly in lots of ways including adding more
description, input argument defaults, error checking of inputs etc.

Plot Overlays
Exercise 3

Points

• Input: 2 Vectors (x and y positions)
• Options:
– pch
– cex

Lines / Arrows / Abline

• Input:
– Lines 2 vectors (x and y)
– Arrows 4 vectors (x0,x1,y0,y1)
– Abline Intercept and slope (or correlation object)

• Options:
– lwd
– angle (arrows)

Polygon (shaded areas)

• Input:
– 2 vectors (x and y) for bounding region

• Options:
– col

Text (in plot text)

• Input:
– Text, x, y

• Options:
– adj (x and y offsets)
– pos (auto offset 1=below,2=left,3=above, 4=right)

Legend

• Input:
– Position (x,y or “topright”,”bottomleft” etc)
– Text labels

• Options:
– fill (colours for shaded boxes)
– xpd=NA (draw outside plot area)

Exercise 3

Muddy Point Assessment Form Link

Homework!
New DataCamp Assignments

• Introduction to R Markdown

• Functions

• Loops

Muddy Point Assessment Form Link

