

Recap of Lecture 7

- · Reviewed the major steps for R function writing
- Introduced the CRAN & Bioconductor repositories for packages that extend R functionality
- Explored installing and using the ggplot2, bio3d, rgl, rentrez, igraph, blogdown, shiny, and other packages
- Discussed how to judge the utility, usability and development status of R packages.

Today's Menu

- Introduction to machine learning
 - Unsupervised, supervised and reinforcement learning
- Clustering
 - · K-means clustering
 - · Hierarchical clustering
 - Heatmap representations
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)
- Hands-on application to cell classification

Types of machine learning

- Unsupervised learning
 - Finding structure in unlabeled data
- Supervised learning
 - Making predictions based on labeled data
 - Predictions like regression or classification
- Reinforcement learning
 - Making decisions based on past experience

Types of machine learning

- Unsupervised learning
 - Finding structure in unlabeled data
- Supervised learning
 - Making predictions based on labeled data
 - Predictions like regression or classification
- Reinforcement learning
 - Making decisions based on past experience

Today's Menu

- Introduction to machine learning
 - <u>Unsupervised</u>, supervised and reinforcement learning
- Clustering
 - K-means clustering
 - · Hierarchical clustering
 - Heatmap representations
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)
- Hands-on application to cell classification

k-means clustering algorithm

- Breaks observations into **k** pre-defined number of clusters
- You define **k** the number of clusters!

k-means clustering algorithm

- Breaks observations into **k** pre-defined number of clusters
- You define k the number of clusters!
 - Imagine you had data that you could plot along a line and you knew you had to put them into k=3 "clusters" (e.g. data from three types of tumor cells)

k-means clustering algorithm

- Breaks observations into **k** pre-defined number of clusters
- You define **k** the number of clusters!
 - Imagine you had data that you could plot along a line and you knew you had to put them into k=3 "clusters" (e.g. data from three types of tumor cells)

Here your eyes can clearly see 3 natural groupings

k-means clustering algorithm

- Breaks observations into **k** pre-defined number of clusters
- You define **k** the number of clusters!
 - Imagine you had data that you could plot along a line and you knew you had to put them into k=3 "clusters" (e.g. data from three types of tumor cells)

Here your eyes can clearly see 3 natural groupings How does k-means attempt to define this grouping?

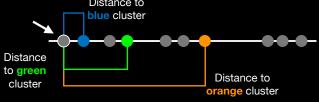
Step 1.
Select **k** (the number of <u>clusters</u>)

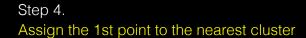
Step 2.
Select *k=3* distant data points at random
These are the initial clusters

Step 3.

Measure distance between the 1st point and the *k=3* initial clusters

Distance to blue cluster





Step 5.
Update cluster centers

Calculate the mean value for the blue cluster including the new point

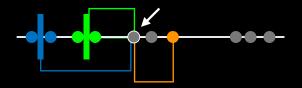
Step 6.

Assign next point to closest cluster

Use updated cluster centers for distance calculation

Step 7.

Update cluster centers and move to next point
Use updated cluster centers for distance calculation



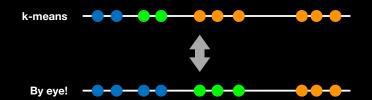
Step 8.

Repeat for each point

Each time updating cluster centers

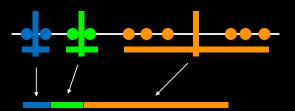
<u>H</u>mm....

Here the k-means result does not look as good as what we were able to do by eye!



Step 9.

Assess the quality of the clustering by adding up the variation within each cluster



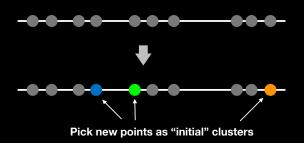
The total variation within clusters

K-means keeps track of these clusters and their total **variance** and then does the whole thing over again with different starting points

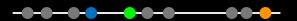
Step 10.

Repeat with different starting points

Back to the beginning and do all steps over again...



...Pick k=3 initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...



...Pick k=3 initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

...Pick k=3 initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

...Pick k=3 initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

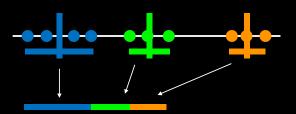
...Pick k=3 initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

...Pick k=3 initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

...Pick k=3 initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

...Pick k=3 initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

Now the data are all assigned to clusters, we again sum the variation within each cluster

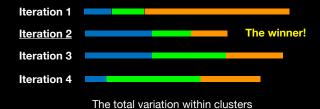


The total variation within clusters

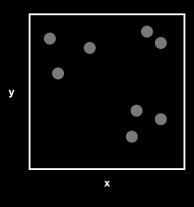
Step 10.
Repeat again with different starting points

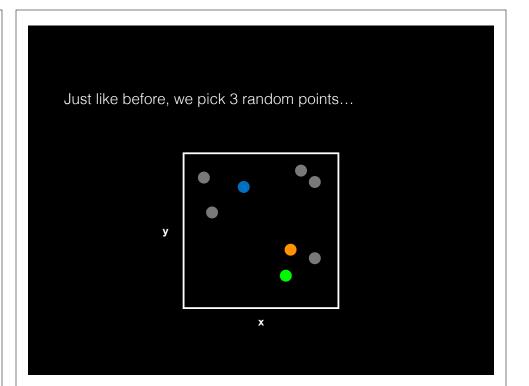
After several iterations k-means clustering knows it has the <u>best clustering so-far</u> based on the smallest total variation with clusters.

However, it does not know if it has found the <u>best overall</u>. So it will perform several more iterations with different starting points...

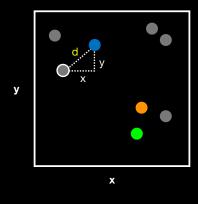


What if we have more dimensions?

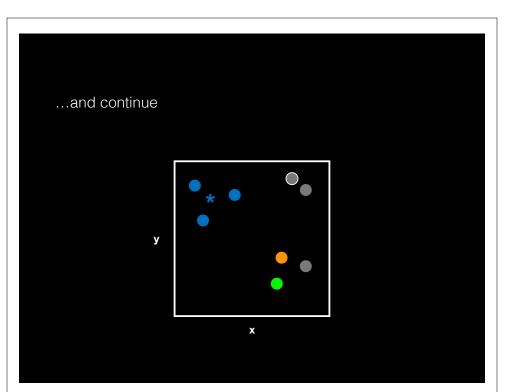


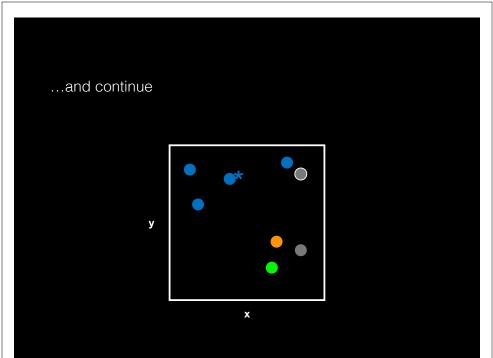


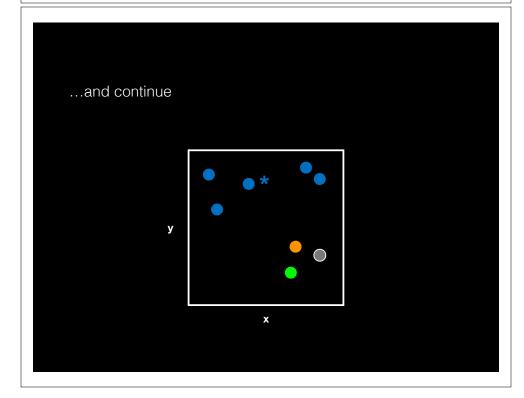
...and use the Euclidean distance. In 2 dimensions the Euclidean distance is the same as the Pythagorean theorem $d = sqrt(x^2 + y^2)$

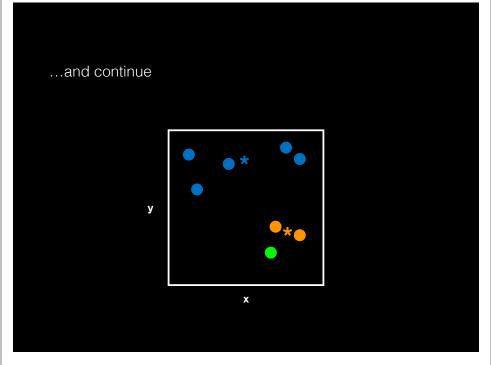


...assign point to nearest cluster and update cluster center *

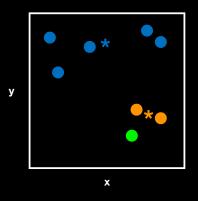








Again we have to use a number of different starting conditions before deciding on a good clustering!



What if we have even more dimensions?

Cell Samples

	#1	#2	#3
Gene 1	12	6	-13
Gene 2	-7	13	10
Gene 3	8	6	-9
Gene 4	9	5	-11
Gene 5	-3	1	6
Gene 6	10	4	-8

What if we have even more dimensions?

Cell Samples

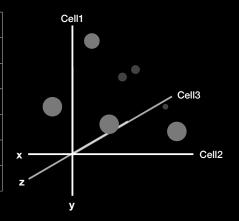
	#1	#2	#3
Gene 1	12	6	-13
Gene 2	-7	13	10
Gene 3	8	6	-9
Gene 4	9	5	-11
Gene 5	-3	1	6
Gene 6	10	4	-8

We could simply plot them by relabeling the cell samples as **x**, **y**, and **z** (i.e. a 3D plot)

What if we have even more dimensions?

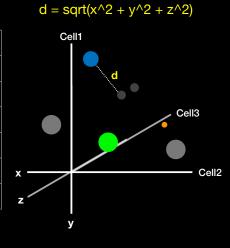
Cell Samples

	#1	#2	#3
Gene 1	12	6	-13
Gene 2	-7	13	10
Gene 3	8	6	-9
Gene 4	9	5	-11
Gene 5	-3	1	6
Gene 6	10	4	-8
	¥	V	7



...and go through exactly the same procedure with initial cluster assignment followed by distance calculation etc...

	Cell Samples		
	#1	#2	#3
Gene 1	12	6	-13
Gene 2	-7	13	10
Gene 3	8	6	-9
Gene 4	9	5	-11
Gene 5	-3	1	6
Gene 6	10	4	-8
	X	у	Z



...and go through exactly the same procedure with initial cluster assignment followed by distance calculation etc...

Cell Samples

#1	#2	#3
12	6	-13
-7	13	10
8	6	-9
9	5	-11
-3	1	6
10	4	-8
	12 -7 8 9 -3	12 6 -7 13 8 6 9 5 -3 1

$$d = sqrt(x^2 + y^2 + z^2)$$

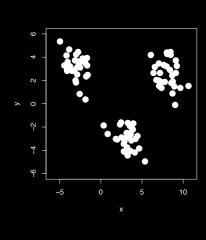
Of course we don't actually need to plot anything.

We can just calculate the Euclidean distance along any number of dimensions and perform our k-means clustering in the same way.

k-means in R

k-means algorithm with 3 centers, run 20 times
kmeans(x, centers= 3, nstart= 20)

- Input **x** is a numeric matrix, or data.frame, with one observation per row, one feature per column
- k-means has a random component
- Run algorithm multiple times to improve odds of the best model



3 Groups Subgroup 1 Subgroup 2 Subgroup 3 X

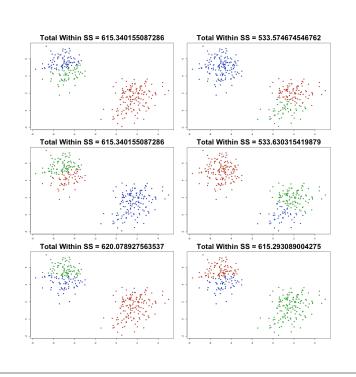
Model selection

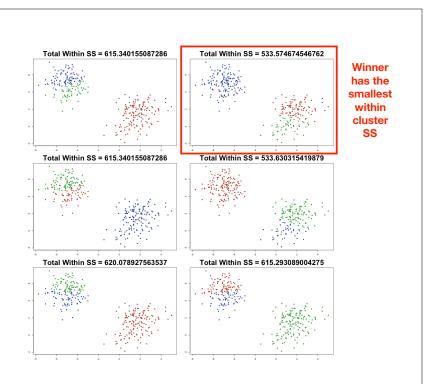
- · Recall k-means has a random component
- Best outcome is based on total within cluster sum of squares:
 - For each cluster
 - For each observation in the cluster
 - Determine squared distance from observation to cluster center
 - → Sum all of them together

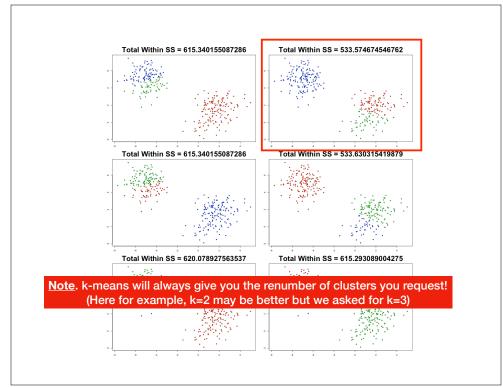
Model selection

k-means algorithm with 5 centers, run 20 times
kmeans(x, centers=5, nstart=20)

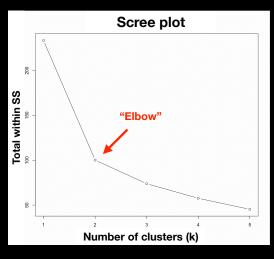
- Running algorithm multiple times (i.e. setting nstart) helps find the global minimum total within cluster sum of squares
- Increasing the default value of nstart is often sensible







Determining number of clusters



Trial and error is not the best approach

Systematically try a range of different k values and plot a "scree plot".

Here there is a large reduction in SS with **k=2** but after that the values do not go down as quickly!

Your Turn!

```
# Generate some example data for clustering
tmp <- c(rnorm(30,-3), rnorm(30,3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```

Use the kmeans() function setting k to 2 and nstart=20

Inspect/print the results

- Q. How many points are in each cluster?
- Q. What 'component' of your result object details
 - cluster size?
 - cluster assignment/membership?
 - cluster center?

Plot x colored by the kmeans cluster assignment and add cluster centers as blue points

Today's Menu

- · Introduction to machine learning
 - <u>Unsupervised</u>, supervised and reinforcement learning
- Clustering
 - · K-means clustering
 - Hierarchical clustering
 - Heatmap representations
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)
- Hands-on application to cell classification

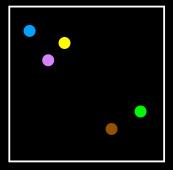
Hierarchical clustering

- Number of clusters is not known ahead of time
- Two kinds of hierarchical clustering:
 - bottom-up
 - top-down

Hierarchical clustering

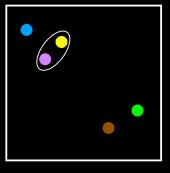
Simple example:

5 clusters: Each point starts as it's own "cluster"!



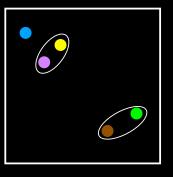
Hierarchical clustering

4 clusters



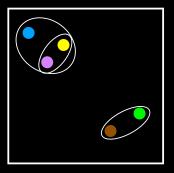
Hierarchical clustering

3 clusters



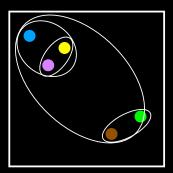
Hierarchical clustering

2 clusters



Hierarchical clustering

End: 1 cluster



Hierarchical clustering in R

```
# First we need to calculate point (dis)similarity
# as the Euclidean distance between observations
dist_matrix <- dist(x)

# The hclust() function returns a hierarchical
# clustering model
hc <- hclust(d = dist_matrix)

# the print method is not so useful here
hc
Call:
hclust(d = dist_matrix)

Cluster method : complete
Distance : euclidean
Number of objects: 60</pre>
```

Lets have a closer look...

```
# Our input is a distance matrix from the dist()
# function. Lets make sure we understand it first
dist_matrix <- dist(x)

dim(dist_matrix)
NULL

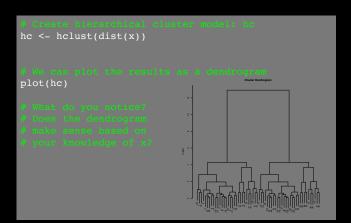
View( as.matrix(dist_matrix) )

dim(x)
[1] 60 2

dim( as.matrix(dist_matrix) )
[1] 60 60

# Note. symmetrical pairwise distance matrix</pre>
```

Interpreting results

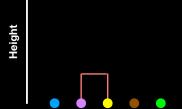


Dendrogram

 Tree shaped structure used to interpret hierarchical clustering models

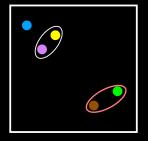
Dendrogram

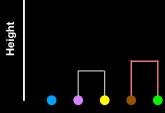
 Tree shaped structure used to interpret hierarchical clustering models



Dendrogram

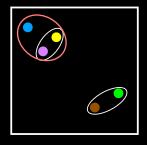
 Tree shaped structure used to interpret hierarchical clustering models

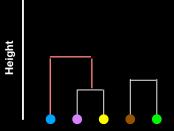




Dendrogram

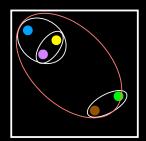
 Tree shaped structure used to interpret hierarchical clustering models

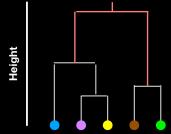




Dendrogram

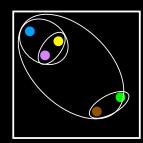
 Tree shaped structure used to interpret hierarchical clustering models

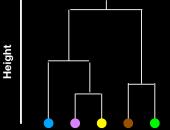


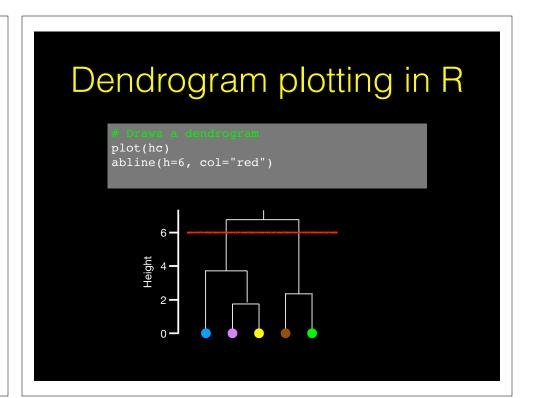


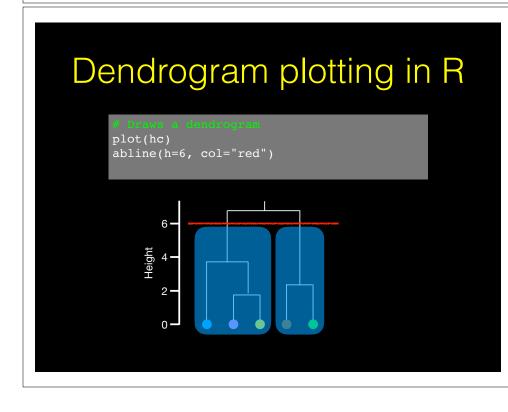
Dendrogram

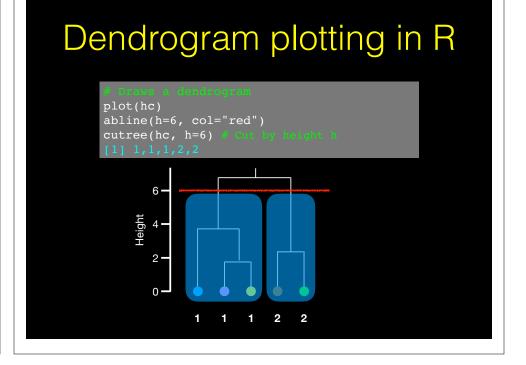
 Tree shaped structure used to interpret hierarchical clustering models



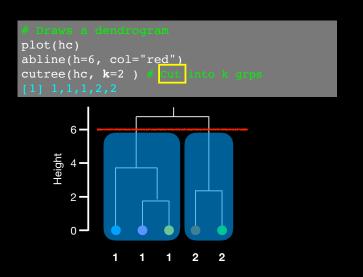








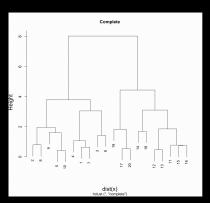
Dendrogram plotting in R

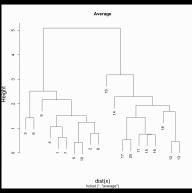


Linking clusters in hierarchical clustering

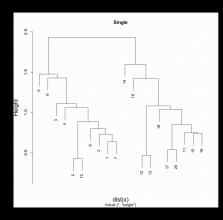
- How is distance between clusters determined?
- There are four main methods to determine which cluster should be linked:
 - **Complete**: pairwise similarity between all observations in cluster 1 and cluster 2, and uses largest of similarities
 - Single: same as above but uses smallest of similarities
 - Average: same as above but uses average of similarities
 - Centroid: finds centroid of cluster 1 and centroid of cluster 2, and uses similarity between two centroids

Linking methods: complete and average

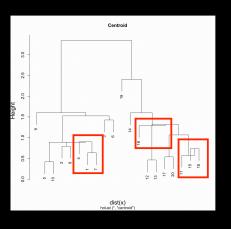




Linking method: single



Linking method: centroid



Linkage in R

```
# Using different hierarchical slustering methods
hc.complete <- hclust(d, method="complete")
hc.average <- hclust(d, method="average")
hc.single <- hclust(d, method="single")
```

Your Turn!

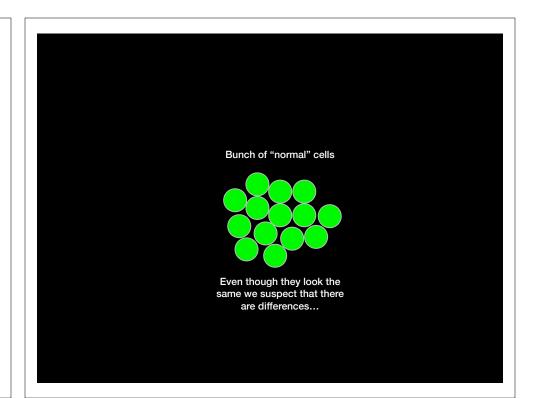
- Q. How does this compare to your known 'col' groups?

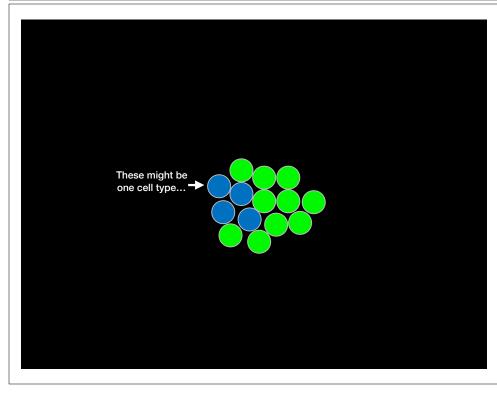
Today's Menu

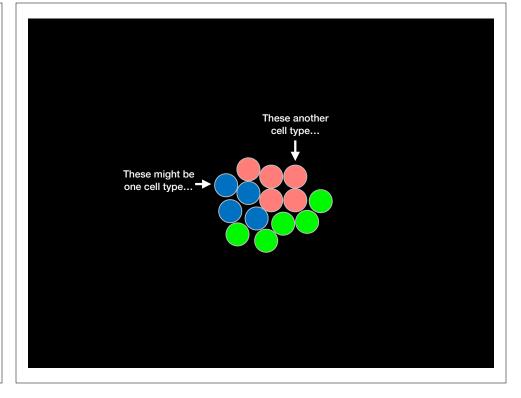
- Introduction to machine learning
 - <u>Unsupervised</u>, supervised and reinforcement learning
- Clustering
 - K-means clustering
 - Hierarchical clustering
 - Heatmap representations
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)
- Hands-on application to cell classification

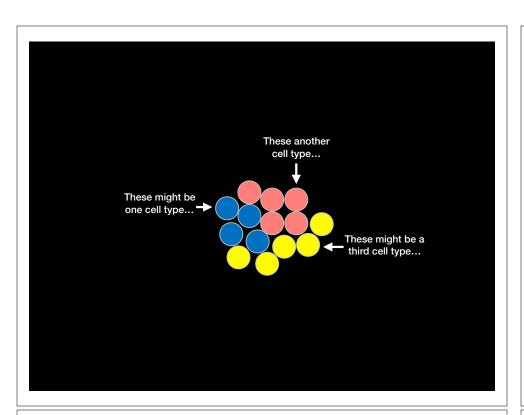
PCA: The absolute basics

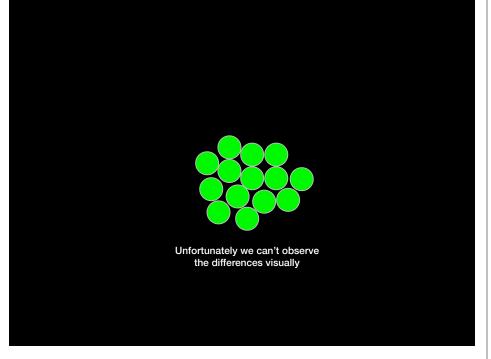
Bunch of "normal" cells

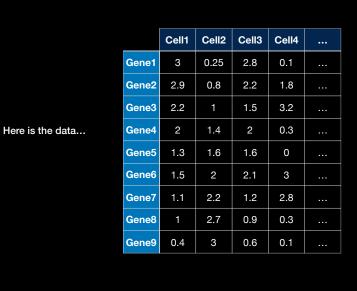












Each column shows how much each gene is transcribed in each cell

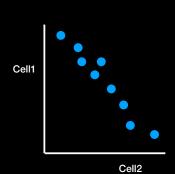
Cell1 Cell2 Cell3 Cell4 Gene1 3 0.25 2.8 0.1 1.8 2.9 2.2 Gene2 8.0 Gene3 2.2 1.5 3.2 Gene4 2 1.4 2 0.3 Gene5 1.3 1.6 1.6 Gene6 1.5 2 2.1 Gene7 2.2 1.2 2.8 Gene8 2.7 0.9 0.3 0.1 Gene9 0.4 0.6

4 2 0.3 ...
For now lets consider only two cells

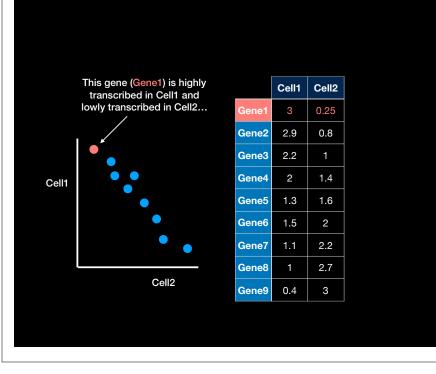
	Cell1	Cell2
Gene1	3	0.25
Gene2	2.9	0.8
Gene3	2.2	1
Gene4	2	1.4
Gene5	1.3	1.6
Gene6	1.5	2
Gene7	1.1	2.2
Gene8	1	2.7
Gene9	0.4	3

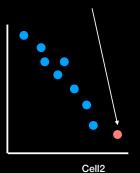
We have just 2 cells so we can plot the measurements for each gene

Here is the data...



	Cell1	Cell2	
Gene1	3	0.25	
Gene2	2.9	0.8	
Gene3	2.2	1	
Gene4	2	1.4	
Gene5	1.3	1.6	
Gene6	1.5	2	
Gene7	1.1	2.2	
Gene8	1	2.7	
Gene9	0.4	3	



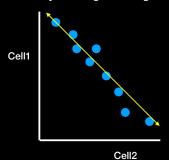


Cell1

	Cell1	Cell2
Gene1	3	0.25
Gene2	2.9	0.8
Gene3	2.2	1
Gene4	2	1.4
Gene5	1.3	1.6
Gene6	1.5	2
Gene7	1.1	2.2
Gene8	1	2.7
Gene9	0.4	3

In generel, Cell1 and Cell2 have an inverse correlation.

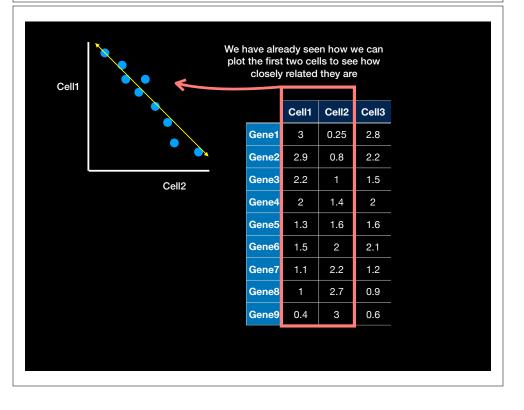
This suggests that they may be two different types of cells as they are using different genes

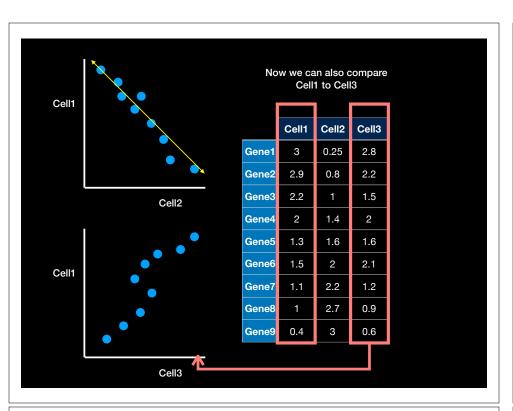


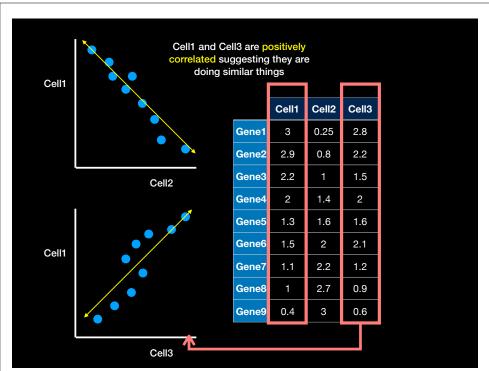
	Cell1	Cell2
Gene1	3	0.25
Gene2	2.9	0.8
Gene3	2.2	1
Gene4	2	1.4
Gene5	1.3	1.6
Gene6	1.5	2
Gene7	1.1	2.2
Gene8	1	2.7
Gene9	0.4	3

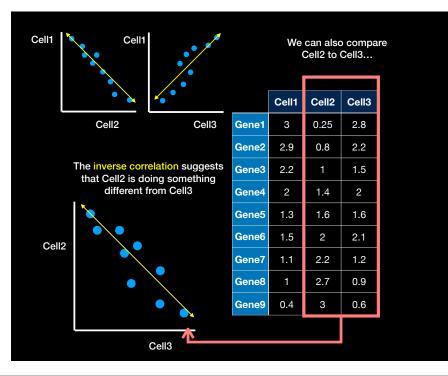
Now lets imagine there are three cells

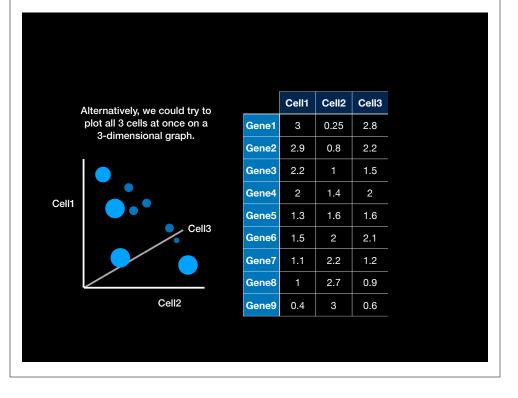
	Cell1	Cell2	Cell3
Gene1	3	0.25	2.8
Gene2	2.9	0.8	2.2
Gene3	2.2	1	1.5
Gene4	2	1.4	2
Gene5	1.3	1.6	1.6
Gene6	1.5	2	2.1
Gene7	1.1	2.2	1.2
Gene8	1	2.7	0.9
Gene9	0.4	3	0.6



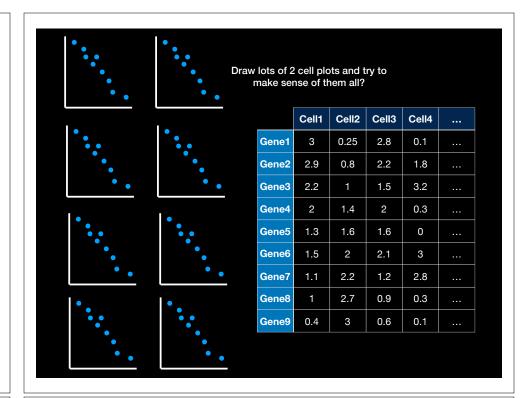


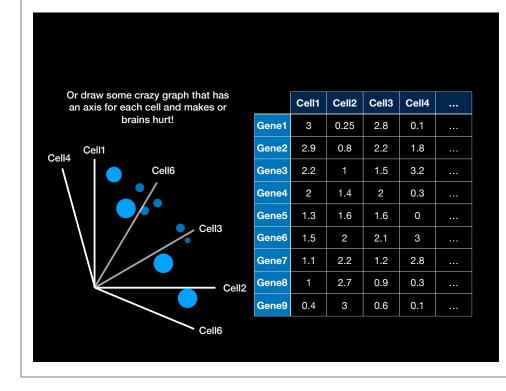


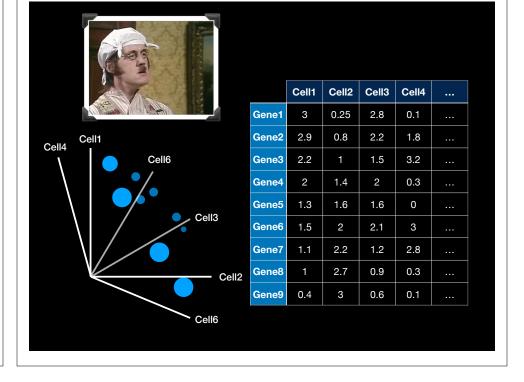


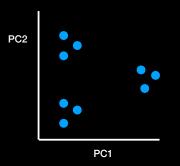


But what if we have 4 or more Cells?					
	Cell1	Cell2	Cell3	Cell4	
Gene1	3	0.25	2.8	0.1	
Gene2	2.9	8.0	2.2	1.8	
Gene3	2.2	1	1.5	3.2	
Gene4	2	1.4	2	0.3	
Gene5	1.3	1.6	1.6	0	
Gene6	1.5	2	2.1	3	
Gene7	1.1	2.2	1.2	2.8	
Gene8	1	2.7	0.9	0.3	
Gene9	0.4	3	0.6	0.1	



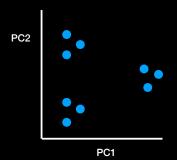






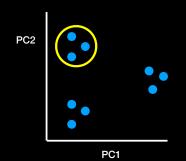
	Cell1	Cell2	Cell3	Cell4	
Gene1	3	0.25	2.8	0.1	
Gene2	2.9	0.8	2.2	1.8	
Gene3	2.2	1	1.5	3.2	
Gene4	2	1.4	2	0.3	
Gene5	1.3	1.6	1.6	0	
Gene6	1.5	2	2.1	3	
Gene7	1.1	2.2	1.2	2.8	
Gene8	1	2.7	0.9	0.3	
Gene9	0.4	3	0.6	0.1	

PCA converts the correlations (or lack there of) among all cells into a representation we can more readily interpret (e.g. a 2D graph!)



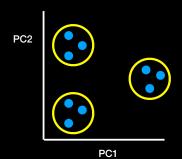
	Cell1	Cell2	Cell3	Cell4	
Gene1	3	0.25	2.8	0.1	
Gene2	2.9	8.0	2.2	1.8	
Gene3	2.2	1	1.5	3.2	
Gene4	2	1.4	2	0.3	
Gene5	1.3	1.6	1.6	0	
Gene6	1.5	2	2.1	3	
Gene7	1.1	2.2	1.2	2.8	
Gene8	1	2.7	0.9	0.3	
Gene9	0.4	3	0.6	0.1	

Cells that are highly correlated cluster together



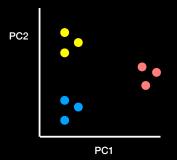
	Cell1	Cell2	Cell3	Cell4	
Gene1	3	0.25	2.8	0.1	
Gene2	2.9	8.0	2.2	1.8	
Gene3	2.2	1	1.5	3.2	
Gene4	2	1.4	2	0.3	
Gene5	1.3	1.6	1.6	0	
Gene6	1.5	2	2.1	3	
Gene7	1.1	2.2	1.2	2.8	
Gene8	1	2.7	0.9	0.3	
Gene9	0.4	3	0.6	0.1	

Cells that are highly correlated cluster together

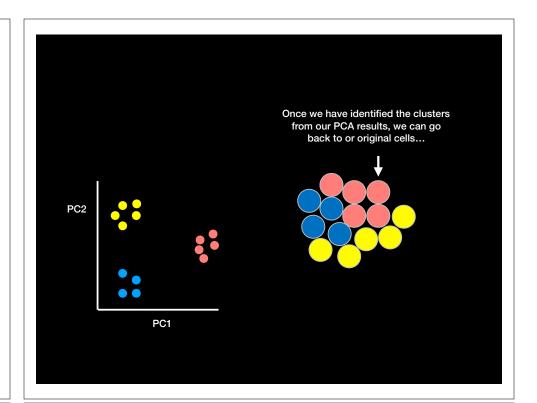


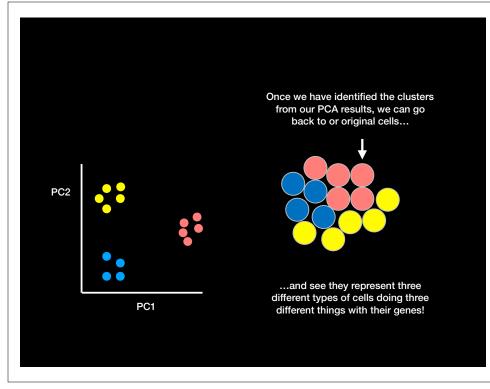
	Cell1	Cell2	Cell3	Cell4	
Gene1	3	0.25	2.8	0.1	
Gene2	2.9	8.0	2.2	1.8	
Gene3	2.2	1	1.5	3.2	
Gene4	2	1.4	2	0.3	
Gene5	1.3	1.6	1.6	0	
Gene6	1.5	2	2.1	3	
Gene7	1.1	2.2	1.2	2.8	
Gene8	1	2.7	0.9	0.3	
Gene9	0.4	3	0.6	0.1	

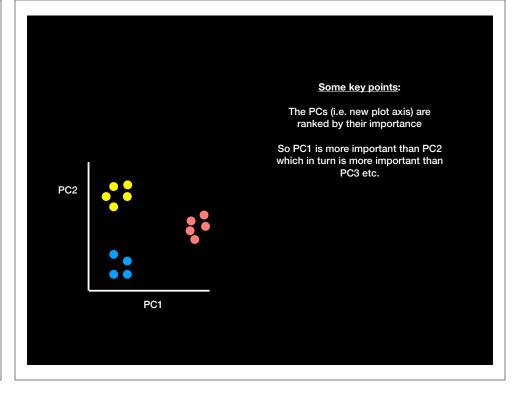
To make the clusters easier to see we can color code them...

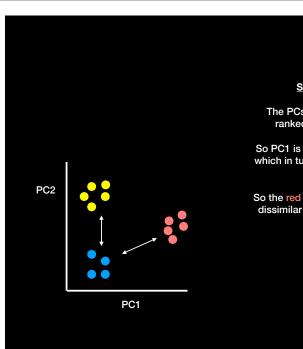


	Cell1	Cell2	Cell3	Cell4	
Gene1	3	0.25	2.8	0.1	
Gene2	2.9	8.0	2.2	1.8	
Gene3	2.2	1	1.5	3.2	
Gene4	2	1.4	2	0.3	
Gene5	1.3	1.6	1.6	0	
Gene6	1.5	2	2.1	3	
Gene7	1.1	2.2	1.2	2.8	
Gene8	1	2.7	0.9	0.3	
Gene9	0.4	3	0.6	0.1	





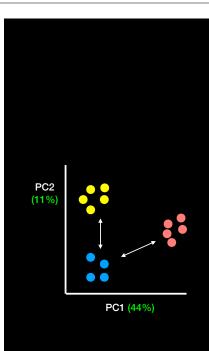




The PCs (i.e. new plot axis) are ranked by their importance

So PC1 is more important than PC2 which in turn is more important than PC3 etc.

So the red and blue cluster are more dissimilar than the yellow and blue clusters



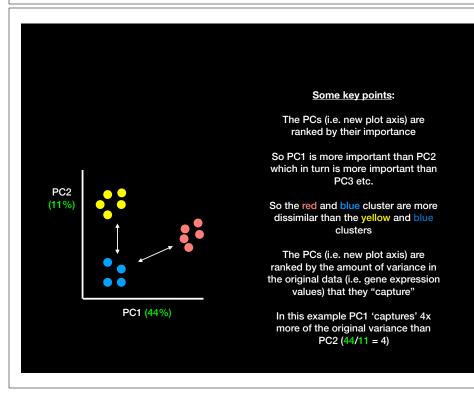
Some key points:

The PCs (i.e. new plot axis) are ranked by their importance

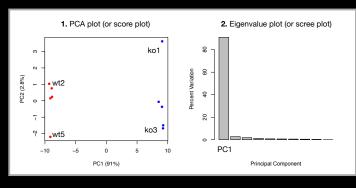
So PC1 is more important than PC2 which in turn is more important than PC3 etc.

So the red and blue cluster are more dissimilar than the yellow and blue clusters

The PCs (i.e. new plot axis) are ranked by the amount of variance in the original data (i.e. gene expression values) that they "capture"



- We actually get two main things out of a typical PCA
 - The new axis (called PCs or Eigenvectors) and
 - Eigenvalues that detail the amount of variance captured by each PC



- Another cool thing we can get out of PCA is a quantitive report on how the original variables contributed to each PC
 - In other words, which were the most important genes that lead to the observed clustering in PC-space
 - These are often called the loadings and we can plot them to see which are the most important genes for the observed separation as well as outputting ranked lists of genes that act to discriminate the samples

gene64 gene39 0.1047968 0.1047629 gene7 gene65 -0.1047629 -0.1047443

Outline: How to do PCA in R

- How to use the **prcomp()** function to do PCA.
- How to draw and interpret PCA plots
- How to determine how much variation each principal component accounts for and the "intrinsic dimensionality" useful for further analysis
- How to examine the loadings (or loading scores) to determine what variables have the largest effect on the graph and are thus important for discriminating samples.

Hands-on time!

https://bioboot.github.io/bimm143 S19/class-material/pca/

• First lets read our example data to work with.

• NOTE: the samples are columns, and the genes are rows!

- Now we have our data we call prcomp() to do PCA
 - NOTE: prcomp() expects the samples to be rows and genes to be columns so we need to first transpose the matrix with the t() function!

```
## lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)</pre>
```

- Now we have our data we call prcomp() to do PCA
 - NOTE: prcomp() expects the samples to be rows and genes to be columns so we need to first transpose the matrix with the t() function!

```
## lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

## See what is returned by the prcomp() function
attributes(pca)

# $names
#[1] "sdev" "rotation" "center" "scale" "x"

# $class
#[1] "prcomp"</pre>
```

- The returned pca\$x here contains the principal components (PCs) for drawing our first graph.
 - Here we will take the first two columns in pca\$x
 (corresponding to PC1 and PC2) to draw a 2-D plot

```
## lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

## See what is returned by the prcomp() function
attributes(pca)

# $names
#[1] "sdev" "rotation" "center" "scale" "x"

# $class
#[1] "prcomp"</pre>
```

- The returned pca\$x here contains the principal components (PCs) for drawing our first graph.
 - Here we will take the first two columns in pca\$x (corresponding to PC1 and PC2) to draw a 2-D plot

```
## lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

## A basic PC1 vs PC2 2-D plot
plot(pca$x[,1], pca$x[,2])</pre>
```

- The returned pca\$x here contains the principal components (PCs) for drawing our first graph.
 - Here we will take the first two columns in pca\$x
 (corresponding to PC1 and PC2) to draw a 2-D plot

- Looks interesting with a nice separation of samples into two groups of 5 samples each
 - Now we can use the square of pca\$sdev, which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for

```
## lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

## A basic PC1 vs PC2 2-D plot
plot(pca$x[,1], pca$x[,2])

## Precent variance is often more informative to look at
pca.var <- pca$sdev^2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)</pre>
```

- Looks interesting with a nice separation of samples into two groups of 5 samples each
 - Now we can use the square of pca\$sdev, which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for

```
## lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

## A basic PC1 vs PC2 2-D plot
plot(pca$x[,1], pca$x[,2])

## Variance captured per PC
pca.var <- pca$sdev^2
```

- Looks interesting with a nice separation of samples into two groups of 5 samples each
 - Now we can use the square of pca\$sdev, which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for

```
## lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

## A basic PC1 vs PC2 2-D plot
plot(pca$x[,1], pca$x[,2])

## Precent variance is often more informative to look at
pca.var <- pca$sdev^2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)
pca.var.per

[1] 91.0 2.8 1.9 1.3 0.8 0.7 0.6 0.5 0.3 0.0</pre>
```

- Looks interesting with a nice separation of samples into two groups of 5 samples each
 - Now we can use the square of pca\$sdev, which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for

• From the "scree plot" it is clear that **PC1** accounts for almost all of the variation in the data!

• Which means there are big differences between these two groups that are separated along the PC1 axis...

• Lets make our plot a bit more useful...

• And add some labels...

Your turn!

Perform a PCA on the UK foods dataset

https://bioboot.github.io/bimm143 W19/class-material/lab-8-bimm143.html

Input: read, View/head,
PCA: prcomp,
Plots: PCA plot
scree plot,
loadings plot.

[Muddy Point Feedback Link]

Main PCA objectives include:

- To reduce dimensionality
- To visualize multidimensional data
- To choose the most useful variables (features)
- To identify groupings of objects (e.g. genes/samples)
- To identify outliers

Reference Slides

- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
 - The prcomp() function calls loading scores \$rotation

```
## Lets focus on PC1 as it accounts for > 90\% of variance loading scores <- pca$rotation[,1]
```

- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
 - The prcomp() function calls loading scores \$\scrim=\text{rotation}\$

```
loading_scores <- pca$rotation[,1]
gene_scores <- abs(loading_scores)

## Sort by magnitudes from high to low
gene_score_ranked <- sort(gene_scores, decreasing=TRUE)</pre>
```

- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
 - The prcomp() function calls loading scores \$\scrim=\text{rotation}\$

```
## Lets focus on PC1 as it accounts for > 90% of variance
loading_scores <- pca$rotation[,1]

summary(loading_scores)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.104763 -0.104276 -0.068784 -0.005656 0.103926 0.104797

## We are interested in the magnitudes of both plus
## and minus contributing genes
gene_scores <- abs(loading_scores)</pre>
```

- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
 - The prcomp() function calls loading scores \$rotation

```
loading_scores <- pca$rotation[,1]
gene_scores <- abs(loading_scores)

## Sort by magnitudes from high to low
gene_score_ranked <- sort(gene_scores, decreasing=TRUE)

## Find the names of the top 5 genes
top_5_genes <- names(gene_score_ranked[1:5])</pre>
```

- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
 - The prcomp() function calls loading scores \$\scrim=\text{rotation}\$

```
loading_scores <- pca$rotation[,1]
gene_scores <- abs(loading_scores)

## Sort by magnitudes from high to low
gene_score_ranked <- sort(gene_scores, decreasing=TRUE)

## Find the names of the top 5 genes
top_5_genes <- names(gene_score_ranked[1:5])

## Show the scores (with +/- sign)
pca$rotation[top_5_genes,1]</pre>
```

- Here we see genes with the largest positive loading scores that effectively 'push' the "ko" samples to the right positive side of the plot.
- And the genes with high negative scores that push "wt" samples to the left side of the plot.

```
gene64 gene39
0.1047968 0.1047629

gene7 gene65
-0.1047629 -0.1047443
```

- Here we see genes with the largest positive loading scores that effectively 'push' the "ko" samples to the right positive side of the plot.
- And the genes with high negative scores that push "wt" samples to the left side of the plot.

PCA Recap

- PCA is classic "multivariate statistical technique" used to reduce the dimensionality of a complex data set to a more manageable number (typically 2D or 3D)
- For a matrix of m genes x n samples, we mean center (i.e. subtract the sample mean from each sample column), optionally rescale the values for each sample column, then calculate a new covariance matrix of size n x n
- We finally diagonalize the covariance matrix to yield our *n* Eigenvectors (called principal components or PCs) and *n* Eigenvalues.
- The top PCs (with largest Eigenvalues) retain the essential features of the original data and represent a useful subspace for further analysis (e.g. visualization, clustering, feature extraction, outlier detection etc...)

Practical issues with PCA

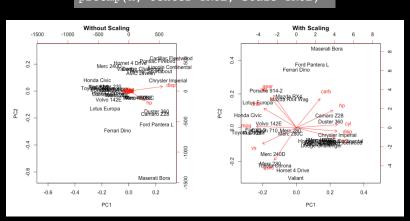
- Scaling the data
- Missing values:

Scaling

```
> data(mtcars)
> head(mtcars)
                 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4
                21.0
                     6 160 110 3.90 2.620 16.46
Mazda RX4 Wag
                21.0
                         160 110 3.90 2.875 17.02
                      4 108 93 3.85 2.320 18.61
Datsun 710
Hornet 4 Drive
                      6 258 110 3.08 3.215 19.44
                     8 360 175 3.15 3.440 17.02 0
Hornet Sportabout 18.7
                18.1 6 225 105 2.76 3.460 20.22 1
 Means and standard deviations vary a lot
 round(colMeans(mtcars), 2)
        cyl disp
                      hp
                           drat
                                                       am
       6.19 230.72 146.69
                           3.60 3.22 17.85
                                               0.44
                                                     0.41
 round(apply(mtcars, 2, sd), 2)
        cyl disp
                      hp drat
                                                 ٧s
                                                            gear
                                                                   carb
       1.79 123.94 68.56
                           0.53
                                  0.98 1.79
                                               0.50
                                                     0.50
                                                            0.74
                                                                   1.62
```

Scaling

prcomp(x, center=TRUE, scale=FALSE)
prcomp(x, center=TRUE, scale=TRUE)



Practical issues with PCA

- Scaling the data
- Missing values:
 - Drop observations with missing values
 - Impute / estimate missing values

