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RNA sequencing overview

Goal: RNA quantification, transcript discovery, variant identification 
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The GTF dataset contains the following information: 
1. Chromosome name 
2. Source (always Cufflinks) 
3. Feature type (always either ‘transcript’ or ‘exon’) 
4. Start position of the feature 
5. End position of the feature 
6. Score (the most abundant isoform for each gene is assigned a score of 1000. Minor 

isoforms are scored by the ratio (minor FPKM/major FPKM)) 
7. Strand of isoform 
8. Frame (not used) 
9. Attributes 

a. gene_id: Cufflinks gene id 
b. transcript_id: Cufflinks transcript id 
c. exon_number: Exon position in isoform. Only used if feature type is exon 
d. FPKM: Relative abundance of isoform 
e. frac (not used) 
f. conf_lo: Lower bound of the 95% CI for the FPKM 
g. conf_hi: Upper bound of the 95% CI for the FPKM 
h. cov: Depth of read coverage across the isoform 

 

RPKM [Reads Per Kilobase per Million reads mapped] 
RPKM is a measurement of transcript reads that has been normalized both for transcript 
length and for the total number of mappable reads from an experiment. This normalized 
number helps in the comparison of transcript levels both within and between samples. 
Normalizing by the total number of mapped reads allows comparison between experiments 
(since you may get more mapped reads in one experiment), whereas normalizing by the 
length of the transcript allows the direct comparison of expression level between differently 
sized transcripts (since longer transcripts are more likely to have more reads mapped to them 
than shorter ones). 
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where mappedReads is the number of mapped reads in that experiment. 
 
You will also see the term FPKM, where the F stands for Fragments. This is a similar 
measure to RPKM used for paired end experiments, where a fragment is a pair of reads. 
 
Note that in our example, the RPKM numbers will be far higher than normally seen since 
the total number of mapped reads in our dataset is small (because our input dataset was a 
subset selected to map to a small region of chromosome 19).  
 
Note that RPKM may not be the best method of quantifying differential expression. Other 
methods include DESeq and TMM from the Bioconductor package. 
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This is where we  
stoped last day
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DESeq2

Our missing step

Install DESeq2
Bioconductor Setup Link

Do it Yourself!

install.packages("BiocManager") 
BiocManager::install() 

# For this class, you'll also need DESeq2: 
BiocManager::install("DESeq2")

Note: Answer NO to prompts to install from source or update...

Install DESeq2
Bioconductor Setup Link

Do it Yourself!

Note: Answer NO to prompts to install from source or update...

install.packages("BiocManager") 
BiocManager::install() 

# For this class, you'll also need DESeq2: 
BiocManager::install("DESeq2")



Background to Today’s Data
Glucocorticoids inhibit inflammatory processes and are often 
used to treat asthma because of their anti-inflammatory effects 
on airway smooth muscle (ASM) cells. 

• Data from: Himes et al. "RNA-Seq Transcriptome Profiling Identifies CRISPLD2 
as a Glucocorticoid Responsive Gene that Modulates Cytokine Function in 
Airway Smooth Muscle Cells." PLoS ONE. 2014 Jun 13;9(6):e99625.

Mechanism?

• The anti-inflammatory effects of glucocorticoids on airway smooth 
muscle (ASM) cells has been known for some time but the underlying 
molecular mechanisms are unclear. 

• Himes et al. used RNA-seq to profile gene expression changes in 4 
ASM cell lines treated with dexamethasone (a common synthetic 
glucocorticoid). 

• Used Tophat and Cufflinks and found many differentially expressed 
genes. Focus on CRISPLD2 that encodes a secreted protein involved 
in lung development  

• SNPs in CRISPLD2 in previous GWAS associated with inhaled 
corticosteroid resistance and bronchodilator response in asthma 
patients.  

• Confirmed the upregulated CRISPLD2 with qPCR and increased 
protein expression with Western blotting.

Background to Today’s Data

Data pre-processing 
• Analyzing RNA-seq data starts with sequencing reads. 


• Many different approaches, see references on class website. 


• Our workflow (previously done): 


• Reads downloaded from GEO (GSE:GSE52778) 

• Quantify transcript abundance (kallisto).

• Summarize to gene-level abundance (txImport) 


• Our starting point is a count matrix: each cell indicates the 
number of reads originating from a particular gene (in rows) 
for each sample (in columns). 

Data structure: counts + metadata

gene ctrl_1 ctrl_2 exp_1 exp_1
geneA 10 11 56 45
geneB 0 0 128 54
geneC 42 41 59 41
geneD 103 122 1 23
geneE 10 23 14 56
geneF 0 1 2 0

… … … … …

id treatment sex ...
ctrl_1 control male ...
ctrl_2 control female ...
exp_1 treatment male ...
exp_2 treatment female ...

countData colData

Sample names:
ctrl_1, ctrl_2, exp_1, exp_2

First column of colData must match column names of countData (-1st)

countData is the count matrix  
(number of reads coming from 
each gene for each sample)

colData describes metadata 
about the columns of countData
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Counting is (relatively) easy:

Hands-on time!
https://bioboot.github.io/bimm143_S19/lectures/#14

Do it Yourself!

• Normalization is required to make comparisons 
in gene expression  
• Between 2+ genes in one sample 
• Between genes in 2+ samples  

• Genes will have more reads mapped in a sample 
with high coverage than one with low coverage  
• 2x depth ≈ 2x expression  

• Longer genes will have more reads mapped 
than shorter genes  
• 2x length ≈ 2x more reads

Count Normalization 
Side-note:

• N.B. Some tools for differential expression analysis such as 
edgeR and DESeq2 want raw read counts - i.e. non normalized 
input! 

• However, often for your manuscripts and reports you will want 
to report normalized counts   

• RPKM, FPKM and TPM all aim to normalize for sequencing 
depth and gene length. For the former:  
• Count up the total reads in a sample and divide that 

number by 1,000,000 – this is our “per million” scaling. 
• Divide the read counts by the “per million” scaling 

factor. This normalizes for sequencing depth, giving you 
reads per million (RPM) 

• Divide the RPM values by the length of the gene, in 
kilobases. This gives you RPKM.

Normalization: RPKM, FPKM & TPM
Side-note:



• FPKM was made for paired-end RNA-seq 

• With paired-end RNA-seq, two reads can 
correspond to a single fragment 

• The only difference between RPKM and 
FPKM is that FPKM takes into account that 
two reads can map to one fragment (and so 
it doesn’t count this fragment twice).

Side-note:

• TPM is very similar to RPKM and FPKM. The only 
difference is the order of operations: 
• First divide the read counts by the length of each 

gene in kilobases. This gives you reads per kilobase 
(RPK). 

• Count up all the RPK values in a sample and divide 
this number by 1,000,000. This is your “per million” 
scaling factor. 

• Divide the RPK values by the “per million” scaling 
factor. This gives you TPM. 

• Note, the only difference is that you normalize for gene 
length first, and then normalize for sequencing depth 
second.

Side-note:

• When you use TPM, the sum of all TPMs in 
each sample are the same.  

• This makes it easier to compare the 
proportion of reads that mapped to a gene 
in each sample.  

• In contrast, with RPKM and FPKM, the sum 
of the normalized reads in each sample may 
be different, and this makes it harder to 
compare samples directly.

Side-note: Fold change (log ratios)
• To a statistician fold change is sometimes considered 

meaningless. Fold change can be large (e.g. >>two-fold up- 
or down-regulation) without being statistically significant 
(e.g. based on probability values from a t-test or ANOVA).


• To a biologist fold change is almost always considered 
important for two reasons. First, a very small but 
statistically significant fold change might not be relevant to 
a cell’s function. Second, it is of interest to know which 
genes are most dramatically regulated, as these are often 
thought to reflect changes in biologically meaningful 
transcripts and/or pathways.



Volcano plot: significantly 
regulated genes vs. fold change

• A volcano plot shows fold change (x-axis) versus p value. Each point 
is the expression level of a transcript. Points high up on the y-axis 
(above the pale green horizontal line) are significantly regulated.

Volcano Plot 
Fold change vs P-value 

Significant

(P < 0.01 & log2 > 2)

Setup  your point color vector 
mycols <- rep("gray", nrow(res01))
mycols[ abs(res01$log2FoldChange) > 2 ]  <- "red" 

inds <- (res01$padj < 0.01) & (abs(res01$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

Volcano plot  with custom colors 
plot( res01$log2FoldChange,  -log(res01$padj), 

 col=mycols, ylab="-Log(P-value)", xlab="Log2(FoldChange)" )

abline(v=c(-2,2), col="gray", lty=2)
abline(h=-log(0.1), col="gray", lty=2)

Plot code Recent developments in RNA-Seq 
• Long read sequences:   

➡ PacBio and Oxford Nanopore [Recent Paper] 

• Single-cell RNA-Seq: [Review article] 
➡ Observe heterogeneity of cell populations 
➡ Detect sub-population 

• Alignment-free quantification: 
➡ Kallisto [Software link] 
➡ Salmon [Software link, Blog post]



Public RNA-Seq data sources
• Gene Expression Omnibus (GEO):  

➡ http://www.ncbi.nlm.nih.gov/geo/  
➡ Both microarray and sequencing data  

• Sequence Read Archive (SRA):  
➡ http://www.ncbi.nlm.nih.gov/sra 
➡ All sequencing data (not necessarily RNA-Seq)  

• ArrayExpress:  
➡ https://www.ebi.ac.uk/arrayexpress/ 
➡  European version of GEO  

• All of these have links between them

[Muddy Point Feedback Link] Taken From: https://www.illumina.com/science/technology/next-generation-
sequencing/paired-end-vs-single-read-sequencing.html


