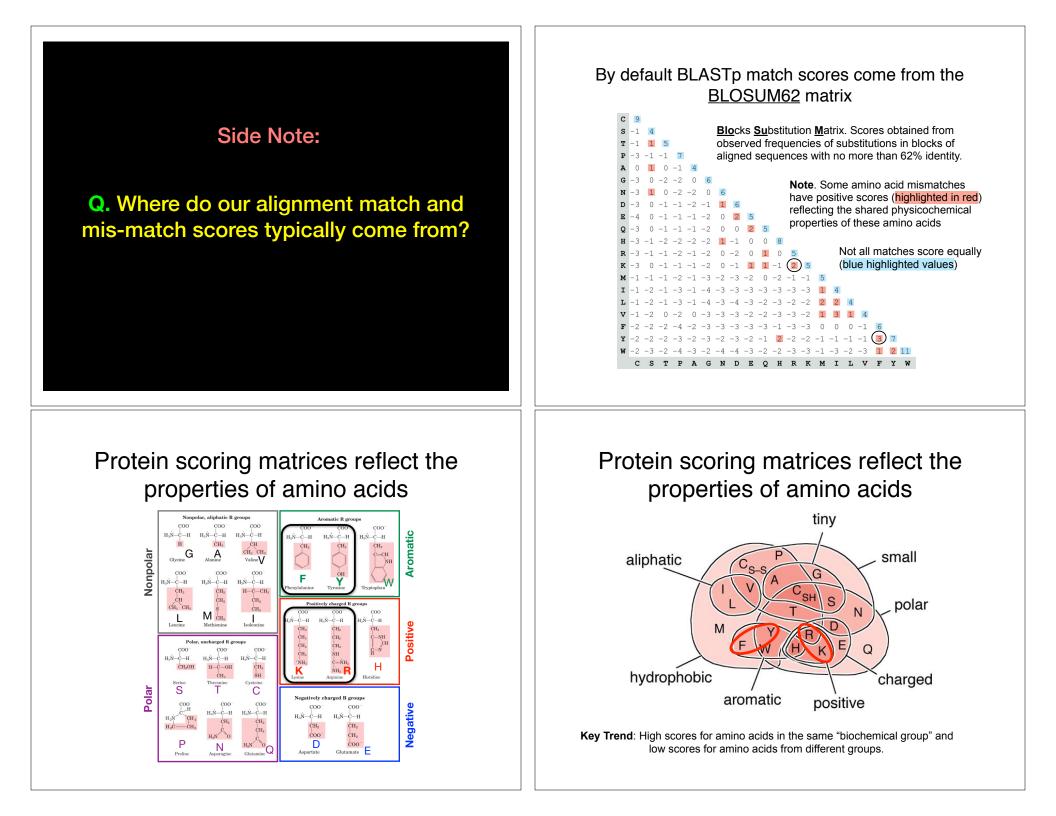


Muddy Point: Different paths represent different alignments

(Mis)matches are represented by <u>diagonal paths</u> & Indels with <u>horizontal or vertical path</u> segments


Recap From Last Time:

- Sequence alignment is a fundamental operation underlying much of bioinformatics.
- Introduced dot matrices, dynamic programing and the BLAST heuristic approaches.
 - Key point: Even when optimal solutions can be obtained they are not necessarily unique or reflective of the biologically correct alignment.
- Introduced classic global and local alignment algorithms (Needleman–Wunsch and Smith–Waterman) and their major application areas.
- Heuristic approaches are necessary for large database searches and many genomic applications.

Feedback

Todays Menu

- Sequence motifs and patterns: Simple approaches for finding functional cues from conservation patterns
- Sequence profiles and position specific scoring matrices (PSSMs): Building and searching with profiles, Their advantages and limitations
- PSI-BLAST algorithm: Application of iterative PSSM searching to improve BLAST sensitivity
- Hidden Markov models (HMMs): More versatile probabilistic model for detection of remote similarities

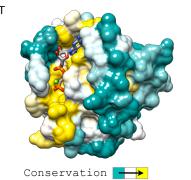
N.B. BLOUSM62 does not take the local context of a particular position into account

(*i.e.* all like substitutions are scored the same regardless of their location in the molecules).

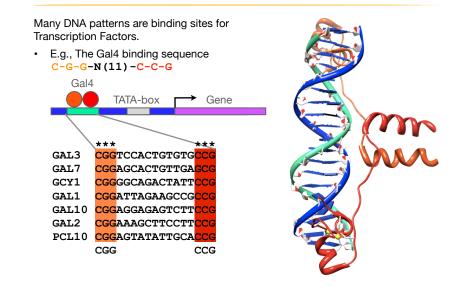
We will revisit this later...

Todays Menu

- Sequence motifs and patterns: Simple approaches for finding functional cues from conservation patterns
- Sequence profiles and position specific scoring matrices (PSSMs): Building and searching with profiles, Their advantages and limitations
- PSI-BLAST algorithm: Application of iterative PSSM searching to improve BLAST sensitivity
- Hidden Markov models (HMMs): More versatile probabilistic model for detection of remote similarities


Functional cues from conservation patterns

Within a protein or nucleic acid sequence there may be a small number of characteristic residues that occur consistently. These conserved "sequence fingerprints" (or **motifs**) usually contain functionally important elements


• E.g., the amino acids that are consistently found at enzyme active sites or the nucleotides that are associated with transcription factor binding sites.

ATP/GTP-binding proteins: G-x(4)-G-K-T

Functional cues from conservation patterns...

Representing recurrent sequence patterns

Beyond knowledge of invariant residues we can define **position-based** representations that highlight the range of permissible residues per position.

• Pattern: Describes a motif using a qualitative consensus sequence (e.g., IUPAC or regular expression). N.B. Mismatches are not tolerated!

[LFI]-x-G-[PT]-P-G-x-G-K-[TS]-[AGSI]

- Profile: Describes a motif using quantitative information captured in a position specific scoring matrix (weight matrix).
 Profiles quantify similarity and often span larger stretches of sequence.
- Logos: A useful visual representation of sequence motifs.

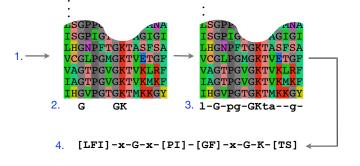


Image generated by: weblogo.berkeley.edu

Defining sequence patterns

There are four basic steps involved in defining a new PROSITE style pattern:

- 1. Construct a <u>multiple sequence alignment</u> (MSA)
- 2. Identify conserved residues
- 3. Create a core sequence pattern (i.e. consensus sequence)
- 4. Expand the pattern to improve **sensitivity** and **specificity** for detecting desired sequences more on this shortly...

PROSITE is a protein pattern and profile database

Currently contains > 1790 patterns and profiles: <u>http://prosite.expasy.org/</u> Example PROSITE patterns:

> PS00087; SOD_CU_ZN_1 [GA]-[IMFAT]-H-[LIVF]-H-{S}-x-[GP]-[SDG]-x-[STAGDE] The two Histidines are copper ligands

- Each position in the pattern is separated with a hyphen
- x can match any residue
- [] are used to indicate ambiguous positions in the pattern •e.g., [SDG] means the pattern can match S, D, or G at this position
- { } are used to indicate residues that are not allowed at this position *e.g., {S} means NOT S (not Serine)
- () surround repeated residues, e.g., A(3) means AAA

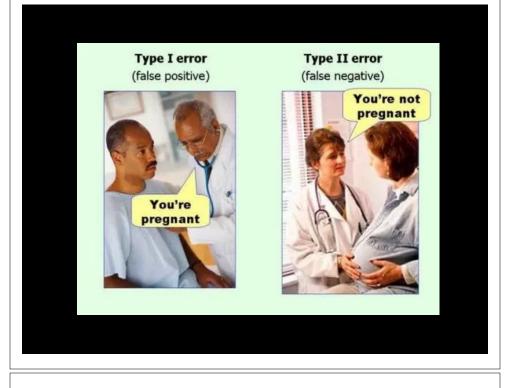
Information from http://ca.expasy.org/prosite/prosuser.html

Pattern advantages and disadvantages

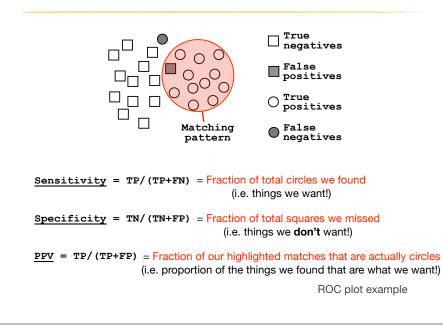
Advantages:

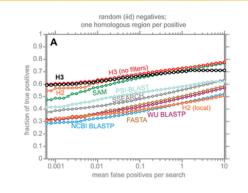
- Relatively straightforward to identify (exact pattern matching is fast)
- · Patterns are intuitive to read and understand
- Databases with large numbers of protein (e.g., PROSITE) and DNA sequence (e.g., JASPER and TRANSFAC) patterns are available.

Disadvantages:


- Patterns are qualitative and *deterministic* (i.e., either matching or not!)
- We lose information about relative frequency of each residue at a position E.g., $\,$ [GAC] $\,vs\,$ 0.6 G, 0.28 A, and 0.12 C $\,$
- · Can be difficult to write complex motifs using regular expression notation
- · Cannot represent subtle sequence motifs

Side note: pattern sensitivity, specificity, and PPV


In practice it is not always possible to define one single regular expression type pattern which matches all family sequences (*true positives*) while avoiding matches in unrelated sequences (*true negatives*).


The positive predictive value (or PPV) assesses how big a proportion of the sequences matching the pattern are actually in the family of interest. (i.e., the probability that a positive result is truly positive!)

Side note: pattern sensitivity, specificity, and PPV

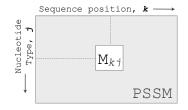
ROC plot of sequence searching performance...

H3 (HMMER3) has a much higher search sensitivity and specificity than BLASTp

In each benchmark, true positive subsequences have been selected to be no more than 25% identical to any sequence in the query alignment ... (see paper for details).

See: Eddy (2011) PLoS Comp Biol 7(10): e1002195

Todays Menu


- Sequence motifs and patterns: Simple approaches for finding functional cues from conservation patterns
- Sequence profiles and position specific scoring matrices (PSSMs): Building and searching with profiles, Their advantages and limitations
- PSI-BLAST algorithm: Application of iterative PSSM searching to improve BLAST sensitivity
- Hidden Markov models (HMMs): More versatile probabilistic model for detection of remote similarities

Sequence profiles

A sequence profile is a **position-specific scoring matrix** (or **PSSM**, often pronounced 'possum') that gives a *quantitative* description of a sequence motif.

Unlike deterministic patterns, profiles assign a score to a query sequence and are widely used for database searching.

A simple PSSM has as many columns as there are positions in the alignment, and either 4 rows (one for each DNA nucleotide) or 20 rows (one for each amino acid).

 M_{kj} score for the *j*th nucleotide at position *k* p_{kj} probability of nucleotide *j* at position *k* p_1 "background" probability of nucleotide *j*

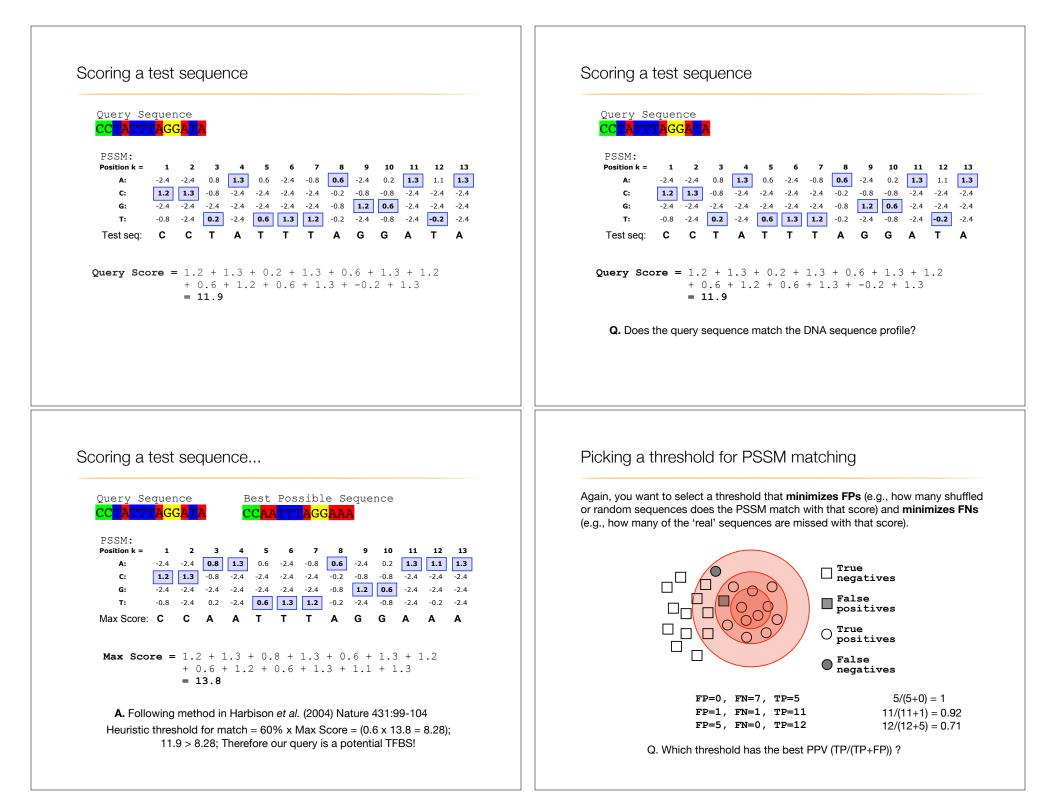
See Gibskov et al. (1987) PNAS 84, 4355

Computing a transcription factor bind site PSSM

AAA <mark>TT</mark> AGGAAA														
TA <mark>TTAA</mark> GAAAA														
AAA <mark>TT</mark> AGGAAA	Alignme	nt	Со	unts	M	atri	x:							
AAA <mark>TT<mark>C</mark>GGATA</mark>	Position k =	1	2	3	4	5	6	7	8	9	10	11	12	13
CATTTCGAAAA	A:	0	0	6	10	5	0	1	5	0	3	10	8	10
ATTTAGTATA	C:	9	10	1	0	0	0	0	2	1	1	0	0	0
ATTIAGIAIA	G:	0	0	0	0	0	0	0	1	9	5	0	0	0
AAATTAGGAAA	T:	1	0	3	0	5	10	9	2	0	1	0	2	0
AAA <mark>TT<mark>GGC</mark>AAA</mark>	Consensus:	с	С	[ACT]	Α	[AT]	т	т	Ν	G	Ν	Α	[AT]	Α

$M_{kj} = \log\left(\frac{p_{kj}}{r}\right)$	$p = \frac{C_{kj} + p_j}{2}$
$M_{kj} = \log\left(\frac{1}{p_i}\right)$	$P_{kj} = \overline{Z+1}$

$$M_{kj} = \log\left(\frac{C_{kj} + p_j / Z + 1}{p_j}\right)$$


Ckj	Number of <i>j</i> th type nucleotide at position k

- **Z** Total number of aligned sequences
- **p**_j "background" probability of nucleotide *j*
- \mathbf{p}_{kj} probability of nucleotide *j* at position *k*

Adapted from Hertz and Stormo, Bioinformatics 15:563-577

Computing a transcription factor bind site PSSM...

Position k =	1	2	3	4	5	6	7	8	9	10	11	12	13
A:	0	0	6	10	5	0	1	5	0	3	10	8	10
C:	9	10	1	0	0	0	0	2	1	1	0	0	(
G:	0	2 0 10 0 0	0	0	0	0	0	1	9	5	0	0	
т:	1	0	3	0	5	10	9	2	0	1	0	2	
k=1 ,				`	-)								
k=1 ,	j=C:	$M_{_{kj}}$	$= \log \left(\frac{1}{2} \right)$	C_{kj} +	p_j / Z	$\frac{2+1}{2}$	= log	<u>9+0</u>	.25/1	$\frac{0+1}{}$	= 1.2		
			,	(1)	/		`	0.25				
k=1 ,													
k=1 ,	j=T :	M_{kj}	= log	$\frac{C_{kj}}{C_{kj}}$ +	$\frac{p_j}{p_j}$	$\left(\frac{2+1}{2}\right)$	= log	(1+0	.25 / 10 0.25				
k=1 ,	j=T :	M_{kj}	= log	$\frac{C_{kj}}{C_{kj}}$ +	$\frac{p_j}{p_j}$	$\left(\frac{2+1}{2}\right)$	= log	(1+0	.25 / 10 0.25				1
k=1 ,	j=T :	M_{kj}	= log	$\frac{C_{kj}}{C_{kj}}$ +	$\frac{p_j}{p_j}$	$\left(\frac{2+1}{2}\right)$	= log	(1+0	.25 / 10 0.25	$\left(\frac{D+1}{2}\right)$	= -0.3	8	_
k=1 ,	j=T :	M_{kj}	= log	$\frac{C_{kj}}{C_{kj}}$ +	$\frac{p_j}{p_j}$	$\left(\frac{2+1}{2}\right)$	= log	(1+0	.25 / 10 0.25	<u>0 + 1</u>) 10	= -0.3 11	8 12	1.
k=1 ,	j=T :		= log	$\frac{C_{kj}}{C_{kj}}$ +	$\frac{p_j}{p_j}$	$\left(\frac{2+1}{2}\right)$	= log	(1+0	.25 / 10 0.25	$\frac{10}{10}$	= -0.3 11 1.3	8 12 1.1	1 1. -2.

Searching for PSSM matches

If we do not allow gaps (i.e., no insertions or deletions):

Perform a linear scan, scoring the match to the PSSM at each position in the • sequence - the "sliding window" method

If we allow gaps:

Can use dynamic programming to align the profile to the protein sequence(s) (with gap penalties) We will discuss PSI-BLAST shortly...

see Mount, Bioinformatics: sequence and genome analysis (2004)

Can use hidden Markov Model-based methods We will cover HMMs in the next lecture... see Durbin et al., Biological Sequence Analysis (1998) Side note: Profiles software and databases...

InterPro is an attempt to group a number of protein domain databases. http://www.ebi.ac.uk/interpro

It currently includes:

- **b** Pfam
- PROSITE
- PRINTS
- ProDom SMART
- TIGREAMs
- InterPro tries to have and maintain a high quality of annotation
- The database and a stand-alone package (iprscan) are available for UNIX platforms, see:

ftp://ftp.ebi.ac.uk/pub/databases/interpro

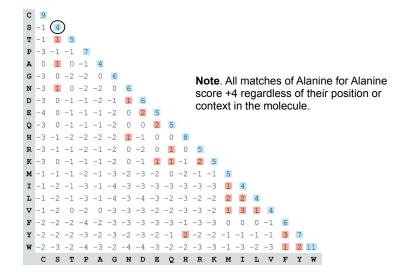
Todays Menu

- Sequence motifs and patterns: Simple approaches for finding functional cues from conservation patterns
- Sequence profiles and position specific scoring matrices (PSSMs): Building and searching with profiles, Their advantages and limitations
- PSI-BLAST algorithm: Application of iterative PSSM searching to improve BLAST sensitivity
- Hidden Markov models (HMMs): More versatile probabilistic model for detection of remote similarities

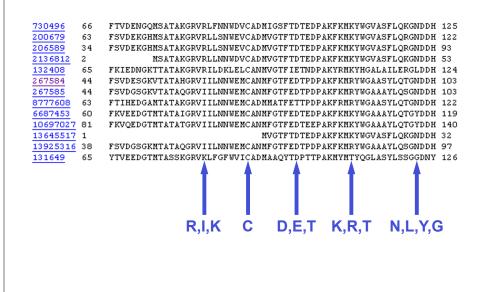
Hands-on sections 1 & 2:

Comparing methods and the trade-off between sensitivity, selectivity and performance

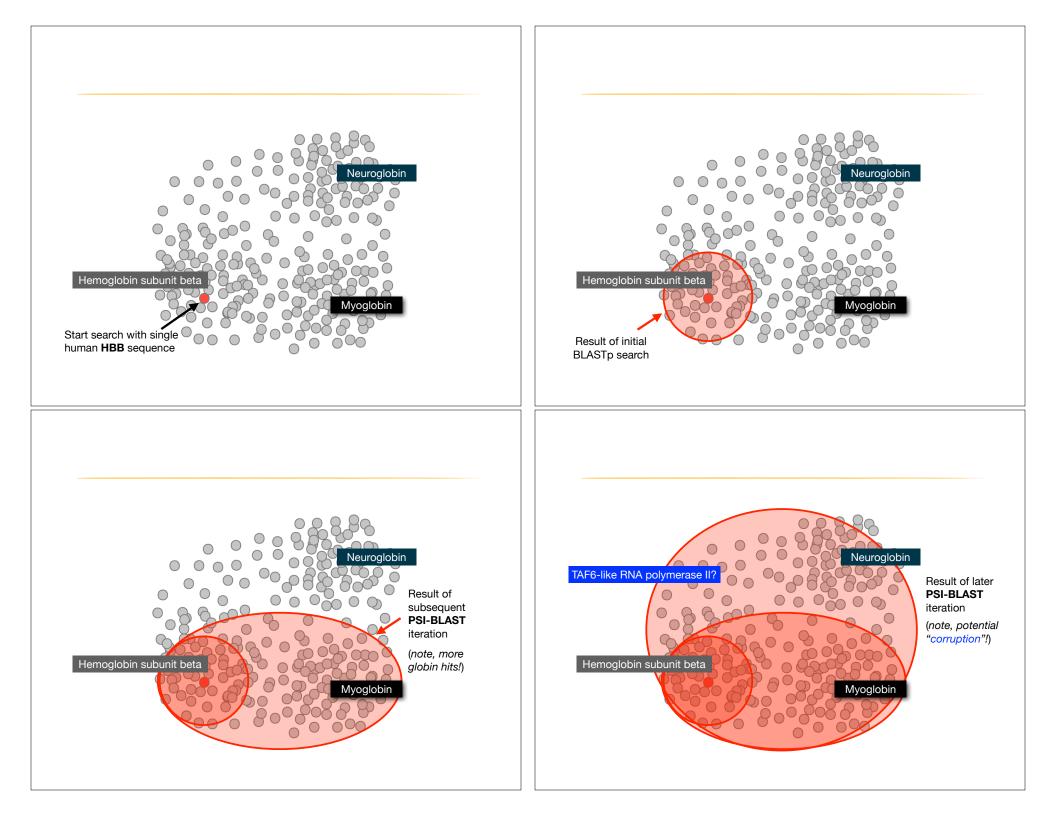
~50 mins


Recall: BLOUSM62 does not take the local context of a particular position into account

(*i.e.* all like substitutions are scored the same regardless of their location in the molecules).


PSI-BLAST: Position specific iterated BLAST

- The purpose of PSI-BLAST is to look deeper into the database for matches to your query protein sequence by employing a scoring matrix that is customized to your query
 - PSI-BLAST constructs a multiple sequence alignment from the results of a first round BLAST search and then creates a "profile" or specialized position-specific scoring matrix (PSSM) for subsequent search rounds


By default BLASTp match scores come from the BLOSUM62 matrix

Inspect the blastp output to identify empirical "rules" regarding amino acids tolerated at each position

A R N D C Q E G H I L K M F P S T W Y V 1 M 1 -2 2 2 3 2 1 2 2 3 3 3 2 4 1 0 1 2 3 2 1 0 1 0 1 -3 2 -3 3 W -3 -3 -4 -5 -3 -2 -3 -3 4 V 0 -3 -3 -4 -1 3 -3 -4 5 W -3 -3 -4 -5 -3 -2 -3 -3 6 A 5 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -2 -1 -4 -3 -3 12 2 -3 6 A 5 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -2 -1 -4 -3 -3 12 2 -3 6 A 5 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -2 -1 -4 -3 -3 12 2 -3 6 A 5 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 0 7 L -2 -2 4 -4 -1 -2 -3 -4 -3 2 4 -3 2 2 4 -3 2 0 -3 -3 -1 -2 -1 1 8 L -1 -3 -3 -4 -1 -2 -3 -4 -3 2 2 4 -3 2 2 0 -3 -3 -1 -2 -1 2 10 L -2 -2 4 -4 -1 -2 -3 -4 -3 2 2 4 -3 2 0 -3 -3 -1 -2 -1 2 10 L -2 -2 -4 -4 -1 -2 -3 -4 -3 2 4 -3 2 2 0 -3 -3 -1 -2 -1 1 11 A 5 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 0 12 A 5 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 0 13 W -2 All the amino acids from 15 A 2 16 G 0 -3 -1 -2 -3 -2 -2 -3 -3 -3 -3 -2 -3 -1 4 1 -3 -3 -1 17 -3 -3 -1 2 -1 -1 0 -2 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 -2 38 G 0 -3 -1 -2 -3 -2 -2 6 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -1 4 1 -3 -2 -2 38 G 0 -3 -1 -2 -3 -2 -2 6 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -1 4 1 -3 -2 -2 39 T 0 -1 0 -1 -1 -1 0 0 0 -1 -2 -3 -3 0 -2 -3 -1 4 1 -3 -2 -2 38 G 0 -3 -1 -2 -3 -2 -2 6 -2 -4 -4 -2 -3 -2 -3 -1 4 1 -3 -3 -2 0 40 W -3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2 -1 -1 -1 1 0 -3 -2 0 40 W -3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -2 -3 -2 -1 -1 -1 1 0 -3 -2 0 41 Y -2 -2 -2 -2 -1 -1 -1 0 0 -2 -2 -2 -2 -1 -1 -1 1 0 -3 -2 0 41 Y -2 -2 -2 -3 -3 -2 -3 -3 -3 -3 -3 -2 -3 -2 -3 -2 -1 -2 -3 -1 -2 -3 -2 -3 -2 -2 -3 -1 -2 -1 -1 -1 -3 -3 -2 0 41 Y -2 -2 -2 -3 -3 -2 -3 -3 -3 -3 -2 -3 -2 -3 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -3 -2 -2 -3 -2 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -2 -3 -2 -2 -2 -1 -1 -1 -1 0 -2 -2 -2 -2 -2 -1 -1 -1 -1 0 -3 -2 0	A R N D C Q E G H I L K M F P S T W Y V 1 M $-1 -2 -2 -3 -2 -1 -2 -3 -2 1 2 -2 6 0 -3 -2 -1 -2 -1 1$ 2 K $-1 1 0 1 -4 2 4 -2 0 -3 -3 3 -2 -4 -1 0 -1 -3 -2 -3$ 3 W $-3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2 1 -4 -3 -3 12 2 -3$ 4 V $0 -3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2 1 -4 -3 -3 12 2 -3$ 6 A $5 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 0$ 7 L $-2 -2 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -3 -2 -3 -2 1 -4 -3 -3 12 2 -3$ 8 L $-1 -3 -3 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -1 -2 -1 1$ 8 L $-1 -3 -3 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -2 -2 -1 -2 0 3$ 9 L $-1 -3 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -2 -1 -2 0 3$ 9 L $-1 -3 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -2 -1 -2 0 3$ 9 L $-1 -3 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -2 -1 -2 0 3$ 9 L $-1 -3 -4 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -2 -1 -2 0 3$ 9 L $-1 -3 -4 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -3 -2 -1 -2 0 3$ 9 L $-1 -3 -4 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -2 -1 -2 0 3$ 9 L $-1 -3 -4 -4 -4 -1 -2 -3 -4 -3 2 2 -3 -3 -3 -1 -2 -1 1 -3 -1 -1 0 -3 -2 0$ 10 L $-2 -2 -4 -4 -4 -1 -2 -3 -1 -1 0 -3 -2 0$ 11 U $-3 -2 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 0$ 12 A $5 -2 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 0$ 13 W $-2 -3 -3 -4 -4 -4 -2 -1 -1 -1 0 -2 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 0$ 14 L $-3 -3 -2 -2 -2 -3 -3 -4 -4 -3 -2 -2 -3 -3 -4 -3 -3 -3 -1 -2 -1 -3 -1 -1 0 -3 -2 0$ 14 L $-3 -3 -2 -2 -2 -3 -3 -4 -4 -3 -3 -3 -1 -2 -2 -2 -2 -3 -3 -4 -3 -3 -3 -1 -2 -2 -2 -2 -3 -3 -4 -3 -3 -3 -1 -2 -3 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 $
A R N D C Q E G H I L K M F P S T W Y V The PSI-BLAST PSSM is essentially a query customized scoring matrix that is more sensitive than BLOSUM. 4 V 5 W $-3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2 -1 -4 -3 -3 12 -2 -3 -3 -3 -4 -5 -3 -2 -2 -2 -1 -1 -3 -1 -1 -0 -3 -2 0 -7 -1 -2 -2 -4 -4 -1 -2 -3 -4 -3 -2 -2 -2 -1 -1 -3 -1 -1 -0 -3 -2 0 -7 -1 -2 -2 -4 -4 -1 -2 -3 -4 -3 -2 -2 -3 -3 -3 -1 -2 -1 -1 -3 -1 -1 -3 -3 -4 -1 -3 -3 -4 -3 -2 -2 -2 -3 -3 -3 -1 -2 -1 -2 -1 -3 -3 -4 -1 -3 -3 -4 -3 -2 -2 -3 -3 -3 -1 -2 -1 -2 -1 -3 -3 -4 -1 -3 -3 -4 -4 -1 -3 -3 -4 -3 -2 -2 -3 -3 -3 -3 -1 -2 -1 -2 -1 -3 -3 -1 -2 -1 -2 -1 -3 -1 -3 -1 -2 -2 -2 -2 -2 -1 -1 -3 -1 -2 -2 -2 -2 -2 -1 -1 -3 -1 -2 -2 -2 -2 -2 -2 -1 -1 -3 -1 -1 -2 -2 -2 -2 -2 -2 -1 -1 -3 -1 -1 -0 -3 -2 -0 -2 -2 -2 -2 -1 -1 -3 -1 -1 -0 -3 -2 -0 -2 -2 -2 -2 -1 -1 -3 -1 -1 -0 -3 -2 -0 -2 -2 -2 -2 -1 -1 -3 -1 -1 -0 -3 -2 -0 -3 -2 -2 -2 -2 -1 -1 -3 -1 -1 -3 -2 -0 -3 -2 -1 -2 -2 -2 -2 -2 -2 -1 -1 -3 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 $	PSI-BLAST: Position-Specific Iterated BLAST Many proteins in a database are too distantly related to a query to be detected using standard BLAST. In many other cases matches are detected but are so distant that the inference of homology is unclear. Enter the more sensitive PSI-BLAST 1. BLAST input sequence to find significant alignments 2. Construct a multiple sequence alignment (MSA) 3. Construct a PSSM 4. BLAST PSSM profile to search for new hits (see Altschul <i>et al.</i> , Nuc. Acids Res. (1997) 25:3389-3402)

Description	Max score	Total score	Query cover	E value	Ident	Accession
hemoglobin subunit beta [Homo sapiens]	301	301	100%	2e-106	100%	NP_000509.1
hemoglobin subunit delta [Homo sapiens]	284	284	100%	7e-100	93%	NP_000510.1
hemoglobin subunit epsilon [Homo sapiens]	240	240	100%	2e-82	76%	NP_005321.1
hemoglobin subunit gamma-2 [Homo sapiens]	235	235	100%	2e-80	73%	NP_000175.1
hemoglobin subunit gamma-1 [Homo sapiens]	232	232	100%	3e-79	73%	NP_000550.2
hemoglobin subunit alpha [Homo sapiens]	114	114	97%	7e-33	43%	NP_000508.1
hemoglobin subunit zeta [Homo sapiens]	100	100	97%	3e-27	36%	NP_005323.1

Description	Max score	Total score	Query cover	E value	Ident	Accession
hemoglobin subunit beta [Homo sapiens]	301	301	100%	2e-106	100%	NP_000509.1
hemoglobin subunit delta [Homo sapiens]	284	284	100%	7e-100	93%	NP_000510.1
hemoglobin subunit epsilon [Homo sapiens]	240	240	100%	2e-82	76%	NP_005321.1
hemoglobin subunit gamma-2 [Homo sapiens]	235	235	100%	2e-80	73%	<u>NP_000175.1</u>
hemoglobin subunit gamma-1 [Homo sapiens]	232	232	100%	3e-79	73%	NP_000550.2
hemoglobin subunit alpha [Homo sapiens]	114	114	97%	7e-33	43%	NP_000508.1
hemoglobin subunit zeta [Homo sapiens]	100	100	97%	3e-27	36%	NP_005323.1
myoglobin [Homo sapiens]	80.5	5 80.5	5 97%	2e-19	26%	ND 005250 1
<u>myogroun (nomo sapiens)</u>	80.5	80.5	5 97%	28-19	20%	NP_005359.1
neuroglobin [Homo sapiens]	54.7	7 54.7	92%	2e-09	23%	NP_067080.1

New relevant globins found only by PSI-BLAST

Description	Max score	Total score	Query cover	E value	Ident	Accession
hemoglobin subunit beta [Homo sapiens]	301	301	100%	2e-106	100%	NP_000509.1
hemoglobin subunit delta [Homo sapiens]	284	284	100%	7e-100	93%	NP_000510.1
hemoglobin subunit epsilon [Homo sapiens]	240	240	100%	2e-82	76%	NP_005321.1
hemoglobin subunit gamma-2 [Homo sapiens]	235	235	100%	2e-80	73%	NP_000175.1
hemoglobin subunit gamma-1 [Homo sapiens]	232	232	100%	3e-79	73%	NP_000550.2
hemoglobin subunit alpha [Homo sapiens]	114	114	97%	7e-33	43%	NP_000508.1
hemoglobin subunit zeta [Homo sapiens]	100	100	97%	3e-27	36%	NP_005323.1
myoglobin [Homo sapiens]	80.5	80.5	97%	2e-19	26%	NP_005359.1
neuroglobin [Homo sapiens]	54.7	54.7	92%	2e-09	23%	NP_067080.1
					<u> </u>	
myoglobin [Homo sapiens]	159	159	97%			NP_005359.1
hemoglobin subunit alpha [Homo sapiens]	151	151	97%	3e-47	42%	NP_000508.1
hemoglobin subunit mu [Homo sapiens]	147	147	97%	6e-46	35%	NP_001003938.1
hemoglobin subunit theta-1 [Homo sapiens]	147	147	97%	2e-45	37%	NP_005322.1
neuroglobin [Homo sapiens]	134	134	92%	3e-40	23%	NP_067080.1
PREDICTED: cytoglobin isoform X2 [Homo sapiens]	115	115	66%	3e-33	25%	XP_016879605.1
PREDICTED: microtubule cross-linking factor 1 isoform X1 [Homo sapie	46.3	46.3	27%	7e-06	39%	XP_011523942.1
PREDICTED: microtubule cross-linking factor 1 isoform X4 [Homo sapie	46.3	46.3	27%	7e-06	39%	XP_005258156.1
Score and E value dep	bend	s on	PSS	Μ		

Description	Max score	Total score	Query cover	E value	Ident	Accession	
hemoglobin subunit beta [Homo sapiens]	301	301	100%	2e-106	100%	NP_000509.1	
hemoglobin subunit delta [Homo sapiens]	284	284	100%	7e-100	93%	NP_000510.1	
hemoglobin subunit epsilon [Homo sapiens]	240	240	100%	2e-82	76%	NP_005321.1	
hemoglobin subunit gamma-2 [Homo sapiens]	235	235	100%	2e-80	73%	NP_000175.1	1
hemoglobin subunit gamma-1 [Homo sapiens]	232	232	100%	3e-79	73%	NP_000550.2	
hemoglobin subunit alpha [Homo sapiens]	114	114	97%	7e-33	43%	NP_000508.1	
hemoglobin subunit zeta [Homo sapiens]	100	100	97%	3e-27	36%	NP_005323.1	
myoglobin [Homo sapiens]	80.5	80.5	97%	2e-19	26%	NP_005359.1	2
neuroglobin [Homo sapiens]	54.7	54.7	92%	2e-09	23%	NP_067080.1	2
mvoglobin [Homo sapiens]	159	159	97%	3e-50	26%	NP 005359.1	
hemoglobin subunit alpha [Homo sapiens]	151	151	97%			NP 000508.1	
hemoglobin subunit mu [Homo sapiens]	147	147	97%			NP 001003938.1	
hemoglobin subunit theta-1 [Homo sapiens]	147	147	97%			NP 005322.1	
neuroglobin [Homo sapiens]	134	134	92%			NP 067080.1	3
PREDICTED: cvtoglobin isoform X2 [Homo sapiens]	115	115	66%			XP 016879605.1	
						_	
PREDICTED: microtubule cross-linking factor 1 isoform X1 [Homo sapie	46.3	46.3	27%	7e-06	39%	XP_011523942.1	4
PREDICTED: microtubule cross-linking factor 1 isoform X4 [Homo sapie	46.3	46.3	27%	7e-06	39%	XP_005258156.1	

nclusion of irrelevant hits can lead to PSSM corruption

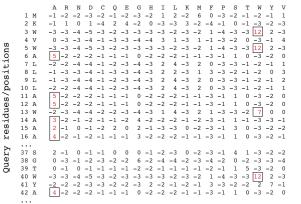
PSI-BLAST is performed in five steps

- A normal blastp search uses a scoring matrix (e.g., BLOSUM62) to perform pairwise alignments of your query sequence (such as RBP) against the database. PSI-BLAST also begins with a protein query that is searched against a database of choice.
- PSI-BLAST constructs a multiple sequence alignment (MSA) from an initial blastp-like search. It then creates a **PSSM** based on that multiple alignment.
- This **PSSM** is then used as a query to search the database again.
- PSI-BLAST estimates the statistical significance of the database matches, essentially using the parameters we described for gapped alignments.
- The search process is continued iteratively, typically 3 to 5 times. At each step a new PSSM is built.

PSI-BLAST returns dramatically more hits

You must decide how many iterations to perform and which sequences to include!

You can stop the search process at any point - typically whenever few new results are returned or when no new "sensible" results are found.


Iteration	Hits with E < 0.005	Hits with E > 0.005
1	34	61
2	314	79
3	416	57
4	432	50
5	432	50

Human retinol-binding protein 4 (RBP4; P02753) was used as a query in a PSI-BLAST search of the RefSeq database.

Example PSI-BLAST PSSM at iteration 3

The PSI-BLAST PSSM is essentially a query customized scoring matrix that is more sensitive than BLOSUM (e.g. BLOSUM $S_{AA} = +4$)

20 amino acids types

PSI-BLAST errors: the corruption problem

The main source of error in PSI-BLAST searches is the spurious amplification of sequences that are unrelated to the query.

There are three main approaches to stopping corruption of PSI-BLAST queries:

- Perform multi-domain splitting of your query sequence If a query protein has several different domains PSI-BLAST may find database matches related to both individually. One should not conclude that these hits with different domains are related.
 - Often best to search using just one domain of interest.
- Inspect each PSI-BLAST iteration removing suspicious hits. E.g., your query protein may have a generic coiled-coil domain, and this may cause other proteins sharing this motif (such as myosin) to score better than the inclusion threshold even though they are not related.
 - Use your biological knowledge!
- Lower the default expect level (e.g., E = 0.005 to E = 0.0001). This may suppress appearance of FPs (but also TPs)

Profile advantages and disadvantages

Advantages:

- · Quantitate with a good scoring system
- Weights sequences according to observed diversity
 Profile is specific to input sequence set
- Very sensitive
 Can detect weak similarity
- Relatively easy to compute
 Automatic profile building tools available

Disadvantages:

- If a mistake enters the profile, you may end up with irrelevant data The corruption problem!
- Ignores higher order dependencies between positions i.e., correlations between the residue found at a given position and those found at other positions (e.g. salt-bridges, structural constraints on RNA etc...)
- · Requires some expertise and oversight to use proficiently

Todays Menu

- Sequence motifs and patterns: Simple approaches for finding functional cues from conservation patterns
- Sequence profiles and position specific scoring matrices (PSSMs): Building and searching with profiles, Their advantages and limitations
- PSI-BLAST algorithm: Application of iterative PSSM searching to improve BLAST sensitivity
- Hidden Markov models (HMMs): More versatile probabilistic model for detection of remote similarities

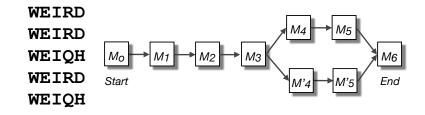
Hands-on sections 3 & 4:

Comparing methods and the trade-off between sensitivity, selectivity and performance

~30 mins

Problems with PSSMs: Positional dependencies

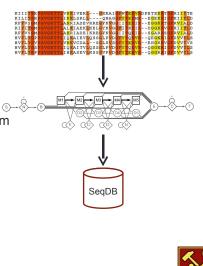
Do not capture positional dependencies


WEIRD WEIRD WEIQH WEIRD WEIRD

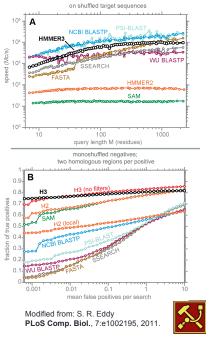
D					0.6
Е		Ι			
Н					0.4
Ι			Ι		
Q				0.4	
Q R				0.6	
W	Ι				

Note: We <u>never</u> see QD or RH, we only see RD and QH. However, P(RH)=0.24, P(QD)=0.24, while P(QH)=0.16

Markov chains: Positional dependencies


The connectivity or **topology** of a Markov chain can easily be designed to capture dependencies and variable length motifs.

Recall that a PSSM for this motif would give the sequences **WEIRD** and **WEIRH** equally good scores even though the **RH** and **QR** combinations were not observed


Use of HMMER

- Widely used by protein family databases
 - Use 'seed' alignments
- Until 2010
 - Computationally expensive
 - Restricted to HMMs constructed from multiple sequence alignments
- Command line application

HMMER vs BLAST

	HMMER	BLAS T			
Progra m	PHMMER	B LA STP			
Quer y	Single sec	luence			
Targe t Databas e	Sequenc e d	atabas e			
Progra m	HMM SCAN	RP SB LA S T			
Quer y	Single sec	luence			
Targe t Databas e	Profil e HM M database, e.g. Pfa m	PSSM database e.g. CDD			
Progra m	HM M SE ARC H	PSI-BLAS T			
Quer y	Profil e HM M	PSSM			
Targe t Databas e	Sequenc e d	atabas e			
Progra m	JACKHMME R	PSI-BLAS T			
Quer y	Single sec	luence			
Targe t Databas e	Sequenc e d	atabas e			

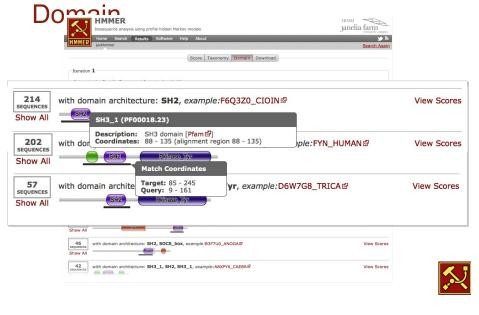
Fast Web Searches

- · Parallelized searches across compute farm
 - Average query returns ~1 sec
- Range of sequence databases
- Large Comprehensive
- Curated / Structure
- Metagenomics
- Representative Proteomes
- Family Annotations
- Pfam
- Batch and RESTful API
- Automatic and Human interface

Signi	ficant Query Matches (12)	in swissprot (v.2018_11)		Custo	omise Customia
	Target	Description	Species	Cross-references	E-value
>	HBB_HUMAN ₽	Hemoglobin subunit beta	Homo sapiens@	🗰 🕃 😸 🤮 🚍 📾	6.8e-99
>	HBD_HUMAN @	Hemoglobin subunit delta	Homo sapiens@	🚾 🕃 🌐 🕸 🛟 🖪	1.6e-91
>	HBE_HUMAN ₽	Hemoglobin subunit epsilon	Homo sapiens@	m 🔅 🧱 🕴 😽 🕃 🖿	1.5e-74
>	HBG2_HUMAN	Hemoglobin subunit gamma-2	Homo sapiens@	🚾 🕃 🏭 🕴 🔁 🖪	8.8e-73
>	HBG1_HUMAN⊮	Hemoglobin subunit gamma-1	Homo sapiens@	(1)	6.2e-72
>	HBA_HUMAN ₪	Hemoglobin subunit alpha	Homo sapiens@	m 😠 🗮 🕴 😽 🕞 🖪	3.8e-29
>	HBAZ_HUMAN@	Hemoglobin subunit zeta	Homo sapiens@	m 🗟 🗮 k 😣 🕞 🖪	4.5e-23
>	HBAT_HUMAN₽	Hemoglobin subunit theta-1	Homo sapiens@	m 9 🔳 😽 🗘 🖪	5.2e-22
>	HBM_HUMAN®	Hemoglobin subunit mu	Homo sapiens@	x & = * C E	3.4e-19
>	CYGB_HUMAN⊯	Cytoglobin	Homo sapiens@	m 😨 🗮 🖡 😵 🔁 🖪	3.1e-14
>	MYG_HUMAN	Myoglobin	Homo sapiens@		2.3e-06
>	NGB_HUMAN⊯	Neuroglobin	Homo sapiensø		0.0017
(shov	v all) alignments	Your search took: 0.	06 secs	show	ing rows 1 - 12 of

Visualization of Results – By Score

	Q16IU8_AEDAE샵 응		SH2/SH3 ac	laptor p	rotein	Aedes	aegypti岱		2.5e-31				
Qu	ery			% Similarity	Bit	E-value							
start	end	start	end	d start	end			(count)	,	(count)	Score	Ind.	Cond.
7	62	4	81	9	63	0.02	0.81	36.4 (20))	50.9 (28)	19.5	0.2	0.0001


Query	7														* q <mark>gwvpsny</mark> it	62
															g+vpsny+	
Target	9	DVCY	VVAI	KYDY	AA	QGA	QELI	DLF	RKNER	YLLLD-	DSK	HWW	RVQN	SHNQ	SGYVPSNYVK	63
PP		5566	799	****	**	***	* * *	* * *	****9	87775.	455	677	7665	1677	7******96	

Visualization of Results – By Taxonomy

litere	Monotremata(65)	Ornithorhynchidae(65)	Ornithorhynchus(65)
	listen	litetatus	litite
	Primates(86)	Hominidae(86)	— Homo(86) 1
	limas	lina	lm.a
	Rodentia(244)	Cricetidae(46)	Cricetulus(46)
	ht.a	h	<u>h</u>
		Muridae(198)	— Mus(83)
		htsa	liten
			Rattus(115)
			httan .
Species Distribution			
Rattus norvegicus	Species	Count 115	View Show
Homo saplens @		86	Show
Mus musculus @ Sarcophilus harrisil@		83	Show
Ornithorhynchus anatinus		65	Show
Cricetulus griseust		46	Show
			Show All Visible

Visualization of Results – By


PFAM: Protein Family Database of Profile HMMs

Comprehensive compilation of both multiple sequence alignments and profile HMMs of protein families.

http://pfam.sanger.ac.uk/

PFAM consists of two databases:

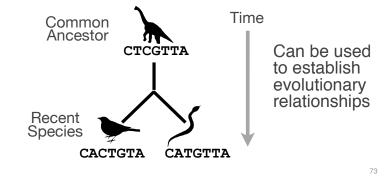
- **Pfam-A** is a manually curated collection of protein families in the form of multiple sequence alignments and profile HMMs. HMMER software is used to perform searches.
- **Pfam-B** contains additional protein sequences that are automatically aligned. Pfam-B serves as a useful supplement that makes the database more comprehensive.
- · Pfam-A also contains higher-level groupings of related families, known as clans

Summary

- Sequence motifs and patterns: Simple approaches for finding functional cues from conservation patterns
- Sequence profiles and position specific scoring matrices (PSSMs): Building and searching with profiles, Their advantages and limitations
- PSI-BLAST algorithm: Application of iterative PSSM searching to improve BLAST sensitivity
- Hidden Markov models (HMMs): More versatile probabilistic model for detection of remote similarities

Homework: DataCamp!

Check your email for an DataCamp invite and sign up with your UCSD username (i.e. first part of your email address) please.


Let me know <u>NOW</u> if you don't see the invite email!

Sequence comparison is most informative when it detects homologs Homologs are sequences that have common origins When

i.e. they share a common ancestor

They may or may not have common activity

Key terms

When we talk about related sequences we use specific terminology.

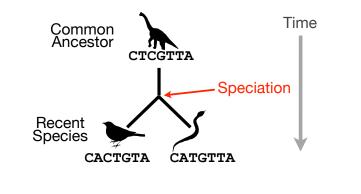
Homologous sequences may be either:

Orthologs or Paralogs
 (Note. these are all or nothing relationships!)

Any pair of sequences may share a certain level of:

- Identity and/or Similarity

(Note. if these metrics are above a certain level we often infer homology)

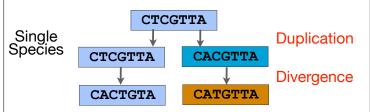

74

76

Orthologs tend to have similar function

Orthologs: are homologs produced by <u>speciation</u> that have diverged due to divergence of the organisms they are associated with.

- Ortho = [greek: straight] ... implies direct descent



75

Paralogs tend to have slightly different functions

Paralogs: are homologs produced by gene duplication. They represent genes derived from a common ancestral gene that <u>duplicated within an organism</u> and then subsequently <u>diverged by accumulated mutation</u>.

– Para = [greek: along side of]

Orthologs vs Paralogs

- In practice, determining ortholog vs paralog can be a complex problem:
 - gene loss after duplication,
 - lack of knowledge of evolutionary history,
 - weak similarity because of evolutionary distance
- Homology does not necessarily imply exact same function
 - may have similar function at very crude level but play a different physiological role

77