"Bioinformatics is the application of <u>computers</u> to the collection, archiving, organization, and analysis of <u>biological data</u>." ... A hybrid of biology and computer science "Bioinformatics is the application of <u>computers</u> to the collection, archiving, organization, and analysis of <u>biological data</u>." Bioinformatics is computer aided biology! "Bioinformatics is the application of <u>computers</u> to the collection, archiving, organization, and analysis of <u>biological data</u>." Bioinformatics is computer aided biology! Goal: Data to Knowledge So what is **structural bioinformatics**? So what is **structural bioinformatics**? ... computer aided structural biology! Aims to characterize and interpret biomolecules and their assembles at the molecular & atomic level Why should we care? Why should we care? Because biomolecules are "nature's robots" ... and because it is only by coiling into specific 3D structures that they are able to perform their functions # In daily life, we use machines with functional *structure* and *moving parts* ### Genomics is a great start ### Track Bike - DL 175 | REF.
NO. | IBM
NO. | DESCRIPTION Track Frame 21", 22", 23", 24", Team Red | | | | | | | |------------------|------------|--|--|--|--|--|--|--| | 1 | 156011 | | | | | | | | | 2 | 157040 | Fork for 21" Frame | | | | | | | | 2 | 157039 | Fork for 22" Frame | | | | | | | | 2 | 157038 | Fork for 23" Frame | | | | | | | | 2 | 157037 | Fork for 24" Frame | | | | | | | | 2
2
2
3 | 191202 | Handlebar TTT Competition Track Alloy 15/16" | | | | | | | | 4 | 171101 | Handlebar Stem, TTT, Specify extension | | | | | | | | 5 | 191278 | Expander Bolt | | | | | | | | 6 | 191272 | Clamp Bolt | | | | | | | | 7 | 145841 | Headset Complete 1 x 24 BSC | | | | | | | | 8 | 145842 | Ball Bearings | | | | | | | | 9 | 190420 | 175 Raleigh Pistard Seta Tubular Prestavalve 27" | | | | | | | | 10 | 190233 | Rim, 27" AVA Competition (36H) Alloy Prestavalve | | | | | | | | 11 | 145973 | Hub, Large Flange Campagnolo Pista Track Alloy (pairs) | | | | | | | | 12 | 190014 | Spokes, 11 5/8" | | | | | | | | 13 | 145837 | Sleeve | | | | | | | | 14 | 145636 | Ball Bearings | | | | | | | | 15 | 145170 | Bottom Bracket Axle | | | | | | | | 16 | 145838 | Cone for Sleeve | | | | | | | | 17 | 146473 | L.H. Adjustable Cup | | | | | | | | 18 | 145833 | Lockring | | | | | | | | 19 | 145239 | Straps for Toe Clips | | | | | | | | 20 | 145834 | Fixing Bolt | | | | | | | | 21 | 145835 | Fixing Washer | | | | | | | | 22 | 145822 | Dustcap | | | | | | | | 23 | 145823 | R.H. and L.H. Crankset with Chainwheel | | | | | | | | 24 | 146472 | Fixed Cup | | | | | | | | 25 | 145235 | Toe Clips, Christophe, Chrome (Medium) | | | | | | | | 26 | 145684 | Pedals, Extra Light, Pairs | | | | | | | | 27 | 123021 | Chain | | | | | | | | 28 | 145980 | Seat Post | | | | | | | | 29 | 210700 | Seat Post Bolt and Nut | | | | | | | | 30 | 167002 | Saddle, Brooks | | | | | | | | 31 | 145933 | Track Sprocket, Specify 12, 13, 14, 15, or 16 T. | | | | | | | But a parts list is not enough to understand how a bicycle works ### ... but not the end - We want the full spatiotemporal picture, and an ability to control it - Broad applications, including drug design, medical diagnostics, chemical manufacturing, and energy - Overview of structural bioinformatics - · Motivations, goals and challenges - Fundamentals of protein structure - Structure composition, form and forces - Representing, interpreting & modeling protein structure - Visualizing & interpreting protein structures - Analyzing protein structures - Modeling energy as a function of structure # Today's Menu - Overview of structural bioinformatics - · Motivations, goals and challenges - Fundamentals of protein structure - Structure composition, form and forces - Representing, interpreting & modeling protein structure - Visualizing & interpreting protein structures - Analyzing protein structures - Modeling energy as a function of structure ### Motivation 1: Detailed understanding of molecular interactions Provides an invaluable structural context for conservation and mechanistic analysis leading to functional insight. ### Motivation 1: Detailed understanding of molecular interactions Computational modeling can provide detailed insight into functional interactions, their regulation and potential consequences of perturbation. Grant et al. PLoS. Comp. Biol. (2010) ### **Motivation 2**: Lots of structural data is becoming available Structural Genomics has contributed to driving down the cost and time required for structural determination Data from: https://www.rcsb.org/stats/ have been, and continue to be, enormously valuable and influential! # Motivation 3: Theoretical and computational predictions have been, and continue to be, enormously valuable and influential! ### SUMMARY OF KEY MOTIVATIONS ### **Sequence > Structure > Function** Structure determines function, so understanding structure helps our understanding of function ### Structure is more conserved than sequence • Structure allows identification of more distant evolutionary relationships ### Structure is encoded in sequence Understanding the determinants of structure allows design and manipulation of proteins for industrial and medical advantage ### Goals: - Visualization - Analysis - Comparison - Prediction - Design Scarabelli and Grant. PLoS. Comp. Biol. (2013) ### Goals: - Visualization - Analysis - Comparison - Prediction - Design Scarabelli and Grant. PLoS. Comp. Biol. (2013) Goals: Analysis Prediction Design ### MAJOR RESEARCH AREAS AND CHALLENGES ### Include but are not limited to: - Protein classification - Structure prediction from sequence - · Binding site detection - · Binding prediction and drug design - Modeling molecular motions - Predicting physical properties (stability, binding affinities) - Design of structure and function - etc... Goals: Design With applications to Biology, Medicine, Agriculture and Industry - Overview of structural bioinformatics - Motivations, goals and challenges - · Fundamentals of protein structure - Structure composition, form and forces - Representing, interpreting & modeling protein structure - Visualizing & interpreting protein structures - Analyzing protein structures - Modeling energy as a function of structure # Primary > Secondary > Tertiary > Quaternary Ala Polypeptide Assembled subunits Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/ # AMINO ACIDS POLYMERIZE THROUGH PEPTIDE BOND FORMATION PHINOCH-CO + PHINOCH-CO Peptide bond Side chains backbone N-terminal Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/ # PEPTIDES CAN ADOPT DIFFERENT CONFORMATIONS BY VARYING THEIR PHI & PSI BACKBONE TORSIONS C-terminal Peptide bond is planer (Ca, C, O, N, H, Ca all lie in the same plane) Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/ ### PHI vs PSI PLOTS ARE KNOWN AS ### **RAMACHANDRAN DIAGRAMS** - · Steric hindrance dictates torsion angle preference - Ramachandran plot show preferred regions of $\,\varphi$ and ψ dihedral angles which correspond to major forms of secondary structure Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/ # MAJOR SECONDARY STRUCTURE TYPES ALPHA HELIX & BETA SHEET ### a-helix - Most common from has <u>3.6 residues per turn</u> (number of residues in one full rotation) - Hydrogen bonds (dashed lines) between residue i and i+4 stabilize the structure - The side chains (in green) protrude outward - 3_{10} -helix and π -helix forms are less common Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/ # MAJOR SECONDARY STRUCTURE TYPES ALPHA HELIX & BETA SHEET ### In antiparallel β-sheets - Adjacent β-strands run in opposite directions - Hydrogen bonds (dashed lines) between NH and CO stabilize the structure - The side chains (in green) are above and below the sheet Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/ # MAJOR SECONDARY STRUCTURE TYPES ALPHA HELIX & **BETA SHEET** ### In parallel β-sheets - Adjacent β-strands run in same direction - Hydrogen bonds (dashed lines) between NH and CO stabilize the structure - The side chains (in green) are above and below the sheet | mage from: http://www.ncbi.nlm.nih.gov/books/NBK21581/ ### Key forces affecting structure: - H-bonding - Van der Waals - Electrostatics - Hydrophobicity ### Key forces affecting structure: - H-bonding - Van der Waals - Electrostatics - Hydrophobicity ### Key forces affecting structure: - H-bonding - Van der Waals - Electrostatics - Hydrophobicity $$- d - d = 2.8 \text{ Å}$$ $$- C = 0 \text{ M}$$ $$- O H$$ carboxyl group and amino group (some time called IONIC BONDs or SALT BRIDGEs) q_1 q_2 O r O $E = \frac{K q_1 q_2}{D r}$ E = Energy k = constant D = Dielectric constant (vacuum = 1; $H_2O = 80$) $q_1 \& q_2$ = electronic charges (Coulombs) r = distance (Å) ### Key forces affecting structure: - H-bonding - Van der Waals - Electrostatics - Hydrophobicity The force that causes hydrophobic molecules or nonpolar portions of molecules to aggregate together rather than to dissolve in water is called Hydrophobicity (Greek, "water fearing"). This is not a separate bonding force; rather, it is the result of the energy required to insert a nonpolar molecule into water. # Today's Menu - Overview of structural bioinformatics - · Motivations, goals and challenges - Fundamentals of protein structure - Structure composition, form and forces - Representing, interpreting & modeling protein structure - Visualizing & interpreting protein structures - Analyzing protein structures - Modeling energy as a function of structure - Overview of structural bioinformatics - Motivations, goals and challenges - Fundamentals of protein structure - Structure composition, form and forces - Representing, interpreting & modeling protein structure - Visualizing & interpreting protein structures - Analyzing protein structures - · Modeling energy as a function of structure ### Hand-on time! Focus on **section 1** only please! N.B. Remember to make your new class11 RStudio project inside your GitHub tracked directory from last day and <u>UNCHECK</u> the "Create a Git repository" option... ### Side-Note: PDB File Format PDB files contains atomic coordinates and associated information. | Amino Sequence/Residue | | | | | | | | | | | | |------------------------|--------|-----|-----|------|--------|--------|-------------|--------|--------|--|--| | | Acid | | | | Number | | Coordinates | | | | | | | Elemen | t | C | hain | | X | Y | Z | (etc.) | | | | АТОМ | 1 | N | MET | A | 1 | 19.353 | 41.547 | -3.887 | | | | | ATOM | 2 | CA | MET | A | 1 | 20.513 | 40.939 | -4.592 | | | | | ATOM | 3 | C | MET | A | 1 | 20.150 | 39.658 | -5.355 | | | | | ATOM | 4 | 0 | MET | A | 1 | 19.053 | 39.551 | -5.903 | | | | | ATOM | 5 | CB | MET | A | 1 | 21.642 | 40.678 | -3.592 | | | | | ATOM | 6 | CG | MET | A | 1 | 21.233 | 39.903 | -2.360 | | | | | ATOM | 7 | SD | MET | A | 1 | 22.533 | 39.928 | -1.113 | | | | | ATOM | 8 | CE | MET | A | 1 | 23.771 | 38.881 | -1.885 | | | | | ATOM | 9 | N 🐴 | ASP | A | 2 | 21.068 | 38.694 | -5.390 | | | | | ATOM | 10 | CA | ASP | A | 2 | 20.856 | 37.440 | -6.117 | | | | | ATOM | 11 | C | ASP | A | 2 | 20.124 | 36.371 | -5.299 | | | | | ATOM | 12 | 0 | ASP | A | 2 | 20.680 | 35.818 | -4.351 | | | | | | | | 1 | | | | | | | | | Element position within amino acid ### Side-Note: PDB File Format PDB files contains atomic coordinates and associated information. - Overview of structural bioinformatics - Motivations, goals and challenges - Fundamentals of protein structure - Structure composition, form and forces - Representing, interpreting & modeling protein structure - Visualizing and interpreting protein structures - Analyzing protein structures - Modeling energy as a function of structure Do it voursely, ### Hand-on time! Focus on section 3 and then PART 2. # Today's Menu - Overview of structural bioinformatics - · Motivations, goals and challenges - Fundamentals of protein structure - Structure composition, form and forces - Representing, interpreting & modeling protein structure - · Visualizing and interpreting protein structures - Analyzing protein structures - Modeling energy as a function of structure # KEY CONCEPT: POTENTIAL FUNCTIONS DESCRIBE A SYSTEMS ENERGY AS A FUNCTION OF ITS STRUCTURE Two main approaches: - (1). Physics-Based - (2). Knowledge-Based # KEY CONCEPT: POTENTIAL FUNCTIONS DESCRIBE A SYSTEMS ENERGY AS A FUNCTION OF ITS STRUCTURE Two main approaches: - (1). Physics-Based - (2). Knowledge-Based Structure/Conformation ### This will be the focus of the next class! ### **SUMMARY** - Structural bioinformatics is computer aided structural biology - Described major motivations, goals and challenges of structural bioinformatics - Reviewed the fundamentals of protein structure - Explored how to use R to perform advanced custom structural bioinformatics analysis! - Introduced both physics and knowledge based modeling approaches for describing the structure, energetics and dynamics of proteins computationally Muddy Point Assessment ### Reference Slides # Bio3D view() If you want the 3D viewer in your R markdown you can install the development version of bio3d.view - In your R console: - > install.packages("devtools") - > devtools::install bitbucket("Grantlab/bio3d-view") - To use in your R session: - > library("bio3d.view") - pdb <- read.pdb("5p21")</p> - > view(pdb) - view(pdb, "overview", col="sse") ## NMA in Bio3D • Normal Mode Analysis (NMA) is a bioinformatics method that can predict the major motions of biomolecules. **```(r)** library(bio3d) library(bio3d.view) pdb <- read.pdb("1hel") modes <- nma(pdb) m7 <- mktrj(modes, mode=7, file="mode_7.pdb") view(m7, col=vec2color(rmsf(m7))) # Bio3D view() • If you want the interactive 3D viewer in **Rmd** rendered to output: html_output document: ``` library(bio3d.view) library(rgl) ""(f) modes <- nma(read.pdb("1hel")) m7 <- mktrj(modes, mode=7, file="mode_7.pdb") view(m7, col=vec2color(rmsf(m7))) rglwidget(width=500, height=500) ```