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RNA sequencing overview

DNA gene in genome.
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Goal: RNA quantification, transcript discovery, variant identification

Mapping/Alignment

Alignment

Absolute read counts 15,

Normalized read counts ~ kPKM

Transcript discovery
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RNA Sequencing

Normal Cells Mutated Cells

The mutated cells behave differently than the normal cells

« We want to know what genetic mechanism is causing the
difference

One way to address this is to examine differences in gene
expression via RNA sequencing...

Normal Cells Mutated Cells

Each cell has a bunch of
chromosomes

Normal Cells Mutated Cells

Normal Cells Mutated Cells

Some genes are active more than

Variant discovery (/1 (/1
Genet Gene2 Gene3 2
SNP identification: C/T Each chromosome has a Genel Gene2 Gene3
bunch of genes
3 Main Steps for RNA-Seq:
Normal Cells Mutated Cells Normal Cells Mutated Cells Normal Cells Mutated Cells

Gene 3 is the most
active

Gene 2 is
not active

HTS tells us which genes are
active, and how much they are
transcribed!
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We use RNA-Seq to measure gene .. then use it to measure gene
expression in normal cells ... expression in mutated cells

Then we can compare the two cell
types to figure out what is di
the mutated cel

Differences apparent for Gene 2 and
to a lesser extent Gene 3

1) Prepare a sequencing library
(RNA to cDNA conversion via reverse transcription)

2) Sequence
(Using the same technologies as DNA sequencing)

3) Data analysis
(Often the major bottleneck to overall success!)

We will discuss each of these steps - but we will focus
on step 3 today!

Our last class got us to the start of step 3!

Gene WT-1 WT-2 wT-3
AlBG 30 5 13
AS1 24 10 18

We sequenced, aligned, counted the reads per gene
in each sample to arrive at our count table/matrix
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Normal Cells Mutated Cells
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Inputs Inputs Steps
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Our missing step
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Read dataframe Differential

GTF Counting o
CuffLinks ™~ / analysis!

DESea2

data.frame

Install DESeq2

install.packages ("B:
BiocManager: : install()

BiocManager: : install("DESeq2")

Note: Answer NO to prompts to install from source or update...

d packag ools', 'dplyr', 'DT gplot2', 'ggpubr
"lattice", " ', 'Matrix', 'mclust’,
'pkgload’, 'ps ', 'raster', 'rcmdcheck',
remotes', 'rsconnect', 'sessioninfo', 'shiny',
hinythemes', 'survival', 'tidyr
Update all/some/none? [a/sfn]:
n

Install DESeq2

Biocon Setup Lin

'mgcv', 'openssl’

install.packages ("Bio
BiocManager: : install

BiocManager: : install("DESeq2")

Note: Answer[NOJto prompts to install from source or update.

Background to Today’s Data

Glucocorticoids inhibit inflammatory proc es and are often
d to treat asthma because of thei ory effects

Mechanism?

Background to Today’s Data

d RNA-seq to profile
h dexamethasone (z

onfirmed the ur ted CRISPLD2
protein expression with Western blotting.

Data pre-processing

nalyzing RNA-seq data starts with sequencing reads.
Many different approaches, see references on class website.

Our workflow (previously done):

* Reads downloaded from GEO (GSE:G:
* Quantify transcript abundance (kallisto).
* Summarize to gene-level abundance (txImport)

Our starting point is a count matrix: each cell indicates the
number of reads originating from a particular gene (in rows)
for each sample (in columns).

counts + metadata

countData colData

‘colData describes metadata about
the columns of countData

countData is the count matrix
(Number of reads coming from each
gene for each sample)

Counting is (relatively) easy:

|

Hands-on time!

Fold change (log ratios)

* To a statistician fold change is sometimes considered
meaningless. Fold change can be large (e.g. >>two-fold
up- or down-regulation) without being statistically significant
(e.g. based on probability values from a t-test or ANOVA).

To a biologist fold change is almost always considered
important for two reasons. First, a very small but
statistically significant fold change might not be relevant to a
cell’s function. Second, it is of interest to know which genes
are most dramatically regulated, as these are often thought
to reflect changes in biologically meaningful transcripts and/
or pathways.

Volcano plot

A common summary figure used to highlight genes that are both
significantly regulated and display a high fold change

“Log(P-value)

Log2(FoliChange)

A volcano plot shows fold change (x-axis) versus -log of the p-value (y-
axis) for a given transcript. The more significant the p-value, the larger the
-log of that value will be. Therefore we often focus on ‘higher up' points.

2. class-material (bash)

Setup your point color vector
mycols <- rep(*gray", nrow(res01))
mycols[ abs(res01Slog2FoldChange) > 2] <- "red"

inds <- (res01$padj <0.01) & (abs(res01Slog2FoldChange) > 2)
mycols[ inds ] <- "blue"

Volcano plot with custom colors

plot( res01Slog2FoldChange, -log(res01Spadi),
col=mycols, ylab="-Log(P-value)",
xlab="Log2(FoldChange)" )

(-2,2), col="gray", It
10g(0.1), col="gray", It




Volcano Plot
Fold change vs P-value

Significant
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Recent developments in RNA-Seq

« Long read sequences:
= PacBio and Oxford Nanopore [Re

Single-cell RNA-Seq:
= Observe heterogeneity of cell populations
= Detect sub-population

Alignment-free quantification:
= Kallisto
= Salmon

Additional Reference Slides

g data

encing data (not necessarily RNA-Seq)

+ ArrayExpress:
ac.uk
on of GEO

« All of these have linl n them

Paired-End Reads

Count Normalization
» Normalization is required to make comparisons
in gene expression
* Between 2+ genes in one sample
» Between genes in 2+ samples

Genes will have more reads mapped in a sample
with high coverage than one with low coverage

+ 2x depth = 2x expression

Longer genes will have more reads mapped
than shorter genes

* 2x length = 2x more reads

Normalization: RPKM, FPKM & TPM

N.B. Some tools for differential expression analysis such as
edgeR and DESeq2 want raw read counts - i.e. non normalized
input!

However, often for your manuscripts and reports you will want
to report normalized counts

RPKM, FPKM and TPM all aim to normalize for sequencing
depth and gene length. For the former:
+ Count up the total reads in a sample and divide that
number by 1,000,000 - this is our “per million” scaling.
+ Divide the read counts by the “per million” scaling
factor. This normalizes for sequencing depth, giving you
reads per million (RPM)
«+ Divide the RPM values by the length of the gene, in
kilobases. This gives you RPKM.

FPKM was made for paired-end RNA-seq

With paired-end RNA-seq, two reads can
correspond to a single fragment

The only difference between RPKM and
FPKM is that FPKM takes into account that
two reads can map to one fragment (and so
it doesn’t count this fragment twice).

« TPM is very similar to RPKM and FPKM. The only
difference is the order of operations:

« First divide the read counts by the length of each
gene in kilobases. This gives you reads per kilobase
(RPK).

« Count up all the RPK values in a sample and divide
this number by 1,000,000. This is your “per million”
scaling factor.

« Divide the RPK values by the “per million” scaling
factor. This gives you TPM.

« Note, the only difference is that you normalize for gene
length first, and then normalize for sequencing depth
second.

* When you use TPM, the sum of all TPMs in
each sample are the same.

» This makes it easier to compare the
proportion of reads that mapped to a gene
in each sample.

* In contrast, with RPKM and FPKM, the sum
of the normalized reads in each sample may
be different, and this makes it harder to
compare samples directly.




