BIMM 143 Cancer Genomics & Immunoinformatics

Lecture 18

Barry Grant UC San Diego

http://thegrantlab.org/bimm143

Today's Menu

Cancer Genomics	Brief review of cancer fundamentals, What is cancer and what causes it?
Mining Cancer Genomic Data	Hands-on analysis to identify genomic changes in different cancers and identify new targets for therapy
Cancer Immunotherapy	Hands-on analysis to design personalized cancer vaccines and harness the patient's own immune system to fight cancer

What is Cancer?

"Cancer is a name given to a collection of related diseases, where some of the body's cells begin to divide without stopping and spread into surrounding tissue"

Source: https://www.cancer.gov

Cancer is a disease of the Genome

- Caused by changes to genes that control the way our cells function, especially how they grow and divide.
- A major challenge in treating cancer is that every tumor is different: Each person's cancer has a unique combination of genetic changes (both "driver" & "passenger").
- As the cancer continues to grow, additional changes will occur.

Healthy 46 chromosomes

Example cancer 59 chromosomes

Goals of Cancer Genome Research

- Identify changes in the genomes of tumors that drive cancer progression
- Identify new targets for therapy
- Select drugs based on the genomics of the tumor
- Provide early cancer detection and treatment response monitoring
- Utilize cancer specific mutations to derive neoantigen immunotherapy approaches

Finding Cancer Drivers

Motivation for adopting a genomics approach...

- Cancer is caused by mutations to specific genes
- Knowing which genes and proteins enables the development of targeted treatments
- <u>1st major Goal</u>:
 Define ALL cancer genes!

 $A \subseteq C T \longrightarrow A \subseteq A T$

Use A Cancer Genomics Approach

Parallel Sequencing

ACTCAGCCCCAGCGGAGGTGAAGGACGTCCTTCCCCAGGAGCCGGTGAGA AGCGCAGTCGGGGGCACGGGGGATGAGCTCAGGGGCCTCTAGAAAGATGTA GCTGGGACCTCGGGAAGCCCTGGCCTCCAGGTAGTCTCAGGAGAGCTACT GACTGGACCTGGGAAGGGCTGGGCAGCAGAGACGACCCGACCCGCTAGAA GGTGGGGTGGGGGAGAGCATGTGGACTAGGAGCTAAGCCACAGCAGGACCC CCACGAGTTGTCACTGTCATTTATCGAGCACCTACTGGGTGTCCCCAGTG TCCTCAGATCTCCATAACTGGGAAGCCAGGGGCAGCGACACGGTAGCTAG CCGTCGATTGGAGAACTTTAAAATGAGGACTGAATTAGCTCATAAATGGA AAACGGCGCTTAAATGTGAGGTTAGAGCTTAGAATGTGAAGGGAGAATGA GGTGTGGAATTTGAACCCCGGGAGAGAAAGATGGAATTTTGGCTATGGAG GCCGACCTGGGGGATGGGGGAAATAAGAGAAGACCAGGAGGGGGGGTTAAATAG GGAATGGGTTGGGGGGGGGCTTGGTAACTGTTTGTGCTGGGATTAGGCTGT TGCAGATAATGGAGCAAGGCTTGGAAGGCTAACCTGGGGTGGGGCCGGGT TTTCTCCTTCCCCAGACTGGCCAATCACAGGCAGGAAGATGAAGGTTCTG TGGGCTGCCCCGACCCGCTAGAAGGTGGGGTGGGGAGAGCATGTGGACTA GGAGCTAAGCCACAGCAGGACCCCCACGAGTTGTCACTGTCATTTATCGA GCACCTACTGGGTGTCCCCAGTGTCCTCAGATCTCCATAACTGGGAAGCC AGGGGCAGCGAC

Finding Cancer Associated Mutations

Identify all mutations specific to tumor cells

Filter out silent mutations

Somatic mutations

Mutations detected: Point mutations

Mutations detected: Indels

Mutations detected: Translocations

What can go wrong in cancer genomes?

Type of change	Some common technology to study changes
DNA mutations	WGS, WXS
DNA structural variations	WGS
Copy number variation (CNV)	CGH array, SNP array, WGS
DNA methylation	Methylation array, RRBS, WGBS
mRNA expression changes	mRNA expression array, RNA-seq
miRNA expression changes	miRNA expression array, miRNA-seq
Protein expression	Protein arrays, mass spectrometry

WGS = whole genome sequencing, WXS = whole exome sequencing RRBS = reduced representation bisulfite sequencing, WGBS = whole genome bisulfite sequencing

Number of somatic mutations in representative human cancers, detected by genome-wide sequencing studies

Head and neck cancer (66)

Lung cancer (non-small cell)(147)

Lung cancer (small cell)(163) Esophageal adenocarcinoma (57)

Gastric cancer (53)

Colorectal cancer (66)

Encometrial cancer (49) Prostate cancer (41)

- Melanoma (135)

Esophageal squamous

cel carcinoma (79)

Vogelstein et al. Science (2013)

Vogelstein et al. Science (2013)

Vogelstein et al. Science (2013)

Genomic approaches can identify the genes most commonly mutated in cancer

Arrange all genes in a matrix, ordered by chromosomes

Identifying genes most commonly mutated in cancer

Add all data together to see which genes are most often mutated

Identifying genes most commonly mutated in cancer

Add all data together to see which genes are most often mutated

Identifying genes most commonly mutated in cancer

Many are famous porto-oncogenes, many others are new cancer genes!

Three Main Types of Cancer Genes:

- Oncogenes, such as Ras, normally function to accelerate cell division and growth. They can be mutated to act like stuck gas pedals.
- Tumor suppressor genes, such as **p53** normal act like breaks. Mutations can cause these breaks to fail.
- DNA repair genes, such as **BRCA1** & **2**, normally function to fix minor damage to DNA when it replicates. When these genes are mutated, DNA damage can accumulate and lead to cancer.

Cell growth and survival genes

Many participate in <u>signaling pathways</u> that promote cell proliferation (E.G. EGFR, Ras, BRAF, MEK etc.)

Cell growth and survival genes

Many participate in <u>signaling pathways</u> that promote cell proliferation (E.G. EGFR, Ras, BRAF, MEK etc.)

Regulators of Cell Cycle and Cell Death

p53 Regulates Cell Division

Probably the most famous cancer gene that is mutated in about half of all tumors. Often called the 'guardian of the genome'

- p53 normally shuts down cell division when a cell is stressed (e.g. by DNA damage)
- When DNA is damaged, p53 activates genes that stop cell growth or trigger the cell to die.
- Thus, p53 guards against changes to cells that might lead to tumor formation.
- It appears necessary to inactivate p53 to develop many forms of cancer.

Hands-on time!

Do IT LOUIS BIRI

https://bioboot.github.io/bimm143 W18/lectures/#18

Part 1 Only Please

Cancer Immunotherapy

- Cancers genomes accumulate mutations
- Mutations in coding regions are translated in mutated protein sequences
- Mutated peptides can be presented as epitopes on MHC to T cells

 Neoepitopes are presumably recognized by tumor-infiltrating lymphocytes (TILs)

Neoepitopes are highly tumor-specific!

Coulie et al, Nat Rev Cancer. 2014 Feb;14(2):135-46 Schumacher & Schreiber, Science. 2015 Apr 3;348(6230):69-74

- Vaccination: Introduce or boost an immune response against a specific target (antigen)
- Cancer cells contain non-self antigens that could be recognized by T cells, but the presence of cancer means this mechanism has failed, typically by the tumor suppressing immune responses
- Checkpoint blockade treatments: Block immune suppressive mechanisms to boost T cell immune responses against cancer cells.
- **Problem**: Checkpoint blockade is unspecific, and will also boost unwanted autoimmune responses
- Personalized Cancer Immunotherapy: Boost anti-tumor response with vaccine containing peptides corresponding to cancer mutations that can be recognized by T cells.

Q. How can such a vaccine be designed?

DNA and RNA sequencing identifies tumor specific somatic mutations

HLA Typing: Targeted sequencing of HLA locus

•http://www.ashi-hla.org/publicationfiles/ASHI_Quarterly/25_2_2001/highthrusbt3.htm

Hands-on time!

Do it Louiser

https://bioboot.github.io/bimm143 W18/lectures/#18

Part 2: Designing a personalized cancer vaccine

Bonus Slides (For Reference)

Measuring and predicting MHC:peptide binding

Experimental	
Basis: MHC	V
Binding Assay	
	З

List of peptides with allele specific binding affinity

Sequence	IC ₅₀	
QIVTMFEAL	3.6	
LKGPDIYKG	308	
NFCNLTSAF	50,000	
AQSQCRTFR	38,000	
CTYAGPFGM	143	
CFGNTAVAK	50,000	

 $log(IC_{50}) \sim$ Binding free Energy

low IC₅₀ \rightarrow high affinity

Impossible to measure all peptides

→ Predict binding peptides using machine learning

Find function F_i in $F_1, F_2, F_3, ...$ F_i (Sequence) \approx Affinity

Many different approaches (ANN, SVM, HMM, LP, ...)

	ORF 1	MGQIVTMFEALPHI IDE V <mark>INIVI</mark> IVLIVITGIKAVYN.
T cell	ORF 2	MGLKGPDIYKGVYQFKSVEFDMSHLNLTMPNACSANN.
	ORF 3	MHNFCNLTSAFNKKTFDHTLMSIVSSLHLSIDGNSNY.
ephope	ORF 4	MSAQSQCRTFRGRVLDMFRTAFGGKYMRSGWGWTGSD.
manning	ORF 5	MHCTYAGPFGMSRILLSQEKTKFFTRRLAGTFTWTLS.
mapping	ORF 6	MKCFGNTAVAKCNVNHDAEFCDMLRLIDYNKAALSKF.
	ORF 7	MLMRNHL <mark>L</mark> DLMGVPYCNYSKFWYLEHAKTGETSVPKC.

Calculate scoring matrix from affinities

0.4

-0.8

0.2

-1.1

-0.8

0.7

0.7

0.7

0.9

0.2

-1.9

0.8

Machine learning PSSM = Minimize the difference between predicted and measured binding affinities by varying the matrix values

Your Turn

Read and share your thoughts on the following class <u>Readings</u>

- Calling cancer's bluff with neoantigen vaccines
- Can genomics help detect early cancer and monitor treatment effectiveness?
- The increasing cost of cancer therapies

https://bioboot.github.io/bimm194_W18/readings/

1. Predict consequences of mutations

ACTGCCTACGTCTCACCGTCGACTTCAAATCG**C**TTAACCCGTACTCCCATGCTACTGCATCTCGGGTTAACTC GACGTTTT**T**CATGCATGTGCGCCCCAATATATATGCA**A**CTTTTGTGCACCTCTGTCACGCGCGAGTTGGCA CTGTCGCCCCTGTGTGCATGTGCACTGTCTC**T**CGCTGCACTGCCTACGTCTCACCGTCGACTTCAAATCG**C**TT AACCCGTACTCCCATGCTACTGCATCTCGGGTTAACTCGACGTTTT**G**CATGCATGTGCACCCCAATATATA TGCA**A**CTTTTGTGCACCTCTGTCACGCGCGAGTTGGCACTGTCGCCCCTGTGTGCATGTGCACTGTCTC**T**CGA

2. Assess the functional impact of nsSNVs

nsSNVs = non-synonymos Single Nucleotide Variant (missense)

ATC GAA GCA CGT Met Glu Ala Gly

ATC GAC GCA CGT Met Asp Ala Gly

Computational methods to assess the functional impact of nsSNVs

MutationTaste	r LogRe	Qaadal	MutPred	SNPs&GO
CanPredict	Condel PolyPhen2		CHASM	SNPeffect
SIFT	Mutatio	nAssesso	r PMut	transFIC

3. Identify cancer drivers from somatic mutations

Which mutations are cancer drivers?

Find signals of selection across tumors

Cancer is an evolutionary process

How to differentiate drivers from passengers?

How to differentiate drivers from passengers?

Find signals of positive selection across tumour re-sequenced genomes

Signals of positive selection

Recurrence

MuSiC-SMG / MutSigCV

○ Mutation

Identify genes mutated more frequently than background mutation rate

Mutation clustering

OncodriveCLUST

Mutation

PIK3CA is recurrently mutated in the same residue in breast tumours

http://www.intogen.org/mutations/analysis

IntOGen Mutations Analysis

To interpret catalogs of cancer somatic mutations.

Gonzalez-Perez et al, Nature Methods 2013