
BIMM 143
More on R functions

and packages
Lecture 7

Barry Grant

http://thegrantlab.org/bimm143

Office hour check-in!

http://thegrantlab.org/bimm143

• Covered data input with the read.table() family of functions
including read.csv(), read.delim() etc. and how to set the
header and sep arguments appropriately.

• Covered the When, Why, What and How of writing your own R
functions.

➡ When: When you find yourself doing the same thing 3 or
more times with repetitive code consider writing a function.

➡ Why:
1. Makes the purpose of the code more clear
2. Reduces mistakes from copy/paste
3. Makes updating your code easer
4. Reduces code duplication and facilitates re-use.

Recap From Last Time:

https://www.biostat.wisc.edu/~kbroman/presentations/graphs2017.pdf

➡ What: A function is defined with:

1.A user selected name,

2.A comma separated set of input arguments, and

3.Regular R code for the function body including an
optional output return value e.g.

fname <- function(arg1, arg2) { paste(arg1,arg2) }

Name Input arguments Function body

Recap…

➡ How: Follow a step-by-step procedure to go from working
code snippet to refined and tested function.

[MPA Link]

1. Start with a simple problem and write a working snippet
of code.

2. Rewrite for clarity and to reduce duplication

3. Turn into an initial function

4. Test on small well defined input

5. Report on potential problem by failing early and loudly!

Recap…

https://docs.google.com/forms/d/e/1FAIpQLScfps7oNDwvjFHKEqLyWCal20mzyV7wJTfVuQMAoPgUiJkdzg/viewanalytics

➡ How: Follow a step-by-step procedure to go from working
code snippet to refined and tested function.

1. Start with a simple problem and write a working snippet
of code.

2. Rewrite for clarity and to reduce duplication

3. Turn into an initial function

4. Test on small well defined input

5. Report on potential problem by failing early and loudly!

Recap…

1. Start with a simple problem and write a working snippet
of code.

Build that skateboard
before you build the
car.

A limited but
functional thing is
very useful and
keeps the spirits
high.

[Image credit: Spotify development team]

Recap…

[MPA link]

https://docs.google.com/forms/d/e/1FAIpQLSez4_tN42yBa-C3_W7UudnHDoO1dZsK7aYrXo5fYJq5KDKRmg/viewanalytics

Back by popular demand
More examples of how to
write your own functions!

What is a function

 name.of.function <- function(arg1, arg2) {
 statements
 return(something)
}

1 2

1

2

Name (can be almost anything you want)

Body (where the work gets done)

3

3

Arguments (i.e. input to your function)

rescale <- function(x, na.rm=TRUE, plot=FALSE, ...) {

 if(na.rm) {
 rng <-range(x, na.rm=na.rm)
 } else {
 rng <-range(x)
 }

 answer <- (x - rng[1]) / (rng[2] - rng[1])

 if(plot) { plot(answer, ...) }
 return(answer)
}

source("http://tinyurl.com/rescale-R")

Test fail
rescale(c(1,10,"string"))

Revisit our first example function from last day…

The functions warning()
and stop()

• The functions warning() and stop() are used inside functions to
handle and report on unexpected situations

• They both print a user defined message (which you supply as a
character input argument to the warning() and stop() functions).

• However, warning() will keep on going with running the function
body code whereas stop() will terminate the action of the
function.

• A common idiom is to use stop(“some message”) to report on
unexpected input type or other problem early in a function, i.e.
fail early and loudly!

rescale2 <- function(x, na.rm=TRUE, plot=FALSE, ...) {

 if(!is.numeric(x)) {
 stop("Input x should be numeric", call.=FALSE)
 }

 rng <-range(x, na.rm=TRUE)

 answer <- (x - rng[1]) / (rng[2] - rng[1])

 if(plot) {
 plot(answer, ...)
 }
 return(answer)
}

source("http://tinyurl.com/rescale-R")

rescale2 <- function(x, na.rm=TRUE, plot=FALSE, ...) {

 if(!is.numeric(x)) {
 stop("Input x should be numeric", call.=FALSE)
 }

 rng <-range(x, na.rm=TRUE)

 answer <- (x - rng[1]) / (rng[2] - rng[1])

 if(plot) {
 plot(answer, ...)
 }
 return(answer)
}

source("http://tinyurl.com/rescale-R")

Suggested steps for writing
your functions

1. Start with a simple problem and get a working snippet of code

2. Rewrite to use temporary variables (e.g. x, y, df, m etc.)

3. Rewrite for clarity and to reduce calculation duplication

4. Turn into an initial function with clear useful names

5. Test on small well defined input and (subsets of) real input

6. Report on potential problem by failing early and loudly!

7. Refine and polish

Side-Note: What makes a
good function?

• Correct

• Understandable (remember that functions are for humans
and computers)

• Correct + Understandable = Obviously correct

• Use sensible names throughout. What does this code do?

• Good names make code understandable with minimal
context. You should strive for self-explanatory names

baz <- foo(df, v=0)
df2 < replace_missing(df, value=0)

More examples
• We want to write a function, called both_na(),

that counts how many positions in two input
vectors, x and y, both have a missing value

Should we start like this?

both_na <- function(x, y) {
 # something goes here?
}

No! Always start with a simple
definition of the problem

• We should start by solving a simple example
problem first where we know the answer.

Lets define an example x and y
x <- c(1, 2, NA, 3, NA)
y <- c(NA, 3, NA, 3, 4)

• Here the answer should be 1 as only the third
position has NA in both x and y and is.na()
and sum() functions

Get a working snippet of code
first that is close to what we want

use the is.na() and sum() functions
is.na(x)
[1] FALSE FALSE TRUE FALSE TRUE

sum(is.na(x))
[1] 2

Putting together!
sum(is.na(x) & is.na(y))
[1] 1

Lets define an example x and y
x <- c(1, 2, NA, 3, NA)
y <- c(NA, 3, NA, 3, 4)

Then rewrite your snippet as
a first function

Our working snippet
sum(is.na(x) & is.na(y))

No further simplification necessary
both_na <- function(x, y) {
 sum(is.na(x) & is.na(y))
}

Lets define an example x and y
x <- c(1, 2, NA, 3, NA)
y <- c(NA, 3, NA, 3, 4)

Test on various inputs
(a.k.a. eejit proofing)

• We have a function that works in at least one
situation, but we should probably check it works
in others.

x <- c(NA, NA, NA)
y1 <- c(1, NA, NA)
y2 <- c(1, NA, NA, NA)

both_na(x, y1)
[1] 2

What will this return?
both_na(x, y2)

Report on potential problem
by failing early and loudly!

• The generic warning with recycling behavior of
the last example may not be what you want as it
could be easily missed especially in scripts.

both_na2 <- function(x, y) {

 if(length(x) != length(y)) {
 stop("Input x and y should be the same length")
 }

 sum(is.na(x) & is.na(y))
}

Refine and polish: Make our function
more useful by returning more information

• The generic warning with recycling behavior of
the last example may not be what you want as it
could be easily missed especially in scripts.

both_na3 <- function(x, y) {

 if(length(x) != length(y)) {
 stop("Input x and y should be vectors of the same length")
 }

 na.in.both <- (is.na(x) & is.na(y))
 na.number <- sum(na.in.both)
 na.which <- which(na.in.both)

 message("Found ", na.number, " NA's at position(s):",
 paste(na.which, collapse=", "))

 return(list(number=na.number, which=na.which))
}

Re-cap: Steps for function writing
1. Start with a simple problem and get a working snippet of code

2. Rewrite to use temporary variables

3. Rewrite for clarity and to reduce calculation duplication

4. Turn into an initial function

5. Test on small well defined input and (subsets of) real input

6. Report on potential problem by failing early and loudly!

7. Refine and polish,

8. Document and comment within the code on your reasoning.

One last example
Find common genes in two data sets and return

their associated data (from each data set)

intersect

source("http://tinyurl.com/rescale-R")

Start with a simple version of the problem
df1 <- data.frame(IDs=c("gene1", "gene2", "gene3"),
 exp=c(2,1,1),
 stringsAsFactors=FALSE)

df2 <- data.frame(IDs=c("gene2", "gene4", "gene3", "gene5"),
 exp=c(-2, NA, 1, 2),
 stringsAsFactors=FALSE)

Simplify further to single vectors
x <- df1$IDs
Y <- df2$IDs

Now what do we do?

Follow along!

source("http://tinyurl.com/rescale-R")

source("http://tinyurl.com/rescale-R")

Simplify problem
df1 <- data.frame(IDs=c("gene1", "gene2", "gene3"),
 exp=c(2,1,1),
 stringsAsFactors=FALSE)

df2 <- data.frame(IDs=c("gene2", "gene4", "gene3", "gene5"),
 exp=c(-2, NA, 1, 2),
 stringsAsFactors=FALSE)

x <- df1$IDs
Y <- df2$IDs

Search for existing functionality to get us started...
??intersect

intersect(x, y)
[1] "gene2" "gene3"

Follow along!

Close but not useful for returning indices yet.
intersect(x, y)
[1] "gene2" "gene3"

Back to the documentation to find something more useful
??intersect

Follow along!

Close but not useful for returning indices yet.
intersect(x, y)
[1] "gene2" "gene3"

Back to the documentation to find something more useful
?"%in%"

This looks like a more useful starting point - indices!
x %in% y
[1] FALSE TRUE TRUE

Follow along!

Close but not useful for returning indices yet.
intersect(x, y)
[1] "gene2" "gene3"

Back to the documentation to find something more useful
?"%in%"

This looks like a more useful starting point - indices!
x %in% y
[1] FALSE TRUE TRUE

x[x %in% y]
[1] "gene2" "gene3"

y[y %in% x]
[1] "gene2" "gene3"

We can now cbind() these these results to yield intersect

Follow along!

Putting together
cbind(x[x %in% y], y[y %in% x])
 [,1] [,2]
[1,] "gene2" "gene2"
[2,] "gene3" "gene3"

Make it into a first function

Follow along!

Putting together
cbind(x[x %in% y], y[y %in% x])
 [,1] [,2]
[1,] "gene2" "gene2"
[2,] "gene3" "gene3"

Make it into a first function
gene_intersect <- function(x, y) {
 cbind(x[x %in% y], y[y %in% x])
}

Looks good so far but we need to work with data frames
gene_intersect(x, y)
 [,1] [,2]
[1,] "gene2" "gene2"
[2,] "gene3" "gene3"

Follow along!

Previous function for vector input
gene_intersect <- function(x, y) {
 cbind(x[x %in% y], y[y %in% x])
}

Lets change to take input data frames
gene_intersect2 <- function(df1, df2) {
 cbind(df1[df1$IDs %in% df2$IDs,],
 df2[df2$IDs %in% df1$IDs, “exp"])
}

Correct but yucky format for 2nd colnames
gene_intersect2(df1, df2)
 IDs exp df2[df2$IDs %in% df1$IDs, "exp"]
2 gene2 1 -2
3 gene3 1 1

Follow along!

Our input $IDs column name may change so lets add flexibility
By allowing user to specify the gene containing column name

Experiment first to make sure things are as we expect
gene.colname="IDs"
df1[,gene.colname]
[1] "gene1" "gene2" "gene3"

Next step: Add df1[,gene.colname] etc to our current function.

Follow along!

Looks complicated - simplify for human consumption!

gene_intersect3 <- function(df1, df2, gene.colname="IDs") {

 cbind(df1[df1[,gene.colname] %in% df2[,gene.colname],],
 exp2=df2[df2[,gene.colname] %in% df1[,gene.colname], "exp"])

}

Works but the function is not kind on the reader
gene_intersect3(df1, df2)
 IDs exp exp2
2 gene2 1 -2
3 gene3 1 1

Follow along!

Looks much better

gene_intersect4 <- function(df1, df2, gene.colname="IDs") {

 df1.name <- df1[,gene.colname]
 df2.name <- df2[,gene.colname]

 df1.inds <- df1.name %in% df2.name
 df2.inds <- df2.name %in% df1.name

 cbind(df1[df1.inds,],
 exp2=df2[df2.inds, "exp"])
}

Getting closer!
gene_intersect4(df1, df2)
 IDs exp exp2
2 gene2 1 -2
3 gene3 1 1

Test, break, fix, text again

df1 <- data.frame(IDs=c("gene1", "gene2", "gene3"),
 exp=c(2,1,1),
 stringsAsFactors=FALSE)

df3 <- data.frame(IDs=c("gene2", "gene2", "gene5", "gene5"),
 exp=c(-2, NA, 1, 2),
 stringsAsFactors=FALSE)

Works but could do with more spit and polish!
gene_intersect4(df1, df3)
 IDs exp exp2
1 gene2 1 -2
2 gene2 1 NA
Warning message:
In data.frame(..., check.names = FALSE) :
 row names were found from a short variable and have been
discarded

Additional features we could add
- Catch and stop when user inputs weird things
- Use different colnames for matching in df1 and df2,
- Match based on the content of multiple columns,
- Optionally return rows not in df1 or not in df2 with NAs
- Optionally sort results by matching column
- etc...

merge(df1, df2, by="IDs")
 IDs exp.x exp.y
1 gene2 1 -2
2 gene3 1 1

For more details refer to
sections 2-5 in last days

handout!

Remember Section 1B (question 6) is your last days
homework (see also scoring rubric).

The Sections 2 to 5 are there for your benefit.

http://tinyurl.com/bimm143-L6

http://tinyurl.com/bimm143-L6

CRAN &
Bioconductor
Major repositories for R packages

that extend R functionality

R Highlight!

CRAN: Comprehensive R
Archive Network

• CRAN is a network of mirrored servers around the
world that administer and distribute R itself, R
documentation and R packages (basically add on
functionality!)

• There are currently ~11,700 packages on CRAN in
the areas of finance, bioinformatics, machine
learning, high performance computing, multivariate
statistics, natural language processing, etc. etc.

https://cran.r-project.org/

Side-note: R packages come
in all shapes and sizes

R packages can be of variable quality and often there are
multiple packages with overlapping functionality.

Refer to relevant publications, package
citations, update/maintenance history,

documentation quality and your own tests!

From: “Credit for Code”. Nature Genetics (2014), 46:1

The journal has sufficient experience with CRAN
and Bioconductor resources to endorse their use by
authors. We do not yet provide any endorsement
for the suitability or usefulness of other solutions.

“
”

https://cran.r-project.org

1

https://cran.r-project.org
https://cran.r-project.org

Installing a package
RStudio > Tools > Install Packages

> install.packages("bio3d")
> library("bio3d")

Bioconductor
R packages and utilities for working with

high-throughput genomic data

http://bioconductor.org

http://bioconductor.org

Fir0002/Flagstaffotos

More pragmatic:
Bioconductor is a software
repository of R packages
with some rules and guiding
principles.

Version 3.3 had 1211 software
packages.

Bioconductor has
emphasized

Reproducible Research
since its start, and has been
an early adapter and driver
of tools to do this.

“Bioconductor: open software development for
computational biology and bioinformatics”

Gentleman et al
Genome Biology 2004, 5:R80

“Orchestrating high-throughput genomic
analysis with Bioconductor”

Huber et al
Nature Methods 2015, 12:115-121

Installing a
bioconductor package

> source("https://bioconductor.org/biocLite.R")
> biocLite()
> biocLite("GenomicFeatures")

See: http://www.bioconductor.org/install/

http://www.bioconductor.org/install/

Your Turn: Form a group of 3,
pick a package to explore and install,

Report back to the class.
ggplot2, bio3d, rgl, rentrez, igraph,

blogdown, shiny, circlize,

Questions to answer:
• How does it extend R functionality? (i.e. What can you do with it that you

could not do before?)
• How is it’s documentation, vignettes, demos and web presence?
• Can you successfully follow a tutorial or vignette to get started quickly with

the package?
• Can you find a GitHub or Bitbucket site for the the package with a regular

heartbeat?

Do it Yourself!

Collaborative Google Doc Link

https://docs.google.com/document/d/1sFN7u8h2Sz0DwC-wscwJz3kkzf7OOP82oQR4jubvfZQ/edit?usp=sharing

Summary
• R is a powerful data programming language and

environment for statistical computing, data analysis and
graphics.

• Introduced R syntax and major R data structures

• Demonstrated using R for exploratory data analysis and
graphics.

• Exposed you to the why, when, and how of writing your
own R functions.

• Introduced CRAN and Bioconductor package repositories.

[Muddy Point Assessment Link]

https://goo.gl/forms/lghN1iI2fjfwxpvq2

Learning Resources
• TryR. An excellent interactive online R tutorial for beginners.

< http://tryr.codeschool.com/ >

• RStudio. A well designed reference card for RStudio.
< https://help.github.com/categories/bootcamp/ >

• DataCamp. Online tutorials using R in your browser.
< https://www.datacamp.com/ >

• R for Data Science. A new O’Reilly book that will teach you
how to do data science with R, by Garrett Grolemund and
Hadley Wickham.

< http://r4ds.had.co.nz/ >

http://tryr.codeschool.com/
http://www.rstudio.com/wp-content/uploads/2016/01/rstudio-IDE-cheatsheet.pdf
https://www.datacamp.com/
http://r4ds.had.co.nz/

