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NEXT UP:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
» Composition, form, forces and dynamics

» Representing and interpreting protein
structure

* Modeling energy as a function of structure

» Example application areas

- drug discovery & Predicting functional dynamics



THE TRADITIONAL EMPIRICAL PATH TO
DRUG DISCOVERY

Compound library
(commercial, in-house,

synthetic, natural)\

High throughput screening

(HTS) \
Hit confirmation

N\

Lead compounds

(e.g., uM Ky) \

Lead optimization
(Medicinal chemistry)

v

Animal and clinical€—potent drug candidates
evaluation (nM Ky)



COMPUTER-AID

D LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Ensemble Docking

v
Scoring

v
Visual

anaiysis
in vitro
assays
000 +00ZINC

v

in vitro
assays

Reduce chemical waste

Facilitate faster progress



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based
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Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex
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DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy

Potential function

Energy as function of structure
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STRUCTURE-BAS

D VIRTUAL SCREENING

Compound 3D structure of target
database (crystallography, NMR,

bioinformatics
modeling)

Virtual screening
(e.g., computational
docking)

/ Candidate ligands

Ligand optimization

Med chem, Experimental assay
crystallography, modelmg l

ngands —>3  Drug
candidates



COMPOUND LIBRARIES
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FRAGMENTAL STRUCTURE-BAS
SCREENING

[T
W,

“Fragment” library 3D structure of target

N «

Fragment docking

|

Compound design

|

Experimental assay and ligand optimization

Med chem, crystallography, modeling - Drud candidates
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http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html
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Multiple non active-site pockets identified

Small organic probe fragment affinities map multiple potential
binding sites across the structural ensemble.
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Ensemble docking & candidate inhibitor testing

Top hits from ensemble docking against distal pockets were tested for
inhibitory effects on basal ERK activity in glioblastoma cell lines.

Ensemble computational docking Compound effect on U251 cell line
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Compound testing in
cancer cell lines

PLoS One (2011, 2012)



Proteins and Ligand are Flexible

Protein




COMMON SIMPLIFICATIONS USED IN
PHYSICS-BASED DOCKING

Quantum effects approximated classically
Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Hand-on time!

https://bioboot.github.io/bimm143 W18/lectures/#12

You can use the classroom computers or your own
laptops. If you are using your laptops then you will need
to install VMD and MGLTools


https://bioboot.github.io/bimm143_W18/lectures/#12

Proteins and Ligand are Flexible

Protein
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Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Scenario 2
Structure of Targeted Protein Unknown:
Ligand-Based Drug Discovery

e.g. MAP Kinase Inhibitors ~
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Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don't
bind tightly enough

A company wants to work around another company’s chemical
patents

An high-affinity ligand is toxic, is not well-absorbed, difficult to
synthesize etc.



LIGAND-BAS

D VIRTUAL SCREENING

Compound Library Known Ligands

N e

Molecular similarity
Machine-learning
Etc.

v

/ Candidate ligands
Optimization l

Med chem, crystallography, Assay

modeling \ l

Actives ——3Potent drug candidates



LIGAND-

Compounds
(available/synthesizable)
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CHEMICAL FINGERPRINTS
BINARY STRUCTURE KEYS

Molecule 2 - i u




CHEMICAL SIMILARITY FROM
FINGERPRINTS

Molecule 2 - i __.

Tanimoto Similarity T & =025
(or Jaccard Index), T N,

Intersection .::h
I BN =

Union

_ N




Pharmacophore Models
dappako (drug) + dopa (carry)

Bulky
A 3-point pharmacophore hydrophobe




Molecular Descriptors
More abstract than chemical fingerprints

Physical descriptors

molecular weight
charge L meCeere o~

f'.:'_":\\ ) I ) B T,
dipole moment ""“:1"JL“::'L"-'|’ S -
number of H-bond donors/acceptors ré\| S
number of rotatable bonds S * Rotatable bonds

hydrophobicity (log P and clogP)
Topological
branching index

measures of linearity vs interconnectedness

Etc. etc.



A High-Dimensional “Chemical Space”

Each compound is at a point in an n-dimensional space
Compounds with similar properties are near each other

Descriptor 3

Q@ o o

Descriptor 2

Point representing a
® compound in descriptor
space

Apply multivariate statistics and machine learning for descriptor-
selection. (e.g. partial least squares, PCA, support vector machines,
random forest, deep learning etc.)



Approved drugs and clinical candidates

* Catalogue approved drugs and clinical candidates from
FDA Orange Book, and USAN applications

* Small molecules and biotherapeutics
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LIPINSKI'S RULE OF FIVE

Lipinski’s rule of five states that, in general, an orally active drug
has no more than one violation of the following criteria:

* Not more than 5 hydrogen bond donors (nitrogen or oxygen

atoms with one or more hydrogen atoms)

* Not more than 10 hydrogen bond acceptors (nitrogen or

oxygen atoms)
e A molecular mass less than 500 daltons

* An octanol-water partition coefficient log P not greater than 5



Set of approved drugs or medicinal chemistry compounds
and their targets can be used to derive rules for drug
discovery success (or failure):

What features make a successful drug target?

What features make a protein druggable by small
molecules?

What features of a compound contribute to good oral
bioavailability?

What chemical groups may be associated with toxicity?



Druggability prediction
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nature Vol 46016 July 2009 |doi:10.1038/nature08160

ARTICLES

The genome of the blood fluke Schistosoma
mansoni

Matthew Berriman', Brian J. Haas’+, Philip T. LoVerde', R. Alan Wilson®, Gary P. Dillon®, Gustavo C. Cerqueira®™”*,
Susan T. Mashiyama®'?, Bissan Al-Lazikani'!, Luiza F. Andrade'?, Peter D. Ashton®, Martin A. A'_-‘.Iet’(l

Daniella C. Bartholomeu®+, Gaelle Blandin®, Conor R. Caffrey Avril Coghlan®?, Richard Coulson®, Tim A. Day'?,
Art Delcher’, Ricardo DeMarco’ 1516 Appolinaire Djikeng®, Tina Eyre', John A. Gamble', Elodie Ghedm t,Yong Gu',
Christiane Hertz-Fowler', Hirohisha Hirai'’, Yuriko Hirai'’, Robin Houston', Alasdair lvens'+, David A. Johnston'®t,
Daniela Lacerda’t, Camila D. Macedo®®, Paul McVeigh'?, Zemin Ning', Guilherme Oliveira'?, John P. Overington?,
Julian Parkhill', Mihaela Pertea’-', Raymond J. Pierce'’, Anna V. Protasio', Michael A. Quail',

Marie-Adéle Rajandream’, Jane Rogers'+, Mohammed Sajid”+, Steven L. Salzberg™*, Mario Stanke™,

Adrian R. Tivey', Owen White*t, David L. Williams*!+, Jennifer Wortman®+, Wenjie Wu*+, Mostafa Zamanian'*
Adhemar Zerlotini'!, Claire M. Fraser-Liggett'+, Barclay G. Barrell' & Najib M. El-Sayed™ 6.5

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76
countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes,
with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As
the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution
of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into
organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make
schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than
300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have
identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs
may be active. The information generated provides an invaluable resource for the research community to develop much
needed new control tools for the treatment and eradication of this important and neglected disease.

Schistosomiasis is a neglected tropical disease that ranks with
malaria and tuberculosis as a major source of morbidity affecting
approximately 210 million people in 76 countries, despite strenuous
control efforts’. 1t is caused by blood flukes of the genus Schistosoma
{phylum Platyhelminthes), which exhibit dioecy and have complex
life cycles comprising several morphologically distinct phenotypes in
definitive human and intermediate snail hosts. Schistosoma mansonti,

one of the three major human species, occurs across much of

sub-Saharan Africa, parts of the Middle East, Brazil, Venezuela and
some West Indian islands. The mature flukes dwell in the human
portal vasculature, depositing eggs in the intestinal wall that either

pass to the gut lumen and are voided in the faeces, or travel to the liver
where they trigger immune-mediated granuloma formation and
peri-portal fibrosis®, Approximately 280,000 deaths per annum are
attributable to schistosomiasis in sub-Saharan Africa alone™.
However, the disease is better known for its chronicity and debilitat-
ing morbidity*. A single drug, praziquantel, is almost exclusively used
to treat the infection but this does not prevent reinfection, and with
the large-scale control programmes in place, there is concern about
the development of drug resistance. Indeed, resistance can be selected
for in the laboratory and there are reports of increased drug tolerance
in the field".

“Wellcome Trust Sanger Institute, “European Bininformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 15D, UK. “The Institute for Genomic
Research/The J. Craig Venter Institute, 9712 Medical Center Drive, Rockville, Maryland 20850, USA. “Departments of Biochemistry and Pathology, Mail Code 7760, University of
Texas, Health Science Center, San Antonio, Texas 78229-3900, USA. “Department of Biology, University of York, PO Box 373, York YO10 5YW, UK. “Department of Cell Biclogy and
Molecular Genetics, ‘Center for Bicinformatics and Computatlonal Biology. 2nd *Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742, USA.
"Sandler Center for Basic Ressarch in Parasitic Diseasas, "Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biomedical
Research (QB3), Byers Hall, 1700 4th Street, University of California, San Francisco, California 94158-2330, USA. "Cancer Research UK Centre for Cancer Therapeutics, The Institute
of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK. 7Cmtm de Pesquisas Reng Rarhnu (CPqRR)—FIQCRUZ, Av Augusto de Lima
1715, Bele Horizente, MG 30190002 Braznl “Department ofMlcroblology University College Cork, Western Road, Cork, Ireland. *Department of Biomedical Sciences, lowa State
University, Ames, lowa 50011, USA. SInstituto de Quimica, "instituto de Fisica de $ao Carlos, Universidade de Sdo Pauln Brazil. "Primate Research Institute, Kyoto University,
Inuyama, Aichi 484- 8506 Japan. “Biomedical Parasitology Division, The Natural History Museum, Lenden SW7 SBD, UK. ™Inserm, U 547, Université Lille 2, In>mu1 Pasteur de Lille,
IFR 142, Lille, France. lnstitut fir Mikrobiologie und Genetik, Abteilung Bininformatik, Universitit Gattingen, Goldschmidtstrafie 1, Géttingen 37077, Germany. ' Department of
Biological Sciences, lllinois State University, Normal, lllincis 61790-4120, USA. *Present addresses: The Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
(B.LH.); Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil (D.C.B. and D.L.); Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
(E.G.); Fios Genomics Ltd, ETTC, Knng s Bulldmg> Edinburgh EHS 3JL, UK (A.L); Biomedical Imaging Unit, School of Medicine, University of Sou\hamplon Southampton 5076 6YD, UK
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Quantifying the chemical beauty of drugs

G. Richard Bickerton, Gaia V. Paolini, Jérémy Besnard, Sorel Muresan & Andrew L. Hopkins
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Abstract

Abstract « References - Author information - Supplementary information

Drug-likeness is a key consideration when selecting compounds during the early stages of drug
discovery. However, evaluation of drug-likeness in absolute terms does not reflect adequately the
whole spectrum of compound quality. More worryingly, widely used rules may inadvertently foster
undesirable molecular property inflation as they permit the encroachment of rule-compliant
compounds towards their boundaries. We propose a measure of drug-likeness based on the concept
of desirability called the quantitative estimate of drug-likeness (QED). The empirical rationale of QED
reflects the underlying distribution of molecular properties. QED is intuitive, transparent,
straightforward to implement in many practical settings and allows compounds to be ranked by their
relative merit. We extended the utility of QED by applying it to the problem of molecular target
druggability assessment by prioritizing a large set of published bioactive compounds. The measure
may also capture the abstract notion of aesthetics in medicinal chemistry.

Subject terms: Pharmacology - Theoretical chemistry
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Active compounds from ChEMBL can be used to train
target prediction models

Variety of methods used
Multi-Category Naive Bayesian Classifier (e.g., ChEMBL)

Chemical similarity between ligand sets (e.g., SEA)
3D similarity between ligands (e.g., SwissTargetPrediction)

Protein and ligand descriptors (e.g., Proteochemometric models)

Open source tools available for many methods
E.g., Scikit-learn with RDKit

Examples at: https://github.com/chembl/mychembl/blob/master/ipython_notebooks
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Abstract

The lack of success in target-based screening approaches to the discovery of antibacterial
agents has led to reemergence of phenotypic screening as a successful approach of identi-
fying bioactive, antibacterial compounds. A challenge though with this route is then to identi-
fy the molecular target(s) and mechanism of action of the hits. This target identification, or
deorphanization step, is often essential in further optimization and validation studies. Direct
experimental identification of the molecular target of a screening hitis often complex, pre-
cisely because the properties and specificity of the hit are not yet optimized against that tar-
get, and so many false positives are often obtained. An alternative is to use computational,
predictive, approaches to hypothesize a mechanism of action, which can then be validated
in a more directed and efficient manner. Specifically here we present experimental valida-
tion of an in silico prediction from a large-scale screen performed against Mycobactenum
tuberculosis (Mtb), the causative agent of tuberculosis. The two potent anti-tubercular com-
pounds studied in this case, belonging to the tetrahydro-1,3,5-triazin-2-amine (THT) family,
were predicted and confirmed to be an inhibitor of dihydrofolate reductase (DHFR), a known
essential Mtb gene, and already clinically validated as a drug target. Given the large num-
ber of similar screening data sets shared amongst the community, this in vitro validation of
these target predictions gives weight to computational approaches to establish the mecha-
nism of action (MoA) of novel screening hit.

Introduction

The human pathogen, Mycobacterium tuberculosis (Mth) is the causative agent of tuberculosis
(TB), an infectious discase that is widespread, infecting around one third of the world’s popula-
tion [1]. The discovery of streptomycin in 1943, and the subsequent discovery and
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Large-scale prediction and testing of
drug activity on side-effect targets

Eugen Lounkine™*, Michael ], Keiser™™, Sleven \.\‘hilebread', Dmitri Mikhailov', Jacques H;»lmon", Jeremy L. Jenkins',
Paul Tavan®, Fekhard Weber”, Allison K. Doak?, Serge Coté?, Brian K. Shoichet® & Taszlo Urban®

Discovering the unintended ‘off-targets’ that predict adverse drug reactions is daunting by empirical methods alone.
Drugs can act on several protein targets, some of which can be unrelated by conventional molecular metrics, and
hundreds of proteins have been implicated in side effects. Here we use a computational strategy to predict the
activity of 656 marketed drugs on 73 unintended ‘side-effect’ targets. Approximately half of the predictions were
confirmed, either from proprietary databases unknown to the method or by new experimental assays. Affinities for
these new off-targets ranged from 1 nM to 30 pM. To explore relevance, we developed an association metric to prioritize
those new off-targets that explained side effects better than any known target of a given drug, creating a drug-target-
adverse drug reaction network. Among these new associations was the prediction that the abdominal pain side effect of
the synthetic oestrogen chlorotrianisene was mediated through its newly discovered inhibition of the enzyme
cyclooxygenase-1. The clinical relevance of this inhibition was borne out in whole human blood platelet aggregation
assays. This approach may have wide application to de-risking toxicological liabilities in drug discovery.

Adverse drug reactions (ADRs) can limit the use of otherwise effective
drugs. Next to lack of efficacy, they are the leading cause for attrition
in clinical trials of new drugs'~* and are more prominent still in the
failure of molecules to advance from pre-clinical research into human
trials*. Some ADRs are caused by modulation of the primary target
of a drug®, others result from non-specific interactions of reactive
metabolites®. In many cases, however, ADRs are caused by unintended
activity at off-targets. Notorious examples of off-target toxicity include
that of the appetite suppressant fenfluramine-phentermine (fen
phen), which was withdrawn from the market after numerous patient
deaths. These owed to the activation of the 5-hydroxytryptamine-2B
(5-HT,p) receptor by one of its metabolites, norfenfluramine, leading
to proliferative valvular heart disease”. Similarly, well-known drugs,
such as the antihistamine terfenadine, have been withdrawn because
they caused arrhythmias and death, which have been attributed to
their off-target inhibition of the human ether-a-go-go-related gene
potassium channel (hERG, also known as KCNH2)™. Prediction of
unknown off-target drug interactions might prevent such disastrous
drug toxicities, which are often detected only after fatalities in the
clinic, and might allow safer molecules to be prioritized for pre-clinical
development. Methods to systematically predict off-targets, and asso
ciate these with side effects, have thus attracted intense interest™'®,
frequently in the form of either chemical genomics'™*
approaches.

Whereas the informatics methods have never been tested system-
atically on a large scale, in principle they can be deployed against
thousands of targets. Here we present a large-scale, prospective evalu-
ation of safety target prediction using one such method, the similarity
ensemble approach (SEA)* 7. SEA calculates whether a molecule will
bind to a target based on the chemical features it shares with those of
known ligands, using a statistical model to control for random
similarity. Because SEA relies only on chemical similarity, it can be
applied systematically and, for those targets that have known ligands,

orinformatics'®*¢

comprehensively. Tor 656 drugs approved for human use (Sup-
plementary Table 1), targets were predicted from among 73 proteins
(Supplementary Table 2 and Methods) with established association of
ADRs**#, for which assays were available at Novartis. Encouragingly,
many of the predictions were confirmed, often at pharmacologically
relevant concentrations. This motivated us to develop a guilt-by-
association metric that linked the new targets to the ADRs of
those drugs for which they are the primary or well-known off-targets,
creating a drug-target-ADR network. The applicability and the
limitations of this approach will be considered.

Testing the predictions

‘The 656 drugs were computationally screened for their likelihood to
bind to 73 targets (Supplementary Table 2) using SEA™", The targets
belong to the Novartis in vitro safety panels based on their association
with ADRs™*, Here we insisted that they also be described in the
ChEMBL database®, enabling correspondence with SEA predictions
(Supplementary Table 2). ChEMBI. annotates more than 285,000
ligands modulating more than 1,500 different human targets with
affinities better than 30 uM. SEA calculated the similarity of each drug
versus each set of ligands for the 73 targets, comparing the overall set
similarity to a model of such expected at random. Tor instance, the
sodium channel blocker aprindine loosely resembled the set of
histamine H, ligands; although no single H, ligand was strongly
similar to the drug (‘Table 1), the overall similarity of the set was much
greater than expected at random, Ieading to a highly significant SEA
expectation value (E value) of 5% 10 * between aprinidine and H,
receptor ligands. Only 1,644 of the more than 47,000 possible drug
target pairs had significant E values. Of these, 403 were already known
in ChEMBI. and so were trivially confirmed; we do not consider these
further. Of the remaining 1,241 predictions, 348 (28%) were unknown
to ChEMBL, but could be found in proprictary ligand-target
databases that were unavailable to SEA (see Methods). The remaining

INovartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA *SeaChange Pharmaceuticals Inc, 409 lllinois Street, San Franciste, California 94158, USA, *Department of
Phamaceutical Chemistry, University of Califonyz, San Francisen, 1700 dth Street, Byers Hzll Suite 508D, California 94158-2550, USA. “Novartis hstitutes for Biomedical Research, 4056 Basel,

Switzedand.
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NEXT UP:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure

» Composition, form, forces and dynamics

» Representing and interpreting protein
structure

* Modeling energy as a function of structure

» Example application areas

* Drug discovery & predicting functional dynamics




PREDICTING FUNCTIONAL DYNAMICS

* Proteins are intrinsically flexible molecules with
internal motions that are often intimately coupled to

their biochemical function
— E.g. ligand and substrate binding, conformational
activation, allosteric regulation, etc.

* Thus knowledge of dynamics can provide a deeper
understanding of the mapping of structure to
function

— Molecular dynamics (MD) and normal mode analysis
(NMA) are two major methods for predicting and
characterizing molecular motions and their properties




MOLECULAR DYNAMICS SIMULATION

e Use force-field to find
Potential energy between
all atom pairs

e Move atoms to next state

* Repeat to generate
trajectory

McCammon, Gelin & Karplus, Nature (1977)
| See: https://www.youtube.com/watch?v=ui1ZysMFcKKk |



https://www.youtube.com/watch?v=ui1ZysMFcKk

» Divide time into discrete (~11fs) time steps (At)
(for integrating equations of motion, see below)

LI B e e e e e e



» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

LI B e e e e e e

» At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

2
miiR,g = —V,;E(R)

di?

Empirical force field

B(R) = b Ed'r_i E(R) + %: ded E(R




» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

LI B e e e e e e

» At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

d? S
mi—— Ry = — Vi E(R)

di?
Empirical force field

B(R) = b Ed'd E(R) + § ded E(R

» Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)
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BASIC ANATOMY OF A MD SIMULATION

» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

% B o o e e
| Ateach time step calculate pair-wise atomic forces (F(f)
' (by evaluating force-field gradient)

Nucleic motion described classically

B |
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. » Usethef~ _ ma™ .. velocities and move atoms to new positjons
{ E"p:‘ (\\efa:, numerically via the “leapfrog” scheme) “'
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MD Prediction of Functional Motions

“close”

0.00 ns

60.00 ns
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Yao and Grant, Biophys J. (2013)




Simulations Identify Key Residues
Mediating Dynamic Activation
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Yao ... Grant, Journal of Biological Chemistry
(2016)
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MOLECULAR SIMULATIONS TO GPCRS
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PROTEINS JUMP BETWEEN MANY, HIERARCHICALLY
ORDERED “CONFORMATIONAL SUBSTATES”

. partial unfolding,
'3’ 4| larger structural
rearrangements

localized
motions

~

AS1oug

Conformational Coordinat%

H. Frauenfelder et al., Science 229 (1985) 337



MOLECULAR DYNAMICS IS VERY EXPENSIVE

Example: F,-ATPase in water (183,674 atoms) for 1 nanosecond:
=> 106 integration steps
=> 8.4 * 101 floating point operations/step
[n(n-1)/2 interactions]

Total: 8.4 * 107 flop
(on a 100 Gflop/s cpu: ca 25 years!)

... but performance has been improved by use of:

multiple time stepping ca. 2.5 years
fast multipole methods ca. 1 year
parallel computers ca. 5 days
modern GPUs ca. 1day

(Anton supercomputer ca. minutes)



COARSE GRAINING: NORMAL MODE ANALYSIS
(NMA)

* MD is still time-consuming for large systems

* Elastic network model NMA (ENM-NMA) is an example
of a lower resolution approach that finishes in seconds
even for large systems.

* 1 bead/

| 1 amino acid
"”T » Connected by
springs

Atomistic Coarse Gralned



NMA models the protein as a network of elastic strings

Proteinase K




Hand-on time!

https://bioboot.github.io/bimm143 W18/lectures/#12

Focus on section 3 & 4 exploring PCA and NMA apps


https://bioboot.github.io/bimm143_W18/lectures/#12

ACHIEVEMENTS CHALLENGES

llan Samish et al. Bioinformatics 2015;31:146-150




INFORMING SYSTEMS BIOLOGY?

Literature and ontologies

T
M “" - L

DNA & RNA sequence

Gene expression

Protein sequence

DNA & RNA structure

Protein families,
motifs and domains

Protein interactions

Pathways

Systems



SUMMARY

Structural bioinformatics is computer aided structural biology

Described major motivations, goals and challenges of structural
bioinformatics

Reviewed the fundamentals of protein structure

Introduced both physics and knowledge based modeling
approaches for describing the structure, energetics and
dynamics of proteins computationally

Introduced both structure and ligand based bioinformatics
approaches for drug discovery and design



