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‣ Overview of structural bioinformatics
• Major motivations, goals and challenges 

‣ Fundamentals of protein structure
• Composition, form, forces and dynamics

‣ Representing and interpreting protein 
structure

• Modeling energy as a function of structure

‣ Example application areas
• drug discovery & Predicting functional dynamics

NEXT UP:



THE TRADITIONAL EMPIRICAL PATH TO 
DRUG DISCOVERY

Compound library  
(commercial, in-house, 

synthetic, natural)

High throughput screening 
(HTS)

Hit confirmation

Lead compounds 
(e.g., µM Kd)

Lead optimization
(Medicinal chemistry)

Potent drug candidates  
(nM Kd) 

Animal and clinical  
evaluation



COMPUTER-AIDED LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Reduce chemical waste

Facilitate faster progress



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



SCENARIO 1:
RECEPTOR-BASED DRUG DISCOVERY

HIV Protease/KNI-272 complex

Structure of Targeted Protein Known: Structure-Based Drug Discovery



PROTEIN-LIGAND DOCKING

VDW

Dihedral

Screened Coulombic
+ -

Potential function  
Energy as function of structure

Docking software 
Search for structure of lowest energy

Structure-Based Ligand Design



STRUCTURE-BASED VIRTUAL SCREENING

Candidate ligands

Experimental assay

Compound 
database

3D structure of target 
(crystallography, NMR, 

bioinformatics 
modeling)

Virtual screening 
(e.g., computational 

docking)

Ligands

Ligand optimization  
Med chem, 

crystallography, modeling

Drug 
candidates



COMPOUND LIBRARIES

Commercial 
(in-house pharma) Government (NIH) Academia



FRAGMENTAL STRUCTURE-BASED 
SCREENING

“Fragment” library 3D structure of target 

Fragment docking

Compound design

http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html

Experimental assay and ligand optimization  
Med chem, crystallography, modeling Drug candidates

http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html


Small organic probe fragment affinities map multiple potential 
binding sites across the structural ensemble.

Multiple non active-site pockets identified
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Ensemble docking & candidate inhibitor testing 
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Top hits from ensemble docking against distal pockets were tested for 
inhibitory effects on basal ERK activity in glioblastoma cell lines.

Ensemble computational docking

PLoS One (2011, 2012) 
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Proteins and Ligand are Flexible

+

Ligand

Protein

Complex

ΔGo



COMMON SIMPLIFICATIONS USED IN  
PHYSICS-BASED DOCKING

Quantum effects approximated classically

Protein often held rigid

Configurational entropy neglected

Influence of water treated crudely



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Do it Yourself!

Hand-on time!  
https://bioboot.github.io/bimm143_W18/lectures/#12

You can use the classroom computers or your own 
laptops. If you are using your laptops then you will need 

to install VMD and MGLTools 

https://bioboot.github.io/bimm143_W18/lectures/#12


Proteins and Ligand are Flexible

+

Ligand

Protein

Complex

ΔGo



HTTP://129.177.232.111:3848/PCA-APP/

HTTPS://DCMB-GRANT-SHINY.UMMS.MED.UMICH.EDU/PCA-APP/

HTTP://BIO3D.UCSD.EDU/PCA-APP/

http://129.177.232.111:3848/pca-app/
https://dcmb-grant-shiny.umms.med.umich.edu/pca-app/
http://BIO3D.ucsd.eDU/PCA-APP/


Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



e.g. MAP Kinase Inhibitors

Using knowledge of 
existing inhibitors to 
discover more

Scenario 2
Structure of Targeted Protein Unknown: 

Ligand-Based Drug Discovery



Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don’t 
bind tightly enough

A company wants to work around another company’s chemical 
patents

An high-affinity ligand is toxic, is not well-absorbed, difficult to 
synthesize etc.



LIGAND-BASED VIRTUAL SCREENING

Compound Library Known Ligands

Molecular similarity
Machine-learning

Etc.

Candidate ligands

Assay

Actives

Optimization  
Med chem, crystallography, 

modeling

Potent drug candidates



CHEMICAL SIMILARITY  
LIGAND-BASED DRUG-DISCOVERY

Compounds 
(available/synthesizable)

Compare with known ligands
Different

Test experimentally

Similar

Don’t bother



CHEMICAL FINGERPRINTS 
BINARY STRUCTURE KEYS
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CHEMICAL SIMILARITY FROM 
FINGERPRINTS  

NI=2Intersection

NU=8Union

Tanimoto Similarity 
(or Jaccard Index), T



+ 1

Bulky 
hydrophobe

Aromatic

5.0 ±0.3 Å 3.2 ±0.4 Å

2.8 ±0.3 Å

Pharmacophore Models
Φάρμακο (drug) + Φορά (carry)

A 3-point pharmacophore



Molecular Descriptors 
More abstract than chemical fingerprints

Physical descriptors
molecular weight
charge
dipole moment
number of H-bond donors/acceptors
number of rotatable bonds
hydrophobicity (log P and clogP)

Topological
branching index
measures of linearity vs interconnectedness

Etc. etc.

Rotatable bonds



A High-Dimensional “Chemical Space”
Each compound is at a point in an n-dimensional space

Compounds with similar properties are near each other

Descr
iptor 1

Descriptor 2

D
es

cr
ip

to
r 3

Point representing a 
compound in descriptor 
space

Apply multivariate statistics and machine learning for descriptor-
selection. (e.g. partial least squares, PCA, support vector machines, 

random forest, deep learning etc.)
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Approved drugs and clinical candidates 
•  Catalogue approved drugs and clinical candidates from 

FDA Orange Book, and USAN applications 

•  Small molecules and biotherapeutics 
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Drug properties 
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LIPINSKI’S RULE OF FIVE

Lipinski’s rule of five states that, in general, an orally active drug 
has no more than one violation of the following criteria:

• Not more than 5 hydrogen bond donors (nitrogen or oxygen 
atoms with one or more hydrogen atoms)

• Not more than 10 hydrogen bond acceptors (nitrogen or 
oxygen atoms)

• A molecular mass less than 500 daltons

• An octanol-water partition coefficient log P not greater than 5



Rules for drug discovery success 

•  Set of approved drugs or medicinal chemistry compounds 
and their targets can be used to derive rules for drug 
discovery success (or failure): 

•  What features make a successful drug target? 

•  What features make a protein druggable by small 
molecules? 

•  What features of a compound contribute to good oral 
bioavailability? 

•  What chemical groups may be associated with toxicity? 



34

Details of sites 
identified 

View cavities 
(and ligands) 
on structure 

Druggability prediction 



Examples 



Target prediction models 

•  Active compounds from ChEMBL can be used to train 
target prediction models 

•  Variety of methods used 
•  Multi-Category Naïve Bayesian Classifier (e.g., ChEMBL) 

•  Chemical similarity between ligand sets (e.g., SEA) 

•  3D similarity between ligands (e.g., SwissTargetPrediction) 

•  Protein and ligand descriptors (e.g., Proteochemometric models) 

•  Open source tools available for many methods 
•  E.g., Scikit-learn with RDKit  

Examples at: https://github.com/chembl/mychembl/blob/master/ipython_notebooks 

 

SEA: 10.1038/nbt1284 
SwissTargetPrediction: 10.1093/nar/gku293 
Proteochemometric modelling: 10.1186/s13321-015-0063-9 



Examples 



‣ Overview of structural bioinformatics
• Major motivations, goals and challenges 

‣ Fundamentals of protein structure
• Composition, form, forces and dynamics

‣ Representing and interpreting protein 
structure

• Modeling energy as a function of structure

‣ Example application areas
• Drug discovery & predicting functional dynamics

NEXT UP:



PREDICTING FUNCTIONAL DYNAMICS

• Proteins are intrinsically flexible molecules with 
internal motions that are often intimately coupled to 
their biochemical function

– E.g.  ligand and substrate binding, conformational 
activation, allosteric regulation, etc.

• Thus knowledge of dynamics can provide a deeper 
understanding of the mapping of structure to 
function 

– Molecular dynamics (MD) and normal mode analysis 
(NMA) are two major methods for predicting and 
characterizing molecular motions and their properties



McCammon, Gelin & Karplus, Nature (1977) 
[ See: https://www.youtube.com/watch?v=ui1ZysMFcKk ]

• Use force-field to find 
Potential energy between 
all atom pairs 

• Move atoms to next state 

• Repeat to generate 
trajectory

MOLECULAR DYNAMICS SIMULATION

https://www.youtube.com/watch?v=ui1ZysMFcKk


Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

t



Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

At each time step calculate pair-wise atomic forces (F(t)) 
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field

t



Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

At each time step calculate pair-wise atomic forces (F(t)) 
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field

Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

t



BASIC ANATOMY OF A MD SIMULATION
Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

At each time step calculate pair-wise atomic forces (F(t)) 
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field

Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

REPEAT,  (iterate many, many times… 1ms = 1012 time steps) 

t



MD Prediction of Functional Motions 
“close”

“open”

Yao and Grant, Biophys J. (2013)



Simulations Identify Key Residues 
Mediating Dynamic Activation 

Yao … Grant, Journal of Biological Chemistry 
(2016)



EXAMPLE APPLICATION OF 
MOLECULAR SIMULATIONS TO GPCRS 

Cell$
membrane

Binding

GPCR

Activation
G-protein-
coupling

G$protein

Structure determines function
• Example: G protein-coupled receptors (GPCRs) 

• Largest class of human drug targets 
• Function: allow the cell to sense and respond to molecules outside it

Binding

GPCR

G protein

Cell 
Membrane



PROTEINS JUMP BETWEEN MANY, HIERARCHICALLY 
ORDERED “CONFORMATIONAL SUBSTATES”

t

H. Frauenfelder et al., Science 229  (1985) 337



MOLECULAR DYNAMICS IS VERY EXPENSIVE

 Example: F1-ATPase in water (183,674 atoms) for 1 nanosecond: 
  => 106 integration steps 
  => 8.4 * 1011 floating point operations/step  
       [n(n-1)/2 interactions]

       Total: 8.4 * 1017 flop
      (on a 100 Gflop/s cpu: ca 25 years!)

… but performance has been improved by use of:
      multiple time stepping ca.  2.5 years
      fast multipole methods ca.   1 year 
      parallel computers         ca.  5 days

modern GPUs         ca.  1 day
(Anton supercomputer         ca.  minutes)



• MD is still time-consuming for large systems
• Elastic network model NMA (ENM-NMA) is an example 

of a lower resolution approach that finishes in seconds 
even for large systems.

Atomistic

C. G.

• 1 bead /  
1 amino acid

• Connected by 
springs

Coarse Grained

i

j
rij

COARSE GRAINING: NORMAL MODE ANALYSIS 
(NMA)



NMA models the protein as a network of elastic strings

Proteinase K 



Do it Yourself!

Hand-on time!  

Focus on section 3 & 4 exploring PCA and NMA apps

https://bioboot.github.io/bimm143_W18/lectures/#12

https://bioboot.github.io/bimm143_W18/lectures/#12


Ilan Samish et al. Bioinformatics 2015;31:146-150 



INFORMING SYSTEMS BIOLOGY?

Genomes

DNA & RNA sequence

DNA & RNA structure

Protein sequence

Protein families,  
motifs and domains

Protein structure

Protein interactions

Chemical entities

Pathways

Systems

Gene expression

Literature and ontologies



• Structural bioinformatics is computer aided structural biology

• Described major motivations, goals and challenges of structural 
bioinformatics 

• Reviewed the fundamentals of protein structure

• Introduced both physics and knowledge based modeling 
approaches for describing the structure, energetics and 
dynamics of proteins computationally

• Introduced both structure and ligand based bioinformatics 
approaches for drug discovery and design

SUMMARY


