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NEXT UP:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure
* Modeling energy as a function of structure

» Example application areas
+ drug discovery & Predicting functional dynamics

THE TRADITIONAL EMPIRICAL PATH TO
DRUG DISCOVERY

Compound library
(commercial, in-house,
synthetic, natural)\

High throughput screening

HTS)

Hit confirmation

Lead compounds

(e.g., UM K) N

Lead optimization
(Medicinal chemistry)
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Animal and clinical€=——potent drug candidates
evaluation (NM Ky)

COMPUTER-AIDED LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Reduce chemical waste

Scoring

Visual
analysis

Facilitate faster progress

in vitro
assays




Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

SCENARIO I:
RECEPTOR-BASED DRUG DISCOVERY

Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex

PROTEIN-LIGAND DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy Potential function
Energy as function of structure

e

o—0
VDW

O—
Screened Coulombic

i
Pt \ E
ey
= |

Dihedral




STRUCTURE-BASED VIRTUAL SCREENING

Compound 3D structure of target
database (crystallography, NMR,

bioinformatics
modeling)

Virtual screening
(e.g., computational
docking)

/ Candidate ligands

Ligand optimization

Med chem, Experimental assay
crystallography, modeling l,

Ligands —»  Drug
candidates

COMPOUND LIBRARIES

Commercial
(in-house pharma)

Government (NIH) Academia

FRAGMENTAL STRUCTURE-BASED
SCREENING

“Fragment” library 3D structure of target

Fragment docking
Compound design

Experimental assay and ligand optimization
Med chem, crystallography, modeling
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http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html

Multiple non active-site pockets identified

Small organic probe fragment affinities map multiple potential
binding sites across the structural ensemble.
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Ensemble docking & candidate inhibitor testing Proteins and Ligand are Flexible

Top hits from ensemble docking against distal pockets were tested for Protein
inhibitory effects on basal ERK activity in glioblastoma cell lines. e S
Ensemble computational docking Compound effect on U251 cell line ngand ________
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COMMON SIMPLIFICATIONS USED IN
PHYSICS-BASED DOCKING

Quantum effects approximated classically _
Two main approaches:

(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely




Hand-on time!

https://bioboot.qgithub.io/bimm143_W18/lectures/#12

You can use the classroom computers or your own
laptops. If you are using your laptops then you will need
to install VMD and MGLTools

......

Proteins and Ligand are Flexible

Protein
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HTTP://129.177.232.111:3848/PCA-APP/

HTTPS//DCMB-GRANT-SHINYUMMS.MED.UMICH.EDU/PCA-APP/

HTTP//BIO3D.UCSD.EDU/PCA-APP/

Two main approaches:

(1). Receptor/Target-Based
(2). Ligand/Drug-Based




Scenario 2
Structure of Targeted Protein Unknown:
Ligand-Based Drug Discovery

e.g. MAP Kinase Inhibitors ~
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Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don’t
bind tightly enough

A company wants to work around another company’s chemical
patents

An high-affinity ligand is toxic, is not well-absorbed, difficult to
synthesize etc.

LIGAND-BASED VIRTUAL SCREENING

Compound Library Known Ligands

N

Molecular similarity
Machine-learning
Etc.

v

Candidate ligands

Optimization l
Med chem, crystallography, Assay

modeling \

Actives —3Potent drug candidates

CHEMICAL SIMILARITY
LIGAND-BASED DRUG-DISCOVERY

Compounds
(available/synthesizable)

Different

— Don’t bother

Test experimentally




CHEMICAL FINGERPRINTS
BINARY STRUCTURE KEYS
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CHEMICAL SIMILARITY FROM
FINGERPRINTS
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Pharmacophore Models
®dpuako (drug) + Popa (carry)

A 3-point pharmacophore

Bulky
hydrophobe

Molecular Descriptors
More abstract than chemical fingerprints

Physical descriptors
molecular weight

charge _— | I/j[“ e CAE
dipole moment ST D e
number of H-bond donors/acceptors E/m.l N
number of rotatable bonds \) * Rotatable bonds

hydrophobicity (log P and clogP)
Topological
branching index

measures of linearity vs interconnectedness

Etc. etc.




A High-Dimensional “Chemical Space”

Each compound is at a point in an n-dimensional space
Compounds with similar properties are near each other

Descriptor 3

Descriptor 2

Point representing a
© compound in descriptor
space

Apply multivariate statistics and machine learning for descriptor-
selection. (e.g. partial least squares, PCA, support vector machines,
random forest, deep learning etc.)

Approved drugs and clinical candidates

* Catalogue approved drugs and clinical candidates from
FDA Orange Book, and USAN applications

* Small molecules and biotherapeutics
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EMBL-EBI

Drug properties

Availability Type

Drug Type
ule of Five

First in Class

Parenteral

Chirality

o

synthetic
small molecule @ 5 .

natural product- racemic
derived mixture

prescription
only

|E| Oral
|:| Black-Box Warning

ver-
he-counter

chirally
pure

iscontinued

Ingredient-related Product-related

(USANSs, candidates
and approved drugs)

(approved drugs only)

EMBL-EBI

LIPINSKI'S RULE OF FIVE

Lipinski’s rule of five states that, in general, an orally active drug
has no more than one violation of the following criteria:

* Not more than 5 hydrogen bond donors (nitrogen or oxygen
atoms with one or more hydrogen atoms)

* Not more than 10 hydrogen bond acceptors (nitrogen or
oxygen atoms)

¢ A molecular mass less than 500 daltons

* An octanol-water partition coefficient log P not greater than 5




Rules for drug discovery success

* Set of approved drugs or medicinal chemistry compounds
and their targets can be used to derive rules for drug
discovery success (or failure):

What features make a successful drug target?

What features make a protein druggable by small

molecules?

What features of a compound contribute to good oral

bioavailability?

What chemical groups may be associated with toxicity?

Druggability prediction
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ARTICLES

The genome of the blood fluke Schistosoma
mansoni

NATURE CHEMISTRY | ARTICLE < &

Quantifying the chemical beauty of drugs

G. Richard Bickerton, Gaia V. Paolini, Jérémy Besnard, Sorel Muresan & Andrew L. Hopkins
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Abstract
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D isakey when selecting ds during the early stages of drug
discovery. However, evaluation of drug-likeness in absolute terms does not reflect adequately the
whole spectrum of compound quality. More worryingly, widely used rules may inadvertently foster
undesirable molecular property inflation as they permit the encroachment of rule-compliant
‘compounds towards their boundaries. We propose a measure of drug-likeness based on the concept
of y estimate of (QED). The empirical rationale of QED
reflects the underlying distribution of molecular properties. QED is intuitive, transparent,

76
countries.
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organs. Our analysis h i targets. The deficis in

the
may be active. The i i to develop much
necded new i is Important and

to implement in many practical settings and allows compounds to be ranked by their
relative merit. We extended the utiity of QED by applying it to the problem of molecular target
druggability assessment by prioritizing a large set of published bioactive compounds. The measure
may also capture the abstract notion of aesthetics in medicinal chemistry.

Subject terms: Pharmacology - Theoretical chemistry
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Target prediction models

* Active compounds from ChEMBL can be used to train
target prediction models
* Variety of methods used
Multi-Category Naive Bayesian Classifier (e.g., ChEMBL)
Chemical similarity between ligand sets (e.g., SEA)
3D similarity between ligands (e.g., SwissTargetPrediction)
Protein and ligand descriptors (e.g., Proteochemometric models)
* Open source tools available for many methods
E.g., Scikit-learn with RDKit

Examples at: https://github.com/chembl/mychembl/blob/master/ipython_notebooks




Examples ARTICLE

cob10.3030/maure11159

Large-scale prediction and testing of
drug activity on side-effect targets
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NEXT UP:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure

* Modeling energy as a function of structure

» Example application areas
* Drug discovery & predicting functional dynamics

PREDICTING FUNCTIONAL DYNAMICS

* Proteins are intrinsically flexible molecules with
internal motions that are often intimately coupled to
their biochemical function

— E.g. ligand and substrate binding, conformational
activation, allosteric regulation, etc.

* Thus knowledge of dynamics can provide a deeper
understanding of the mapping of structure to
function

— Molecular dynamics (MD) and normal mode analysis
(NMA) are two major methods for predicting and
characterizing molecular motions and their properties

MOLECULAR DYNAMICS SIMULATION

* Use force-field to find
Potential energy between
all atom pairs

* Move atoms to next state

* Repeat to generate
trajectory

McCammon, Gelin & Karplus, Nature (1977)
[ See: https://www.youtube.com/watch?v=ui1ZysMFcKk |




» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5B e

» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5B e

» At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

ﬁ{ = —V",E(ﬁ)

d
dt?
‘ Empirical force field

ER =¥ BB+ ¥ ER®

{ 2
bonded non - bonded

m;

» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5B e

» At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

d* i

m;

dt
‘ Empirical force field
BR)= ¥ ER+ ¥ LR

bonded non  bonded

» Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)
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BASIC ANATOMY OF A MD SIMULATION

» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5B e

» At each time step calculate pair-wise atomic forces (F(1))
(by evaluating force-field gradient)

Nucleic motion described classically
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MD Prediction of Functional Motions
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Simulations Identify Key Residues
Mediating Dynamic Activation
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Yao ... Grant, Journal of Biological Chemistry
(2016)

EXAMPLE APPLICATION OF
MOLECULAR SIMULATIONS TO GPCRS

Binding/ w

Y [ G protein

Activation ")) couplin
> )\ P g.

G protein

PROTEINS JUMP BETWEEN MANY, HIERARCHICALLY
ORDERED “CONFORMATIONAL SUBSTATES”

. partial unfolding,
O\ N
. -8 37| larger structural
collective motions 1S *| rearangements

localized
motions

;
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Conformational Coordinafe
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H. Frauenfelder et al., Science 229 (1985) 337




MOLECULAR DYNAMICS IS VERY EXPENSIVE

Example: F;-ATPase in water (183,674 atoms) for 1 nanosecond:
=> 106 integration steps
=> 8.4 * 10" floating point operations/step
[n(n-1)/2 interactions]

Total: 8.4 * 1017 flop
(on a 100 Gflop/s cpu:  ca 25 years!)

.. but performance has been improved by use of:

multiple time stepping ca. 2.5years
fast multipole methods ca. 1 year
parallel computers ca. 5days
modern GPUs ca. 1day
(Anton supercomputer ca. minutes)

COARSE GRAINING: NORMAL MODE ANALYSIS
(NMA)

* MD is still time-consuming for large systems

* Elastic network model NMA (ENM-NMA) is an example
of a lower resolution approach that finishes in seconds
even for large systems.
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NMA models the protein as a network of elastic strings

Proteinase K

Hand-on time!

https://bioboot.qgithub.io/bimm143_W18/lectures/#12

Focus on section 3 & 4 exploring PCA and NMA apps




ACHIEVEMENTS

CHALLENGES

llan Samish et al. Bioinformatics 2015;31:146-150

INFORMING SYSTEMS BIOLOGY?

Literature and ontologies

Gene expression
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DNA & RNA sequence

DNA & RNA structure
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Protein families,
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SUMMARY

Structural bioinformatics is computer aided structural biology

Described major motivations, goals and challenges of structural
bioinformatics

Reviewed the fundamentals of protein structure

Introduced both physics and knowledge based modeling
approaches for describing the structure, energetics and
dynamics of proteins computationally

Introduced both structure and ligand based bioinformatics

approaches for drug discovery and design




