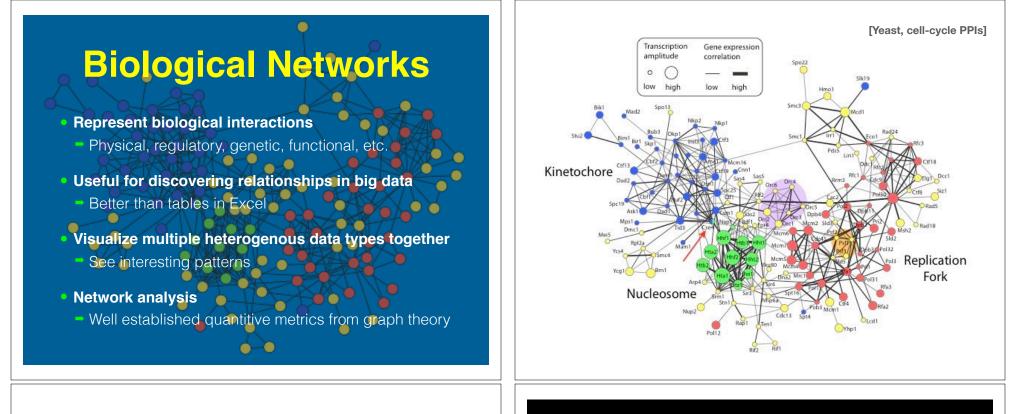
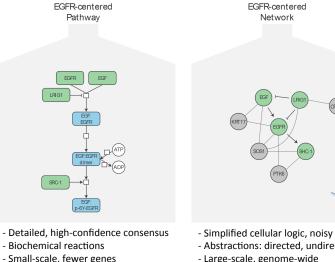

TODAYS MENU:

- Network introduction
- Network visualization
- Network analysis

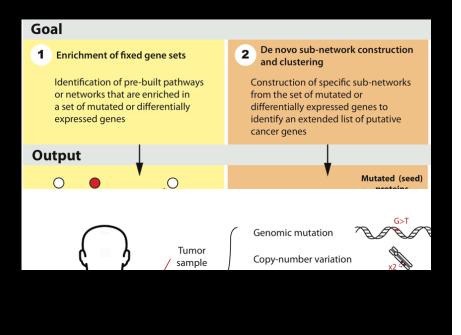
Hands-on:

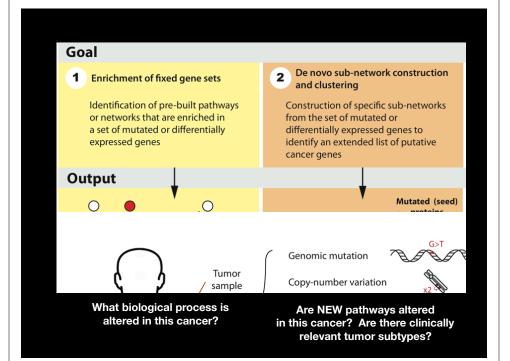
Cytoscape and R (igraph) software tools for network visualization and analysis


Networks can be used to model many types of biological data


TODAYS MENU:

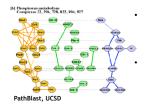
- Network introduction
- Network visualization
- Network analysis
- Hands-on:


Cytoscape and R (igraph) software tools for network visualization and analysis



Pathways vs Networks

- Abstractions: directed, undirected
 - Large-scale, genome-wide
- Concentrated from decades of literature Constructed from *omics* data integration



Applications of Network Biology

jActiveModules, UCSD

Gene Function Prediction shows connections to sets of genes/proteins involved in same biological process

Detection of protein complexes/other modular structures discover modularity & higher order organization (motifs, feedback loops)

Network evolution -ACODE. University of Toron biological process(es) conservation across species

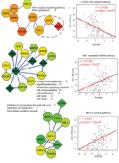
Prediction of new interactions and functional associations -

Statistically significant domaindomain correlations in protein interaction network to predict protein-protein or genetic interaction: allostery in molecular networks

DomainGraph, Max Planck Institute

Slide from: humangenetics-amc.n

Applications of Network Informatics in Disease



Identification of disease subnetworks – identification

of disease network subnetworks that are transcriptionally active in disease (disease sub-types).

Subnetwork-based diagnosis - source of biomarkers for disease classification, identify interconnected genes whose aggregate expression levels are predictive of disease state

Subnetwork-based gene association - map common pathway mechanisms affected by collection of genotypes

PinnacleZ, UCSD

Slide from: humangenetics-amc.nl

What's missing

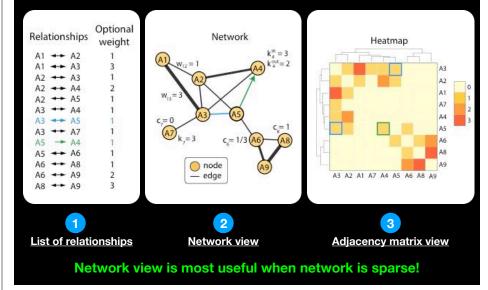
Dynamics

- Pathways/networks represented as static processes
- Difficult to represent a calcium wave or a feedback loop
- More detailed mathematical representations exist that handle these e.g. Stoichiometric modeling, Kinetic modeling (VirtualCell, E-cell, ...)
- Detail atomic structures & exclusivity of interactions.
- Context cell type, developmental stage

What have we learned so far...

- Networks are useful for seeing relationships in large data sets
 - Important to understand what the nodes and edges mean
 - Important to define the biological question know what you want to do with your gene list or network
- · Many methods available for network analysis
 - Good to determine your question and search for a solution
 - Or get to know many methods and see how they can be applied to your data

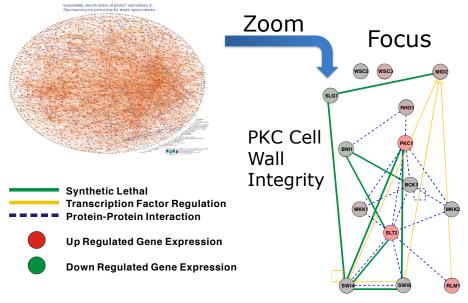
TODAYS MENU:

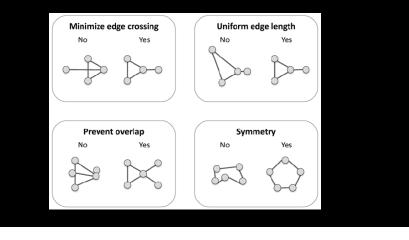

- Network introduction
- Network visualization
- Network analysis
- Hands-on:

Cytoscape and R (igraph) software tools for network visualization and analysis

Network Visualization Outline

- Network representations
- Automatic network layout
- Visual features
- Visually interpreting a network

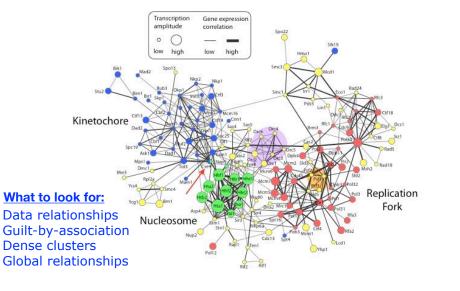

Network representations


Automatic network layout

- Force-directed layout: Nodes repel and edges pull
- Good for up to 500 nodes
 - Bigger networks give hairballs
 - Reduce number of edges
 - Or just use a heatmap for dense networks
- Advice: try force directed first, or hierarchical for tree-like networks
- Tips for better looking networks
 - Manually adjust layout
 - Load network into a drawing program (e.g. Illustrator) and adjust labels

Dealing with 'hairballs': zoom or filter

 Modern graph layouts are optimized for speed and aesthetics. In particular, they seek to minimize overlaps and edge crossing, and ensure similar edge length across the graph.



Visual Features

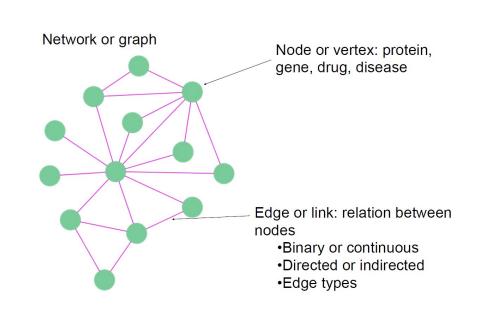
- Node and edge attributes
 - Text (string), integer, float, Boolean, list
 - E.g. represent gene, interaction attributes
- Visual attributes
 - Node, edge visual properties
 - Color, shape, size, borders, opacity...

		Circle
		Delta
		(Cancel) (Apply)
OO Sel dge Line Style	iect New Value	
~~~~	ZIGZAG	Received the select New Value
	SINEWAVE	M v
	LONG_DASH	
	DOT	
	VERTICAL_SLASH	Parallelogram
	FORWARD_SLASH	Octagon
	PARALLEL_LINES	
	BACKWARD_SLASH	
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	SEPARATE_ARROW	Hexagon
	SOLID	Round Rectangle
	EQUAL_DASH	Diamond
<del>}}}}</del>	CONTIGUOUS_ARROW	Rectangle
	DASH_DOT	
	Cancel Apply	Cancel Apply

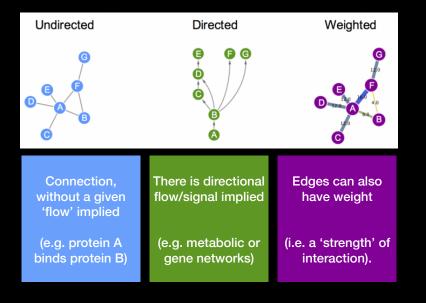
## Visually Interpreting a Network



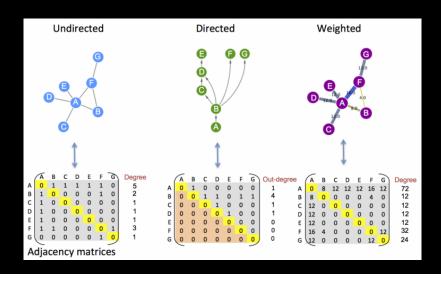
## What have we learned so far...


- Automatic layout is required to visualize networks
- Networks help you visualize interesting relationships in your data
- Avoid hairballs by focusing analysis
- Visual attributes enable multiple types of data to be shown at once – useful to see their relationships

#### **TODAYS MENU:**

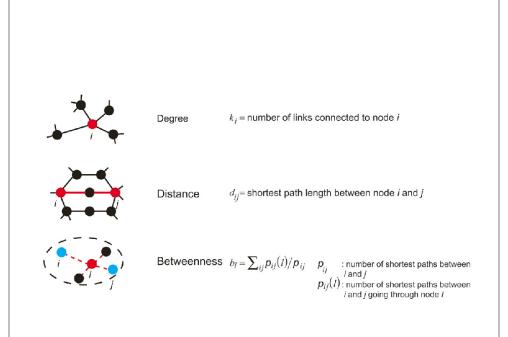

- Network introduction
- Network visualization
- Network analysis
- Hands-on:
  - Cytoscape and R (igraph) software tools for network visualization and analysis

# Introduction to graph theory

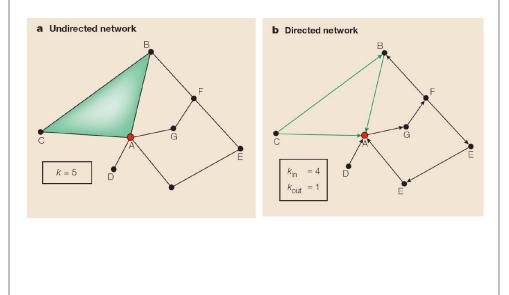

- Biological network analysis historically originated from the tools and concepts of social network analysis and the application of graph theory to the social sciences.
- Wikipedia defines graph theory as:
  - "[...] the study of graphs used to model pairwise relations between objects. A graph in this context is made up of **vertices** connected by **edges**".
- In practical terms, it is the set of concepts and methods that can be used to visualize and analyze networks

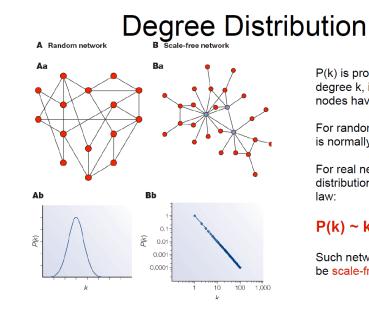


## Types of network edges




• Every network can be expressed mathematically in the form of an adjacency matrix





# Network topology

- Topology is the way in which the nodes and edges are arranged within a network.
- The most used topological properties and concepts include:
  - **Degree** (i.e. how may node neighbors)
  - **Communities** (i.e. clusters of well connected nodes)
  - **Shortest Paths** (i.e. shortest distance between 2 nodes)
  - Centralities (i.e. how 'central' is a given node?)
  - Betweenness (a measure of centrality based on shortest paths)

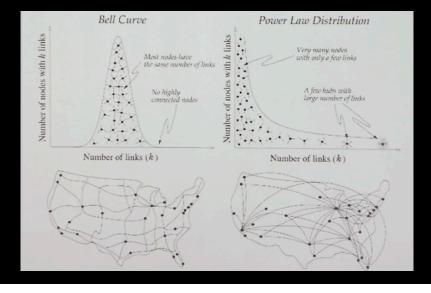


## Network Measures: Degree





P(k) is probability of each degree k, i.e fraction of nodes having that degree.


For random networks, P(k) is normally distributed.

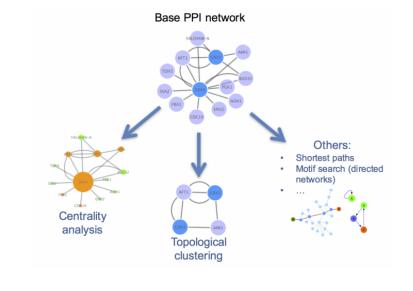
For real networks the distribution is often a powerlaw:

**P(k)** ~ k^{-γ}

Such networks are said to be scale-free

## Random graphs vs scale free

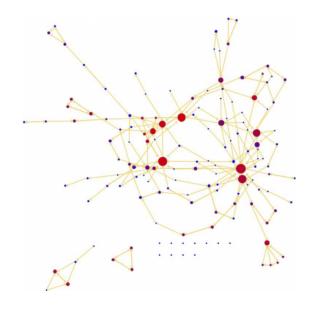



# Implications

- Many biological networks (protein-protein interaction networks regulatory networks, etc...) are thought to have hubs, or nodes with high degree.
- For protein-protein interaction networks (PPIs) these hubs have been shown to be older [1] and more essential than random proteins [2]
  - [1] Fraser et al. *Science* (2002) 296:750
  - [2] Jeoung et al. Nature (2001) 411:41

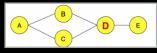
## Scale-Free Networks are Robust

- Complex systems (cell, internet, social networks), are resilient to component failure
- Network topology plays an important role in this robustness
  - Even if ~80% of nodes fail, the remaining ~20% still maintain network connectivity
- Attack vulnerability if hubs are selectively targeted
- In yeast, only ~20% of proteins are lethal when deleted, and are 5 times more likely to have degree k>15 than k<5.</li>


Analyzing the topological features of a network is a useful way of identifying relevant participants and substructures that may be of biological significance.



# Centrality analysis


- Centrality gives an estimation on how important a node or edge is for the connectivity or the information flow of the network
- It is a useful parameter in signalling networks and it is often used when trying to find drug targets.
- Centrality analysis in PPINs usually aims to answer the following question:
  - Which protein is the most important and why?

Bigger, redder nodes have higher centrality values in this representation.



# **Betweenness centrality**

- Nodes with a high betweenness centrality are interesting because they lie on communication paths and can control information flow.
- The number of shortest paths in the graph that pass through the node divided by the total number of shortest paths.
- Betweenness centrality measures how often a node occurs on all shortest paths between two nodes.



# Community analysis

• **Community**: A general, catch-all term that can be defined as a group (i.e. *cluster*) of nodes that are more connected within themselves than with the rest of the network. The precise definition for a community will depend on the method or algorithm used to define it. Looking for communities in a network is a nice strategy for reducing network complexity and extracting functional modules (e.g. protein complexes) that reflect the biology of the network.

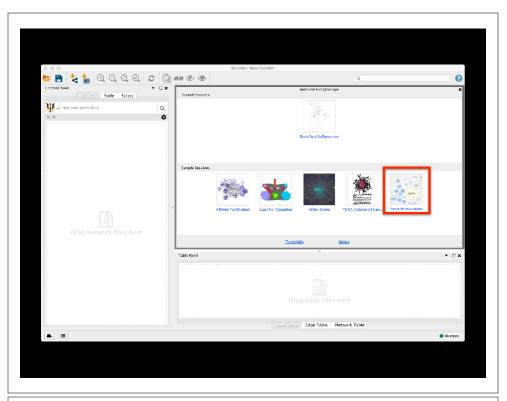


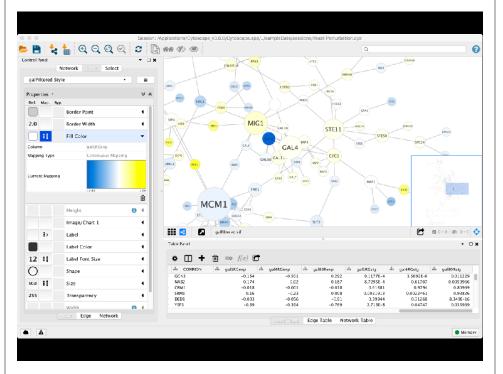
### TODAYS MENU:

- Network introduction
- Network visualization
- Network analysis

#### Hands-on:

• <u>Cytoscape</u> and <u>R</u> (igraph) software tools for network visualization and analysis


# Practical issues


- Major tools for the creation, manipulation and visualization of biological networks include:
  - <u>Cytoscape</u>,
  - Gephi
  - R packages (igraph, graph, tidygraph)
- Tools for network analysis and modeling include:
  - Cytoscape apps/plugins
  - R packages (igraph and others)
  - NetworkX (for Python)
  - ByoDyn, COPASI

#### http://cytoscape.org/download.php

**Note:** If you are on a classroom Mac then be sure to install to your **Desktop** directory!







# Cytoscape Memory Issues

- Cytoscape uses lots of memory and doesn't like to let go of it
  - An occasional restart when working with large networks is a good thing
  - Destroy views when you don't need them
- Since version 2.7, Cytoscape does a much better job at "guessing" good default memory sizes than previous versions but it still not great!
  - Java doesn't give us a good way to get the memory right at start time

# Cytoscape Sessions

- Sessions save pretty much everything:
  - Networks
  - Properties
  - Visual styles
  - Screen sizes
- Saving a session on a large screen may require some resizing when opened on your laptop

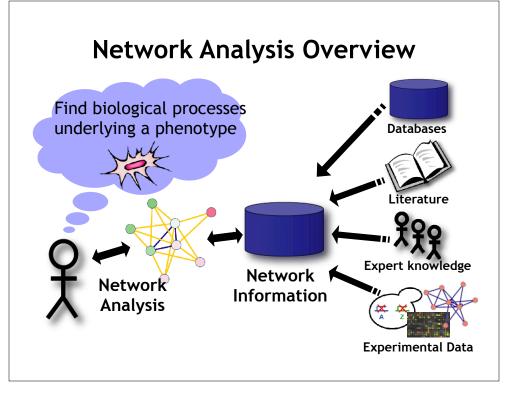
# Hands-on: Part 1

#### https://bioboot.github.io/bimm143_W18/lectures/#17

- The data used in **part 1** is from yeast, and the genes Gal1, Gal4, and Gal80 are all yeast transcription factors. The experiments all involve some perturbation of these transcription factor genes.
- In this network view, the following node attributes have been mapped to visual style properties in cytoscape:
  - The "gal80exp" expression values are used for Node Fill Color.
  - The Default Node Color, for nodes with no data mapping, is dark grey.
  - Nodes with expression values that are significant are rendered as rectangles, others are ovals.
  - The common name for each gene is used as the Node Label.

# Hands-on: Part 2

#### https://bioboot.github.io/bimm143_W18/lectures/#17


- The data used in part 2 is from an ocean metagenomic sequencing project - where all the genetic material in a sample of ocean water is sequenced.
- We will use the R package **igraph** and the bioconductor package **RCy3** together with Cytoscape.
- Many of these microbial species in these types of studies have not yet been characterized in the lab.
  - Thus, to know more about the organisms and their interactions, we can observe which ones occur at the same sites.
  - One way to do that is by using co-occurrence networks where you examine which organisms occur together at which sites.

# Summary

- Network biology makes use of the tools provided by graph theory to represent and analyze complex biological systems.
- Major types of biological networks include: genetic, metabolic, cell signaling etc.
- Networks are represented by nodes and edges.
- Biological networks have a number of characteristics, mainly:
  - Scale-free: A small number of nodes (hubs) are a lot more connected than the average node.
  - **Transitivity**: The networks contain communities of nodes that are more connected internally than they are to the rest of the network.
- Major tools for network analysis include: Cytoscape, igraph, Gephi and NetworkX.
- Two of the most used topological methods to analyze PPINs are:
  - Centrality analysis: Which identifies the most important nodes in a network, using different ways to calculate centrality.
  - Community detection: Which aims to find heavily inter-connected components that may represent protein complexes and machineries

# Summary cont...

- **Cytoscape** is a useful, free software tool for network visualization and analysis
  - Provides basic network manipulation features
  - Plugins/Apps are available to extend the functionality
- The R **igraph** package has extensive network analysis functionality beyond that in Cytoscape
- The R bioconductor package RCy3 package allows us to bring networks and associated data from R to Cytoscape so we can have the best of both worlds.

