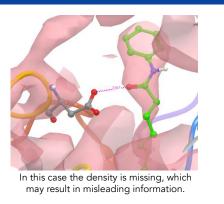
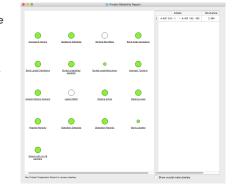

Ligands are flexible, an docking determines best fit based on Docking at its core is a shape matching problem interatomic interactions LIGAND Bonding Interactions · Bond length Bond angels PROTEIN Torsions Non-Bonding Interactions van der Waal's interactions H-bonds · Charge-Charge interactions • pi-pi, pi-cation, etc. Limitations of Docking Entropy is not accounted for Protein flexibility is ignored · Solvation is not accounted for 5 SCHRÖDINGER. 6 SCHRÖDINGER. A Docking Program Generates a... How to create docking models with Glide: Protein Prep Wizard Grid Generation 1) A Binding Pose Glide Docking A model of the ordination of the ligand in the binding site of the receptor. Accuracy: RMSD ~1 Å to Co-crystal Structures 2) Docking Score A numerical value of the representing the quality of the pose. Often presented as LigPrep binding energy. Accuracy: Good for enrichment, High false positive rate, does not correlate with dGbinding 7 SCHRÖDINGER. 8 SCHRÖDINGER.

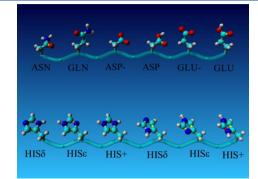
Glide Docking Workflow:



Most SBDD Projects Utilize Crystal Structures Image: structure of the structu

Limitations to crystal structure models


In this case, the ligand density is relatively unambiguous.


SCHRÖDINGER.

Good CADD Starts with Good Science: Minimizing model limitations

- 1. The quality of your structure matters
- 2. The conformational state of your structure matters
- 3. The design of your experiment matters

Limitations of crystal structure models continued: Tautomeric states.

pH-dependent tautomeric and protonation states for His, Glu, and Asp

SCHRÖDINGER.

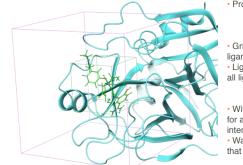
Protein Preparation Wizard Augments Crystal Data

• Fix common problems


- Protonation
- Missing side chains
- Missing loops

• Remove unwanted molecules

- Counterions, artifacts of crystallography, waters
- Biologically relevant?


• Optimize your model structure

- Hydrogen-bond optimization
- Restrained minimization

<section-header><section-header><section-header><complex-block><complex-block><complex-block>

What is the role of the grid?

16

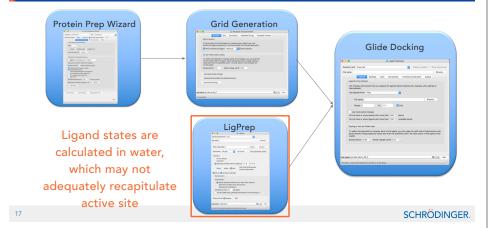
Protein represented as a series of grids

- Site point grid (10Å³ by default)
- Chemscore grids
- Adaptive Coulomb/vdW grids
 Grids precomputed once and applied for each

ligand

• Ligand "center" must be found within inner box and all ligand atoms must be found within outer box

- Inner box: 10Å3 by default


Outer box: (12Å+0.8*ligand diameter)3 by default
 With energy-based grids ligand interaction energy

for atom in a grid point evaluated using trilinear interpolation

• Want to use Goldilocks inner grid, i.e. smallest grid

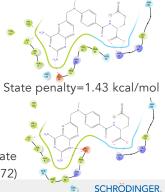
that will find desired poses

Glide Docking Workflow:

Required Inputs for Protein-Ligand Docking - Ligands

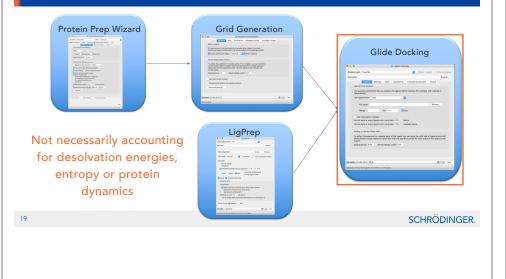
- Glide will only dock ligand states that are provided
- Recommendations for prepared ligand structures

-Use LigPrep to generate low energy ionization/tautomeric states for ligands

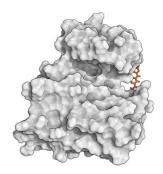

•Epik state penalties that estimate free energy required to generate ionization state in water with corrections for interaction with metal sites

-Typical expansion of compounds by ionization/tautomeric/stereo expansion is 2.5x

- Increase or decrease pH value and +/- range depending on

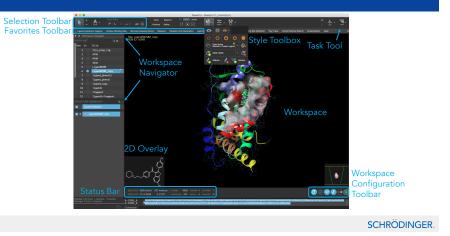

target physiological location and project goals Methotrexate

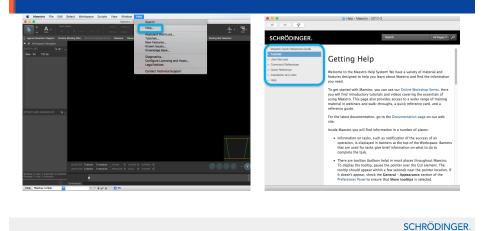
bound to DHFR (1U72)



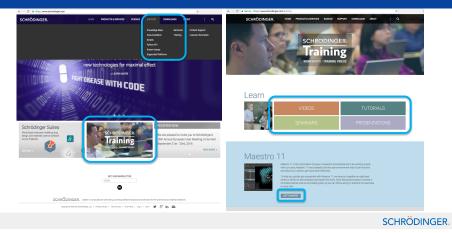
State penalty=0.0 kcal/mol

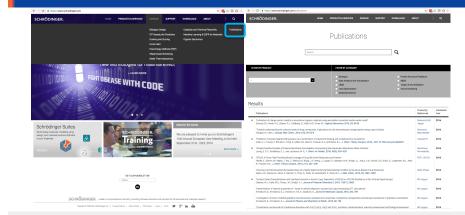
Glide Docking Workflow:


Proteins are flexible which is a limitation in Glide based docking on its own... but when combined with molecular dynamics can be a powerful tool!



SCHRÖDINGER.


The Maestro 11 Interface is User Friendly


The Help Menu Contains More Detail

Learn More with the Training Portal

Use Our List of Publications to Generate Ideas

SCHRÖDINGER.

Other Education Resources are Available Online

- Knowledge Base: <u>https://www.schrodinger.com/kb/</u>
- Support Center: https://www.schrodinger.com/supportcenter
- Training Center: <u>https://www.schrodinger.com/training</u>
- Schrödinger Seminar Series: <u>https://www.schrodinger.com/seminars/current</u> <u>https://www.schrodinger.com/seminars/archives</u>
- Script Center: <u>https://www.schrodinger.com/scriptcenter/</u>

SCHRÖDINGER.

Maestro 11 Useful Video Links

- Maestro 11 Quick Start Guide
 - https://www.schrodinger.com/training/maestro11/home
- Maestro 11 Short Videos

 <u>https://www.schrodinger.com/training/videos/maestro-11</u>
- Maestro 11 Introductory Webinar Series
 - <u>https://www.schrodinger.com/seminars/archives/1238/introductory-series</u>
- Maestro 11 Advanced Webinar Series
 - <u>https://www.schrodinger.com/seminars/archives/1239/advanced</u>
- Protein Preparation Wizard
 <u>https://www.schrodinger.com/training/videos/protein-preparation</u>
- Other Small-Molecule Drug Discovery Tools
- https://www.schrodinger.com/training/videos/small-molecule-drug-discovery

SCHRÖDINGER.

Thanks for Joining Us!

Scientific and Technical Support help@schrodinger.com

Email us for more info at Training@schrodinger.com

