

Recap From Last Time:

- · Bioinformatics is computer aided biology.
 - Deals with the collection, archiving, organization, and interpretation of a wide range of biological data.
- The NCBI and EBI are major online bioinformatics service providers.
- Introduced via **hands-on session** the BLAST, Entrez, GENE, OMIM, UniProt, Muscle and PDB bioinformatics tools and databases.
 - Muddy point assessment (see <u>results</u>)
- There are a large number of bioinformatics databases (see <u>handout</u>!).
- Also covered: Course structure; Supporting course website, Ethics code, and Introductions...

Today's Menu

Classifying Databases	Primary, secondary and composite Bioinformatics databases				
Using Databases	Vignette demonstrating how major Bioinformatics databases intersect				
Major Biomolecular Formats	How nucleotide and protein sequence and structure data are represented				
Alignment Foundations	Introducing the <i>why</i> and <i>how</i> of comparing sequences				
Alignment Algorithms	Hands-on exploration of alignment algorithms and applications				

Primary, secondary & composite databases

Bioinformatics databases can be usefully classified into *primary*, *secondary* and *composite* according to their data source.

- Primary databases (or <u>archival databases</u>) consist of data derived experimentally.
 - GenBank: NCBI's primary nucleotide sequence database.
 - PDB: Protein X-ray crystal and NMR structures.
- Secondary databases (or <u>derived databases</u>) contain information derived from a primary database.
 - RefSeq: non redundant set of curated reference sequences primarily from GenBank
 - PFAM: protein sequence families primarily from UniProt and PDB
- Composite databases (or metadatabases) join a variety of different primary and secondary database sources.
 - · OMIM: catalog of human genes, genetic disorders and related literature
 - **GENE**: molecular data and literature related to genes with extensive links to other databases.

DATABASE VIGNETTE

You have just come out a seminar about gastric cancer and one of your co-workers asks:

"What do you know about that 'Kras' gene the speaker kept taking about?"

You have some recollection about hearing of 'Ras' before. How would you find out more?

- Google?
- Library?
- Bioinformatics databases at NCBI and EBI!

http://www.ncbi.nlm.nih.gov/

Example Vignette Questions:

- What chromosome location and what genes are in the vicinity of a given query gene? NCBI GENE
- What can you find out about molecular functions, biological processes, and prominent cellular locations? EBI GO
- What amino acid positions in the protein are responsible for ligand binding? EBI UniProt
- What variants of this gene are associated with gastric cancer and other human diseases? NCBI OMIN
- What is known about the protein family, its species distribution, number in humans and residue-wise conservation?
- Are high resolution protein structures available to examine the details of these mutations? How might we explain their potential molecular effects? RCSB PDB

http://www.ncbi.nlm.nih.gov/

⇒C⊡	vww.ncbi.nlm.nlh.go	v/gquery/?term=ras			Q 🏠 🏛 🕫 🗐
S NCBI	Resources 🕑	How To 🗹			Sign in to NCE
Search I	NCBI datab	Dases			Hel
ras				0	Search
About 2,9)78,774 seai	ch results for "ras"			
Literature	•		Genes		
Books	1,677	books and reports	EST	3,985	expressed sequence tag
MeSH	402	ontology used for PubMed indexing		-,	sequences
NLM Catalog	223	books, journals and more in the NLM Collections	Gene	87,165	collected information about gene loci
PubMed	54,672	scientific & medical abstracts/citations	GEO DataSets	3,732	functional genomics studies
PubMed Central	96,114	full-text journal articles	GEO Profiles	1,622,789	gene expression and molecular abundance profiles
Health			HomoloGene	696	homologous gene sets for selected organisms
ClinVar	759	human variations of clinical	PopSet	2,254	sequence sets from phylogenetic and population studies
		significance	UniGene	4,770	clusters of expressed transcripts
dbGaP	120	genotype/phenotype interaction studies	Proteins		0
CTP	1 970	apportio testing registry			0

	.gov/gene				୍ଷ	
INCDI Resources	⊠ How To ⊠				2	Sign in to NCBI
ne	Gene	tras) ANE	D "Homo sapiens"[porgn	:txid9606]	۵	Search Help
w additional	Display Settings:	: ⊡ Tabular, 20 p	er page, Sorted by Relevan	ce <u>Send to:</u> ⊘	Hilters: Manage Filte	ide sidebar >>
ar all	Results: 1 to 2	20 of 1126 🔜	First < Prev Page 1 of s	57 Next > Last >>		
ne Irces	Filters activate	ed: Current only.	Clear all to show 1499 items	•	Find related data Database:	
nomic	Name/Gene ID	Description	Location	Aliases	Select	\$
egories matively spliced notated genes	<u>NRAS</u> ID: 4893	neuroblastoma RAS viral (v- ras) oncogene	Chromosome 1, NC_000001.11 (114704464114716894.	RP5- 1000E10.2, ALPS4.	Find items	
1-coding		homolog	complement)	CMNS, N-ras,	Search details	
udogene		[Homo sapiens (human)]		NCMS1, NS6, NRAS	ras[All Fields] sapiens"[porgn]	AND "Homo AND
itent DS	KRAS ID: 3845	Kirsten rat sarcoma viral	Chromosome 12, NC 000012.12	C-K-RAS, CFC2, K-		ß
.embl Seq		oncogene homolog	(2520524625250923, complement)	RAS2A, K- RAS2B, K-	Search	See more
tus clear rrent only		[<i>Homo</i> <i>sapiens</i> (human)]		RAS4A, K- RAS4B, KI- RAS1,	Recent activity	
tus clear rent only nosome locations		[Homo sapiens (human)]		RAS4A, K- RAS4B, KI- RAS1, KRAS2, NS,	Recent activity	Tum

⊢ → C' 🗋 www.ncbi.nlm.n	ih.gov/gene				ପ୍	☆ 🏛 🧖 💭 🗄
S NCBI Resources	s 🖸 How To 🗹				<u>s</u>	ign in to NCBI
Gene	Gene	\$ (ras) ANI	D "Homo sapiens"[porgn	txid9606]	0	Search
		Save sear	ch Advanced			Help
Show additional	Display Settings	: 🖂 Tabular, 20 p	er page, Sorted by Relevan	ce <u>Send to:</u> 🖂	н	ide sidebar >>
ters					Filters: Manage Filte	ers
Clear all	Results: 1 to	20 of 1126 🔜	First < Prev Page 1 of 5	7 Next > Last >>		
Gene	Filters activate	ed: Current only.	Clear all to show 1499 items.		Find related data	
sources					Database:	
Genomic	Name/Gene ID	Description	Location	Aliases	Select	\$
Categories	NRAS	neuroblastoma	Chromosome 1,	RP5-		
Alternatively spliced	ID: 4893	RAS viral (v-	NC_000001.11	1000E10.2,		
Annotated genes		ras) oncogene	(114704464114716894,	ALPS4,		
Non-coding Protein-coding		homolog	complement)	CMNS, N-ras, NCMS1, NS6, NRAS	Search details	
Pseudogene		[Homo			ras[All Fields]	AND "Homo
		(human)]		11010	sapiens"[porgn]	AND
Sequence		10000	0	0 1/ 0 10	arrve[propercy]	
CCDS	ID: 3845	Kirsten rat	NC 00001212	CEC2 K		6
Ensembl	10. 3043	oncogene	(25205246, 25250923	RASZA K-		
RefSeq		homolog	complement)	RAS2B, K-	Search	See more
Status clear		[Homo		RAS4A, K-		
Current only		sapiens		RAS4B, KI-	Recent activity	
		(human)]		RAS1,	Recent activity	-
Chromosome locations				KRAS2, NS,		Turn Off Clear

S Kinsten rat sarcoma			
· → C ∐ www.ncbi.nlm.nih.go	w/gene/3845		직값 🎹 🐴 🕯
S NCBI Resources 🖸	How To 🗹		Sign in to NC
Gene	Gene 🔶		Search
	Advanced		He
Display Settings: 🕑 Full	Report	<u>Send to:</u> ⊘	Hide sidebar >
KRAS Kirsten rat	t sarcoma viral oncogene homolog [<i>Homo</i>	sapiens	Table of contents Summary
(human)]			Genomic context
Gene ID: 3845, updated or	n 4-Jan-2015		Genomic regions, transcripts, and products
Gene ID: 3845, updated of Summary	n 4-Jan-2015	2	Genomic regions, transcripts, and products Bibliography
Gene ID: 3845, updated of	n 4-Jan-2015	* ?	Genomic regions, transcripts, and products Bibliography Phenotypes
Gene ID: 3845, updated of Summary Official Symbol	n 4-Jan-2015 KRAS provided by <u>HGNC</u>	\$?	Genomic regions, transcripts, and products Bibliography Phenotypes Variation
Gene ID: 3845, updated of Summary Official Symbol Official Full Name	n 4-Jan-2015 KRAS provided by HGNC Kirsten rat sarcoma viral oncogene homolog provided by HGNC	8	Genomic regions, transcripts, and products Bibliography Phenotypes Variation HIV-1 interactions
Gene ID: 3845, updated or Summary Official Symbol Official Full Name Primary source See subted	n 4-Jan-2015 KRAS provided by <u>HGNC</u> Kirsten rat sarcoma viral oncogene homolog provided by <u>HGNC</u> <u>HGNC:HGNC:6407</u> Example Mich (2000001237202), HDRD:01842, Mich (200720)	× ?	Genomic regions, transcripts, an products Bibliography Phenotypes Variation HIV-1 interactions Pathwavs from BioSystems
Gene ID: 3845, updated or Summary Official Symbol Official Full Name Primary source See related	kRAS provided by HGNC KIrsten rat sarcoma viral oncogene homolog provided by HGNC HGNC:HGNC:6407 Ensembl:ENSG00000133703; HPRD:01817; MIM:190070; Verar:01TH IMG000001337493	ŝ ?	Genomic regions, transcripts, and products Bibliography Phenotypes Variation HIV-1 interactions Pathways from BioSystems Interactions
Gene ID: 3845, updated or Summary Official Symbol Official Full Name Primary source See related Gene type	n 4-Jan-2015 KRAS provided by <u>HQNC</u> Kirsten rat sarcome via oncogene homolog provided by <u>HGNC</u> HGNC:HGNC:6407 Ensembl:ENSG00000133703; <u>HPRD:01817</u> ; <u>MIM:190070</u> ; Vega:0TTHUMG0000171193 protein codina	ŝ ?	Genomic regions, transcripts, and products Bibliography Phenotypes Variation HIV-1 interactions Pathways from BioSystems Interactions
Gene ID: 3845, updated or Summary Official Symbol Official Full Name Primary source See related Gene type RefSec status	n 4-Jan-2015 KRAS provided by <u>HGNC</u> Kirsten rat sarcoma viral oncogene homolog provided by <u>HGNC</u> <u>HGNC:HGNC:6407</u> Ensembl:ENSG00000133703; <u>HPRD:01817; MIM:190070;</u> <u>Vega:0TTHUMG00000171193</u> protein coding REVIE/VED	× ?	Genomic regions, transcripts, an products Bibliography Phenotypes Variation HIV-1 interactions Pathways from BioSystems Interactions General gene information
Gene ID: 3845, updated or Summary Official Symbol Official Full Name Primary source See related Gene type RefSeq status Organism	n 4-Jan-2015 KRAS provided by HGNC Kirsten rat sarcoma viral oncogene homolog provided by HGNC HGNC:HGNC:6407 Ensembl:ENSG0000133703; HPRD:01817; MIM:190070; Vega;OTTHUMG00000171193 protein coding REVIEWED Homo sapiens	ŝ (?	Genomic regions, transcripts, an products Bibliography Phenotypes Variation HIV-1 interactions Pathways from BioSystems Interactions General gene information Markers, Related pseudogene(s Homology, Gene Ontology
Gene ID: 3845, updated of Summary Official Symbol Official Full Name Primary source See related Gene type RefSeq status Organism Lineage	n 4-Jan-2015 KRAS provided by HGNC Kirsten rat sarcoma viral oncogene homolog provided by HGNC HGNC:HGNC:6407 Ensembl:ENSG00000133703; HPRD:01817; MIM:190070; Vega:OTTHUMG00000173103 protein coding REVIEWED Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleos	stomi;	Genomic regions, transcripts, and products Bibliography Phenotypes Variation HIV-1 interactions Pathways from BioSystems Interactions General gene information Markers, Related pseudogene(s Homology, Gene Ontology
Gene ID: 3845, updated or Summary Official Symbol Official Full Name Primary source See related Gene type RefSeq status Organism Lineage	n 4-Jan-2015 KRAS provided by <u>HGNC</u> Kirsten rat sarcoma viral oncogene homolog provided by <u>HGNC</u> HGNC:HGNC:6407 Ensembl:ENSG00000133703; <u>HPRD:01817</u> ; <u>MIM:190070</u> ; <u>Vega:0TTHUMG00000171193</u> protein coding REVIEWED <u>Homo sapiens</u> Eukaryota; <u>Metazos</u> ; Chordata; Craniata; Vertebrata; Euteleos Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhin;	stomi; Catarrhini;	Genomic regions, transcripts, and products Bibliography Phenotypes Variation HIV-1 interactions Pathways from BioSystems Interactions General gene information Markers, Related pseudogene(s, Homology, Gene Ontology General protein information

C 🗋 www.nd	bi.nlm.nih.gov/gene/	3845#genomic-context			이 ☆ 🏛 🧖 🖕		
Genomic	context			≈ ?	BioAssay by Target (Summary)		
opation: 1	2012.1	1		See KBAS in Enigenemics, ManViews	BioAssay by Gene target		
Location.	2µ12.1			See KNAS III Epigenomics, Mapviewe	BioAssays RNAi Target Active		
Exon count:	6				BioAssays, RNAi Target, Tested		
Annotation	01-1-1-	Assembly	Oha	1	BioProjects		
release	Status	Assembly	Chr	Location	BioSystems		
106	current GRCh38 12 NC_000012.12		Books				
		(GCF 000001405.26) revious GRCh37.p13 ssembly (GCF 000001405.25)	(25 co 12 NC (25 co	(2520524625250923,	CCDS		
105	previous assembly			complement)	ClinVar		
				NC_000012.11	Conserved Domains		
				complement)	dbVar		
					EST		
		Chromosome 12 - NC	00001	2.12	Full text in PMC		
[25	052101 🕨		LVENS LOCIO+2L67 EPS 20072 12				
	LRMP	LYRMS					
		KRAS 🔶			Genome		
Conomio	agiona trans	avinta and producto			GEO Profiles		
Genomic	regions, trans	scripts, and products		A 1	GTR		
				Go to reference sequence details	3 HomoloGene		
Genomic Sec	uence: NC 0	00012.12 chromosome 12 re	eference	GRCh38 Primary Assembly	Map Viewer		
					MedGen		
		Go to	nucleo	tide: Graphics FASTA GenBan	Nucleotide		

Cene Ontology Provided by GOA	Q 숞 血
Function	Evidence Pubs
GDP binding	IEA
GMP binding	IEA
GTP binding	IEA
LRR domain binding	IEA
protein binding	IPI PubMed
protein complex binding	IDA PubMed
Process	Evidence Code
Fc-epsilon receptor signaling pathway	TAS
GTP catabolic process	IEA
MADIC	TAS
MAPK cascade	
Ras protein signal transduction	TAS
MARK cascade Ras protein signal transduction actin cytoskeleton organization	
MAPK cascade Ras protein signal transduction actin cytoskeleton organization activation of MAPKK activity	TAS IEA TAS
MAPK cascade Ras protein signal transduction actin cytoskeleton organization activation of MAPKK activity axon guidance	TAS IEA TAS TAS

Why do we need Ontologies?

- Annotation is essential for capturing the understanding and knowledge associated with a sequence or other molecular entity
- Annotation is traditionally recorded as "free text", which is easy to read by humans, but has a number of disadvantages, including:
 - Difficult for computers to parse
 - Quality varies from database to database
 - Terminology used varies from annotator to annotator
- Ontologies are annotations using standard vocabularies that try to address these issues
- GO is integrated with UniProt and many other databases including a number at NCBI

GO: Gene Ontology

GO provides a controlled vocabulary of terms for describing gene product characteristics and gene product annotation data

UniProt is a member of the GO Consortium .

- **GO Ontologies**
- There are three ontologies in GO:
 - Biological Process

A commonly recognized series of events e.g. cell division, mitosis,

Molecular <u>Function</u>
 An elemental activity, task or job
 e.g. kinase activity, insulin binding

18

Annotation Initiative

 ♥ ♥ (), KRAS - GTPese KRas pre: × ♥ Ø' □ www.uniprot.org/unipre Display None 	Pathology &	& Biotech	ir	What variants nvolved in gas huma	s of t tric c an dis	his enz ancer seases?	zyme are and oth
NAMES & TAXONOMY SUBCELL LOCATION PATHOL/BIOTECH PTM / PROCESSING	LEUKEMIA, ACUTE N [MIM:601626]: A marrow charactel expansion of mye changes in cells t Note: The disease	AYELOGENOUS (/ a subtype of ac rized by matur eloid blasts occ hat normally p e is caused by	AML) ute leukem ational arre urs in bone roduce neu mutations a	ia, a cancer of the white blood cell st of hematopoietic precursors at a marrow, blood, and other tissue. trophils, basophils, eosinophils anc affecting the gene represented in t	s. AML is a m an early stag Myelogenous I monocytes. his entry.	alignant disease e of developmer leukemias deve #1 Publication ~	e of bone nt. Clonal elop from
 EXPRESSION INTERACTION 	Feature key	Position(s)	Length	Description	Graphical view	Feature identifier	Actions
STRUCTURE FAMILY & DOMAINS SEQUENCES (2) CROSS-REFERENCES PUBLICATIONS	Natural variant ⁱ	10 - 10	1	G → GG in one individual with AML; expression in 3T3 cell causes cellular transformation; expression in COS cells activates the Ras-MAPK signaling pathway; lower GTPase activity; faster GDP dissociation rate. #1 Publication →		VAR_034601	
MISCELLANEOUS SIMILAR PROTEINS Top	LEUKEMIA, JUVENILI [MIM:607785]: A malignant transfo Patients have spl Note: The disease NOONAN SYNDROM [MIM:609942]: A as byoertelorism	E MYELOMONOC' in aggressive p irmation in the enomegaly, en e is caused by E 3 (NS3) form of Noon:	ediatric my hematopoi larged lymp mutations a	.) velodysplastic syndrome/myeloprol letic stem cell compartment with p hondes, rashes, and hemorrhage affecting the gene represented in t the, a disease characterized by shor	iferative diso roliferation o s. his entry. t stature, fac	rder characteriz f differentiated p ial dysmorphic f	ed by progeny. reatures such

4 Þ [+ 🔄 http://p	fam.janelia.org/fan	nily/kinesin#	tabview:	=tab9			RSS C Q.	Google		5
anelia farn	n campus	HOME	SEAR	СН	BROWS	E FTP H	IELP AB	OUT		fg f
amily: <i>Kin</i>	e <i>sin</i> (PF	0022!	5)			126 architecture	s 4150 sequence	es 6 interactions	248 species	114 structs
Summary	Structures									
Domain organisation	For those sequent	ces which ha	ve a stru	ucture ir	n the <u>Proteir</u>	<u>DataBank</u> छ, we	use the mappir	ng between <u>UniPr</u>	ot 과, PDB and P	fam coordina
Clans	systems from the table below shows	PDBed grou	ip, to all res on w	ow us to	o map Pfam e Kinesin d	domains onto Unil omain has been fo	Prot sequences ound.	and three-dimen	sional protein st	tructures. Th
Alianments	Cubic Delott Shorts		0111				arra.			
HMM logo	UniProt entry	UniProt residues	PDB ID	chain	PDB residues	View				
Trees				A	11 - 335	Jmol AstexViewe	r SPICE P			
Curation & models	A8BKD1_GIALA	11 - 335	<u>2vvg</u>	В	11 - 335	Jmol AstexViewe	r SPICE d			
Species		12 - 220	145.0	Α	12 - 329	Jmol AstexViewe	r <u>SPICE</u> 과			
Interactions	CENPE HUMAN	12 - 329	1150	В	12 - 329	Jmol AstexViewe	r <u>SPICE</u> 대			
Structures			<u>1f9t</u>	Α	392 - 723	Jmol AstexViewer	r SPICE P			
structures			<u>1f9u</u>	Α	392 - 723	Jmol AstexViewer	r <u>SPICE</u>			
ump to @	KAR3 YEAST	392 - 723	<u>1f9v</u>	A	392 - 723	Jmol AstexViewer	r SPICE 64			
			<u>1f9w</u>	A	392 - 723	Jmol AstexViewei	r <u>SPICE</u>			
enter ID/acc			3kar	Δ	392 - 723	Imol AstexViewer	r SPICE B			
			JKdi	Δ	11 - 352	Imol AstexViewe	r SPICER?			
	KT13B HUMAN	11 - 352	3abi	В	11 - 352	Imol AstexViewe	r SPICE R			
				С	11 - 352	Jmol AstexViewe	r SPICE d			
				Α	24 - 359	Jmol AstexViewe	r SPICE d			
			1116	в	24 - 359	Jmol AstexViewe	r SPICE			
			1-01-	Α	24 - 359	Jmol AstexViewe	r <u>SPICE</u> 과			
			Idop	В	24 - 359	Jmol AstexViewe	r SPICE 🗗			
			1x88	Α	24 - 359	Jmol AstexViewer	r <u>SPICE</u> 🗗			
			1100	В	24 - 359	Jmol AstexViewer	r <u>SPICE</u> 🗗			
				A	24 - 359	Imol AstexViewe	r SPICE 🗗			

Today's Menu

Classifying Databases	Primary, secondary and composite Bioinformatics databases				
Using Databases	Vignette demonstrating how major Bioinformatics databases intersect				
Major Biomolecular Formats	How nucleotide and protein sequence and structure data are represented				
Alignment Foundations	Introducing the <i>why</i> and <i>how</i> of comparing sequences				
Alignment Algorithms	Hands-on exploration of alignment algorithms and applications				

ALIGNMENT FOUNDATIONS

- Why...
 - Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 - Global alignment
 - Local alignment
 - BLAST heuristic approach

ALIGNMENT FOUNDATIONS

• Why...

Why compare biological sequences?

- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 - Global alignment
 - Local alignment
 - BLAST heuristic approach

Basic Idea: Display one sequence above another with spaces (termed **gaps**) inserted in both to reveal **similarity** of nucleotides or amino acids.

Seq1: CATTCAC

Seq2: CTCGCAGC

[Screencast Material]

Basic Idea: Display one sequence above another with spaces (termed **gaps**) inserted in both to reveal **similarity** of nucleotides or amino acids.

Basic Idea: Display one sequence above another with spaces (termed **gaps**) inserted in both to reveal **similarity** of nucleotides or amino acids.

Basic Idea: Display one sequence above another with spaces (termed gaps) inserted in both to reveal similarity of nucleotides or amino acids.

Why compare biological sequences?

- To obtain **functional or mechanistic insight** about a sequence by inference from another potentially better characterized sequence
- To find whether two (or more) genes or proteins are evolutionarily related
- To find structurally or functionally similar regions within sequences (e.g. catalytic sites, binding sites for other molecules, etc.)
- Many practical bioinformatics applications...

Practical applications include...

- Similarity searching of databases
 - Protein structure prediction, annotation, etc...
- Assembly of sequence reads into a longer construct such as a genomic sequence
- Mapping sequencing reads to a known genome
 - "Resequencing", looking for differences from reference genome - SNPs, indels (insertions or deletions)
 - Mapping transcription factor binding sites via ChIP-Seg (chromatin immuno-precipitation sequencing)
 - Pretty much all next-gen sequencing data analysis

Practical applications include...

- Protein structure prediction
 Assembly of sequence alignment is arguably the construct such alignment of bioinformatics.
 Mapping for differences of the sequence alignment of N.D. ranwise sequence anymienus aryuaviy most fundamental operation of bioinformatics!
 - mg transcription factor binding sites via ChIP-Seg chromatin immuno-precipitation sequencing)

- Pretty much all next-gen sequencing data analysis

Alternative alignments

 Unfortunately, finding the correct alignment is difficult if we do not know the evolutionary history of the two sequences

Q. Which of these 3 possible alignments is best?

Scoring alignments

• We can assign a score for each match (+3), mismatch (+1) and indel (-1) to identify the **optimal alignment** for this scoring scheme

Alternative alignments

 One way to judge alignments is to compare their number of matches, insertions, deletions and mutations

Optimal alignments

 Biologists often prefer parsimonious alignments, where the number of postulated sequence changes is minimized.

Optimal alignments Optimal alignments Biologists often prefer parsimonious Biologists often prefer parsimonious alignments, where the number of postulated alignments, where the number of postulated sequence changes is minimized. sequence changes is minimized. 4 matches 6 matches 5 matches 4 matches 6 matches 5 matches 3 mismatches 0 mismatches • 1 mismatches 3 mismatches 0 mismatches 1 mismatches \bigcirc 0 gaps \bigcirc 2 gaps \bigcirc 2 gaps \bigcirc 0 gaps \bigcirc 2 gaps \bigcirc 2 gaps CACTGTA CAC-TGTA CACTGTA CAC-TGTA CACTGT CACTG . . . : : : CATGTTA CATGT СА<mark>тст</mark>та TGTTA $\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}$ CATG ALIGNMENT FOUNDATIONS **Optimal alignments** • Why... · Why compare biological sequences? Biologists often prefer parsimonio Warning: There may be more than one optimal alignment and these may not reflect 4 matches 4 matches 3 ming: There may be more than one may not rei 3 ming: There may be more than our sequence of a max and these may of our sequence the sequence of a max and these may of a max and the sequence of a optimal angniment and mese may not remeater the true evolutionary history of our sequences! • What... Alignment view of sequence changes during evolution (matches, mismatches and gaps) • How... Dot matrices Dynamic programing - Global alignment - Local alignment BLAST heuristic approach САТ G

ALIGNMENT FOUNDATIONS

- Why...
 - Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - How do we compute the optimal alignment between two sequences?
 - BLAST HEUNSIC APPROACH

Dot plots: simple graphical approach

 Place one sequence on the vertical axis of a 2D grid (or matrix) and the other on the horizontal

Dot plots: simple graphical approach

Now simply put dots where the horizontal and vertical sequence values match

Dot plots: simple graphical approach

Diagonal runs of dots indicate matched segments of sequence

Dot plots: simple graphical approach

Q. What would the dot matrix of a two identical sequences look like?

Dot plots: window size and match stringency

Solution: use a window and a threshold

- compare character by character within a window
- require certain fraction of matches within window in order to display it with a dot.
 - · You have to choose window size and stringency

Dot plots: simple graphical approach

• Dot matrices for long sequences can be noisy

Dot plots: window size and match stringency

Solution: use a window and a threshold

- compare character by character within a window
- require certain fraction of matches within window in order to display it with a dot.
 - · You have to choose window size and stringency

Window size = 5 bases

A dot plot simply puts a dot where two sequences match. In this example, dots are placed in the plot if 5 bases in a row match perfectly. Requiring a 5 base perfect match is a <u>heuristic</u> – only look at regions that have a certain degree of identity.

Do you expect evolutionarily related sequences to have more word matches (matches in a row over a certain length) than random or unrelated sequences?

Window size = 7 bases

This is a dot plot of the same sequence pair. Now 7 bases in a row must match for a dot to be place. Noise is reduced.

Using windows of a certain length is very similar to using words (kmers) of N characters in the heuristic alignment search tools

Bigger window (kmer) fewer matches to consider

Only **diagonals** can be followed.

Downward or rightward paths represent **insertion** or **deletions** (gaps in one sequence or the other).

Uses for dot matrices

- Visually assessing the similarity of two protein or two nucleic acid sequences
- Finding local repeat sequences within a larger sequence by comparing a sequence to itself
 - Repeats appear as a set of diagonal runs stacked vertically and/or horizontally

The Dynamic Programming Algorithm

- The dynamic programming algorithm can be thought of an extension to the dot plot approach
 - One sequence is placed down the side of a grid and another across the top
 - Instead of placing a dot in the grid, we compute a score for each position
 - Finding the optimal alignment corresponds to finding the path through the grid with the **best possible score**

Needleman, S.B. & Wunsch, C.D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453.

Scoring the alignment matrix

- Start by filling in the first row and column these are all indels (gaps).
 - Each step you take you will add the gap penalty to the score (S_{i,j}) accumulated in the previous cell

Algorithm of Needleman and Wunsch

- The Needleman–Wunsch approach to global sequence alignment has three basic steps:
 - (1) setting up a 2D-grid (or alignment matrix),
 - (2) scoring the matrix, and
 - (3) identifying the optimal path through the matrix

		D	Ρ	L	Е			D	Ρ	L	Е			D	Ρ	L	Е
	D						D	6	-1	-4	2		D	6	-1	-4	2
(1)	Ρ					(2)	Ρ	-1	7	-3	-1	(3)	Ρ	-1	7.	-3	-1
-	Μ						Μ	-3	-2	2	-2	-	Μ	-3	-2	2	-2
	Е						Е	-2	-1	-3	5		Е	-2	-1	-3	ີ 5

Needleman, S.B. & Wunsch, C.D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453.

Scoring the alignment matrix

- Start by filling in the first row and column these are all indels (gaps).
 - Each step you take you will add the gap penalty to the score (S_{i,j}) accumulated in the previous cell

Scoring the alignment matrix

- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
 - Now can ask which of the three directions gives the highest score?
 - keep track of this score and direction

Scoring the alignment matrix

- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
 - Now can ask which direction gives the highest score
 - keep track of direction and score

Scoring the alignment matrix

- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
 - Now can ask which of the three directions gives the highest score?
 - keep track of this score and direction

Scoring the alignment matrix

- At each step, the score in the current cell is determine by the scores in the neighboring cells
 - The maximal score and the direction that gave that score is stored (we will use these later to determine the optimal alignment)

Questions: Scoring the alignment matrix • What is the optimal score for the alignment of these sequences and how do we find the optimal alignment? • To find the best alignment, we retrace the arrows starting from the bottom right cell С Т G Т Т -Α Α - N.B. The optimal alignment score and alignment are -10 -12 0 -2 -6 -8 -14 --4 dependent on the chosen scoring system С **⊳**-3 – -2 ⊩-1 -4 2 0 --2 -8 Α -1 -6 **Scores**: match = +1, mismatch = -1, indel = -2-3 С -6 Ő LE D Ρ Т -8 -5 -2 0 0 Alignment -7 -4 G -10 2 ▶0 -1 -3 D -2 DPME Ρ DPLE Т -12 -9 -6 -3 Õ Μ -14 -11 -5 -6 -2 Α 2 Е -8 -5

Questions:

• What is the optimal score for the alignment of these sequences and how do we find the optimal alignment?

	-	С	Α	Т	G	Т	Т	Α
-	0	-2	-4	-6	-8	-10	-12	-14
С	-2	1 -	-1 -	⊳- 3–	→ -5 –	→- 7 –	→ -9	" 11
Α	-4	-1	2	0 -	-2 −	→ -4 –	→ -6 -	-8
С	-6	-3	Ŏ	1-	-1-	-3-	-5 -	-7
т	-8	-5	-2	1	0	0 -	-2 -	⊸ -4
G	-10	-7	-4	-1	2 -	→ 0	-1 -	-3
т	-12	-9	-6	-3	Ŏ	3 -	⊉ 1 –	⊸ -1
Α	-14	-11	-8	-5	-2	ľ	2	2

Questions:

• To find the best alignment we retrace the arrows starting from the bottom right cell

ALIGNMENT FOUNDATIONS

- Why...
 - Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 Global alignment
 - Local alignment
 - BLAST heuristic approach

Local alignment: Definition

 Smith & Waterman proposed simply that a local alignment of two sequences allow arbitrary-length segments of each sequence to be aligned, with no penalty for the unaligned portions of the sequences.
 Otherwise, the score for a local alignment is calculated the same way as that for a global alignment

Smith, T.F. & Waterman, M.S. (1981) "Identification of common molecular subsequences." J. Mol. Biol. 147:195-197.

103

Global vs local alignments

- Needleman-Wunsch is a **global** alignment algorithm
 - Resulting alignment spans the complete sequences end to end
 - This is appropriate for closely related sequences that are similar in length
- For many practical applications we require **local alignments**
 - Local alignments highlight subregions (*e.g.* protein domains) in the two sequences that align well

Global

102

The Smith-Waterman algorithm

- Three main modifications to Needleman-Wunsch:
 - Allow a node to start at 0
 - The score for a particular cell cannot be negative
 - if all other score options produce a negative value, then a zero must be inserted in the cell
 - Record the highest- scoring node, and trace back from there

Local alignments can be used for database searching

- Goal: Given a query sequence (Q) and a sequence database (D), find a list of sequences from D that are most similar to Q
 - Input: Q, D and scoring scheme
 - Output: Ranked list of hits

The database search problem

- Due to the rapid growth of sequence databases, search algorithms have to be both efficient and sensitive
 - Time to search with SW is proportional to *m* x *n* (*m* is length of query, n is length of database), too slow for large databases!

To reduce search time heuristic algorithms, such as BLAST, first remove database sequences without a strong local similarity to the query sequence in a quick initial scan.

The database search problem

- Due to the rapid growth of sequence databases, search algorithms have to be both efficient and sensitive
 - Time to search with SW is proportional to *m* x *n* (*m* is length of query, n is length of database), too slow for large databases!

QueryRGGVKRIKLMR

To reduce search time heuristic algorithms, such as BLAST, first remove database sequences without a strong local similarity to the query sequence in a quick initial scan.

ALIGNMENT FOUNDATIONS

• Why...

- Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 - Global alignment
 - Local alignment
 - BLAST heuristic approach

Rapid, heuristic versions of Smith–Waterman[·] BLAST

- "The central idea of the BLAST algorithm is to contine attention to servience pairs that contain an initial word nair match" "The central idea of the BLAST algorithm is to confine atter to sequence pairs that contain an initial word pair match" Altschul et al. (1990) at matches before performing
 - ast to SW, BLAST is not guaranteed to find optimal anonments

Rapid, heuristic versions of Smith–Waterman: BLAST

- BLAST (Basic Local Alignment Search Tool) is a simplified form of Smith-Waterman (SW) alignment that is popular because it is fast and easily accessible
 - BLAST is a heuristic approximation to SW It examines only part of the search space
 - BLAST saves time by restricting the search by scanning database sequences for likely matches before performing more rigorous alignments
 - Sacrifices some sensitivity in exchange for speed
 - In contrast to SW, BLAST is not guaranteed to find optimal alignments

 BLAST uses this pre-screening heuristic approximation resulting in an an approach that is about 50 times faster than the Smith-Waterman

110

Statistical significance of results

An important feature of BLAST is the computation of statistical significance for each hit. This is described by the **E value** (expect value)

Description	Max score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo sapiens]	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	100%	0	98%	AAA20133.1
Kinesin-14 heavy chain [Danio rerio]	595	88%	0	78%	XP_00320703
hypothetical protein EGK_18589	48.2	40%	0.03	32%	ELK35081.1
mKIAA4102 protein [Mus musculus]	42.7	38%	3.02	24%	EHH28205.1

BLAST scores and E-values

- The E value is the expected number of hits that are as good or better than the observed local alignment score (with this score or better) if the query and database are random with respect to each other
 - *i.e.* the number of alignments expected to occur by chance with equivalent or better scores
- Typically, only hits with E value below a significance threshold are reported
 - This is equivalent to selecting alignments with score above a certain score threshold

122

 Ideally, a threshold separates all query related sequences (yellow) from all unrelated sequences (gray)

- Unfortunately, often both score distributions overlap
 The E value describes the expected number of
 - hits with a score above the threshold if the query and database are unrelated

- Unfortunately, often both score distributions overlap
 - The E value describes the expected number of hits with a score above the threshold if the query and database are unrelated

125

127

Description	Max score	Total score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo	677	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	676	100%	0	98%	AAA20133.1

In general *E* values < 0.005 are usually significant.

To find out more about *E* values see: "*The Statistics of Sequence Similarity Scores*" available in the help section of the NCBI BLAST site:

http://www.ncbi.nlm.nih.gov/blast/tutorial/Altschul-1.html

Your Turn!

Hands-on worksheet Sections 4 & 5

- Please do answer the last lab review question (Q19).
- We encourage discussion and exploration!

<section-header><text><complex-block></complex-block></text></section-header>	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>
<section-header><text><text><image/></text></text></section-header>	<figure><text></text></figure>

Further down the results page...

	NCBI Blast:gi 4504349 ref NP_000509.1	hemo	globin					Н
4	H S blast.ncbi.nlm.nih.gov/Blast.cgi					(Reader	0
Sec	uences producing significant alignments:							
Sele	ect: All None Selected:0							
11	Alignments Bownload - GenPept Graphics Distance tree of results Multiple a		nt					٥
	Description	Max score	Total score	Query cover	E value	Max ident	Accession	
	hemoglobin beta [synthetic construct]	301	301	100%	9e-103	100%	AAX37051.1	
	hemoglobin beta [synthetic construct]	301	301	100%	1e-102	100%	AAX29557.1	
	hemoglobin subunit beta [Homo sapiens] >ref[XP_508242.1] PREDICTED: hemoglobin s	301	301	100%	1e-102	100%	NP_000509.1	
	RecName: Full=Hemoglobin subunit beta; AltName: Full=Beta-globin; AltName: Full=Her	300	300	100%	4e-102	99%	P02024.2	
	beta globin chain variant [Homo sapiens]	299	299	100%	5e-102	99%	AAN84548.1	
	beta globin [Homo sapiens] >gb AAZ39781.1 beta globin [Homo sapiens] >gb AAZ39782	299	299	100%	5e-102	99%	AAZ39780.1	
	beta-globin [Homo sapiens]	299	299	100%	5e-102	99%	ACU56984.1	
	hemoglobin beta chain [Homo sapiens]	299	299	100%	6e-102	99%	AAD19696.1	
	Chain B, Structure Of Haemoglobin In The Deoxy Quaternary State With Ligand Bound A	298	298	99%	9e-102	100%	1COH_B	
	hemoglobin beta subunit variant [Homo sapiens] >gb]AAA88054.1] beta-globin [Homo sa	298	298	100%	1e-101	99%	AAF00489.1	
	Chain B, Human Hemoglobin D Los Angeles: Crystal Structure >pdbj2YRS D Chain D, H	298	298	99%	2e-101	99%	2YRS_B	
	Chain B, High-Resolution X-Ray Study Of Deoxy Recombinant Human Hemoglobins Syn	297	297	99%	3e-101	99%	1DXU_B	
	Chain B, Analysis Of The Crystal Structure, Molecular Modeling And Infrared Spectroscop	297	297	99%	3e-101	99%	1HDB_B	

Further down the results page...

00			NCBI B	last:gi 4	1504349 ref NP_	000509.1 her	noglobin		
	+ 8	8 blast.ncl	bi.nlm.nih.gov/Blast.c	gi					C Reader
Hemogo Sequen	nload v globin ce ID: [GenPepi subunit be ef[NP_0005 	<u>Graphics</u> eta [Homo sapiens] 509.1] Length: 147 N	umber of	Matches: 1		۸ ک	lext 🔺	Previous 🛓 Descriptio
<pre>> See Range Score 301 bi Query Sbjct Query Sbjct Query Sbjct</pre>	84 mo 1: 1 to its(770 1 1 61 121 121	re title(s) 147 GENECC Expect 10-102 MVHLTPEE MVHLTPEE VKAHGKKV VKAHGKKV VKAHGKKV KEFTPPVQ KEFTPPVQ KEFTPPVQ	t Graphics Method Compositional matri KSAVTALWGKVNVDEVGG KSAVTALWGKVNVDEVGG LGAFSDGLAHLDNLKGTF LGAFSDGLAHLDNLKGTF ANYGKVVAGVANALAHKY ANYGKVVAGVANALAHKY	x adjust EALGRLL EALGRLL EALGRLL ATLSELH ATLSELH H 147 H 147	Identities . 147/147(100) VVYPWTQRFFESFG VVYPWTQRFFESFG CDKLHVDPENFRLL CDKLHVDPENFRLL	V Next Match , Positives (b) 147/147(10) DLSTPDAVMGNPK DLSTPDAVMGNPK SINVLVCVLAHHFG SINVLVCVLAHHFG	Previous Match Gaps 0%) 0/147(0%) 60 60 120 120	Ri Gr Se Mi St di: Pu As	elated Information ene - associated gene de niGene - clustered expre: guence tags ap. Viewer - aligned geno nitext <u>ructure</u> - 3D structure splays <u>boChem Bio</u> <u>ssay</u> - bioactivity screenii
RecNa Sequent Range Score 300 b	ame: i ame: i ce ID: <u>s</u> 1: 1 to its(76)	GenPep Full=Hemo ppP02024.2 147 GenPep Expect 7) 4e-102	t <u>Graphics</u> Dglobin subunit beta 2 HBB GORGO Leng 3 <u>Graphics</u> Method Compositional matri	; AltNar th: 147 x adjust	ne: Full=Beta-g Number of Matcher Identities . 146/147(99%)	lobin; AltName a: 1 Vext Match J Positives) 147/147(100	Full=Hemoglobia Previous Match Gaps %) 0/147(0%)	lext An beta	Previous Description

Different output formats are available

blast.ncbi.nlm.nih.g	//Blast.cgi C Reader
BLAST®	Basic Local Alignment Search Tool My NCBI
Home Recent Results Sav	d Strategies Help [Sign In] [Regi
NCBI/ BLAST/ blastp suite/ Formatting	esults - FVGUTMR Z013
Edit and Resubmit Save Search	Strategies (V Formatting options) > Download Change the result display be
	Tut the enhanced report
	Formatting options
Sh	W Alignment as HTML C Old View Reset form to defaults
Alignment V	Query-anchored with letters for identities
Disp	y Graphical Overview Sequence Retrieval NCBI-gi
Mask	g Character: Lower Case 🗘 Color: Grey 🕏
Limit rest	ts Descriptions: 50 ¢ Graphical overview: 50 ¢ Alignments: 50 ¢
	Organism Type common name, binomial, taxid, or group name. Only 20 top taxa will be shown.
	Enter organism name or idcompletions will be suggested Exclude +
	Entrez query:
	Expect Min: Expect Max:
	Percent Identity Min: Percent Identity Max:
Format	PSI-BLAST with inclusion threshold:

E.g. Query anchored alignments

000	NCBI Blast:gi 4504349 ref NP_000509.1 hemoglobin								
	+ S blast.ncb	i.nlm	.nih.gov/Blast.cgi		C Reade	0			
	Query	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRILVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	AAX37051	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	AAX29557	1	MVHL/TPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	NP 000509	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	P02024	1	MVHL/TPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	AAN84548	1	MVHL/TPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	AAZ39780	1	MVHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	ACU56984	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFKSFGDLSTPDAVMGNPK	60					
	AAD19696	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFLESFGDLSTPDAVMGNPK	60					
	DICOH_B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	AAF00489	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	2YRS_B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	<u>IDXU</u> B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	<u>IHDB</u>	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	DXV_B	2	HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	3KMF_C	2	HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	AAL68978	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	<u>INOP</u> B	1	VHLTPEEKSAVTALWGKVNVDEVGGKALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	<u>1K1K B</u>	1	VHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	AAN11320	1	MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	<u>XP_002822173</u>	1	MVHL/TPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	<u>1Y85_B</u>	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	<u>IYE0</u> B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLAVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	<u>1010_B</u>	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	CAA23759	1	MVHL/TPVEKSAVTAXWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60					
	<u>IYE2</u> B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVFPWTQRFFESFGDLSTPDAVMGNPK	59					
	<u>IY5F_B</u>	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	<u>1A00_B</u>	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPYTQRFFESFGDLSTPDAVMGNPK	59					
	1HBS_B	1	VHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	<u>IABY</u> B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					
	1CMY_B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59					

... and alignments with dots for identities Common problems NCBI Blast:gi|4504349|ref|NP_000509.1| hemoglobii H > + & blast.ncbi.nlm.nih.gov/Blast.cg C Reader Selecting the wrong version of BLAST Selecting the wrong database AAX37051 AAX29557 Too many hits returned NP 00050 AN8454 Too few hits returned AAZ3978 ACU5698 AAD1969 Unclear about the significance of a particular AF0048 result - are these sequences homologous? 1HDB 1 1DXV AAL68978 INOP B 1K1K BK....... AAN113 XP 002822173 1Y85 B 1YE0 1 1010 м..... CAA23759V.....X.....X 1YE2 B 146 How to handle too few results How to handle too many results Focus on the question you are trying to Many genes and proteins have no significant database matches answer - select "refseq" database to eliminate redundant remove Entrez limits matches from "nr" raise E-value threshold - Limit hits by organism search different databases - Use just a portion of the query sequence, when - try scoring matrices with lower BLOSUM values appropriate (or higher PAM values) - Adjust the expect value; lowering E will reduce the - use a search algorithm that is more sensitive than number of matches returned BLAST (e.g. PSI-BLAST or HMMer)

148

Summary of key points

- Sequence alignment is a fundamental operation underlying much of bioinformatics.
- Even when optimal solutions can be obtained they are not necessarily unique or reflective of the biologically correct alignment.
- Dynamic programming is a classic approach for solving the pairwise alignment problem.
- Global and local alignment, and their major application areas.
- Heuristic approaches are necessary for large database searches and many genomic applications.

FOR NEXT CLASS...

Check out the online:

Reading: Sean Eddy's "What is dynamic programming?"

Homework: (1) Quiz, (2) Alignment Exercise.

Homework Grading

Both (1) quiz questions and (2) alignment exercise carry equal weights (*i.e.* 50% each).

(Homework 2) Assessment Criteria	Points	
Setup labeled alignment matrix	1	
Include initial column and row for GAPs	1	
All alignment matrix elements scored (i.e. filled in)	1	
Evidence for correct use of scoring scheme	1	
Direction arrows drawn between all cells	1	
Evidence of multiple arrows to a given cell if appropriate	1	D
Correct optimal score position in matrix used	1	С
Correct optimal score obtained for given scoring scheme	1	В
Traceback path(s) clearly highlighted	1	А
Correct alignment(s) yielding optimal score listed	1	A+