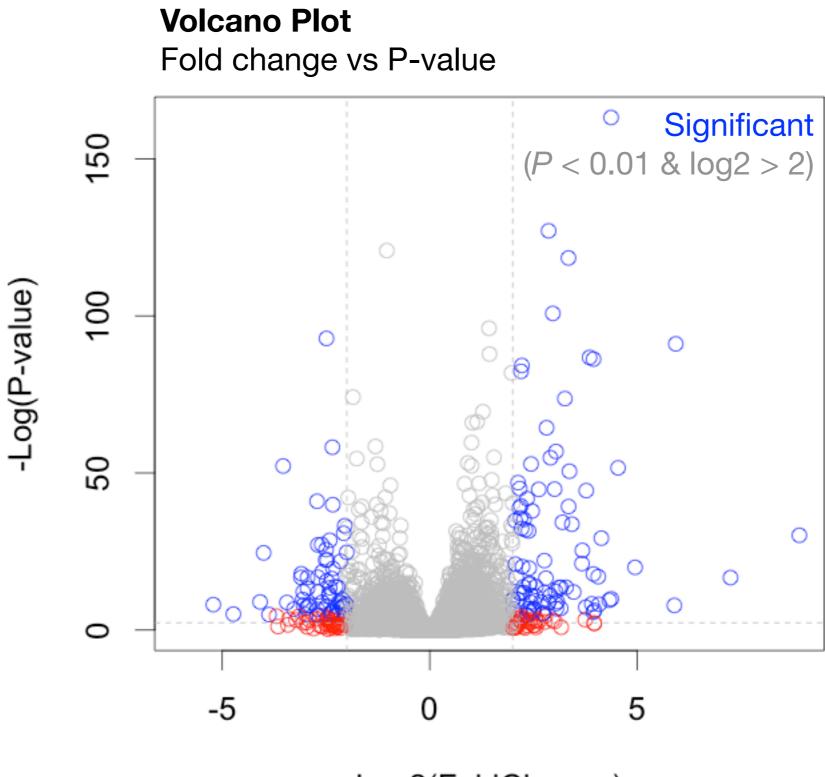
BIMM 143 Pathway Analysis and the Interpretation of Gene Lists

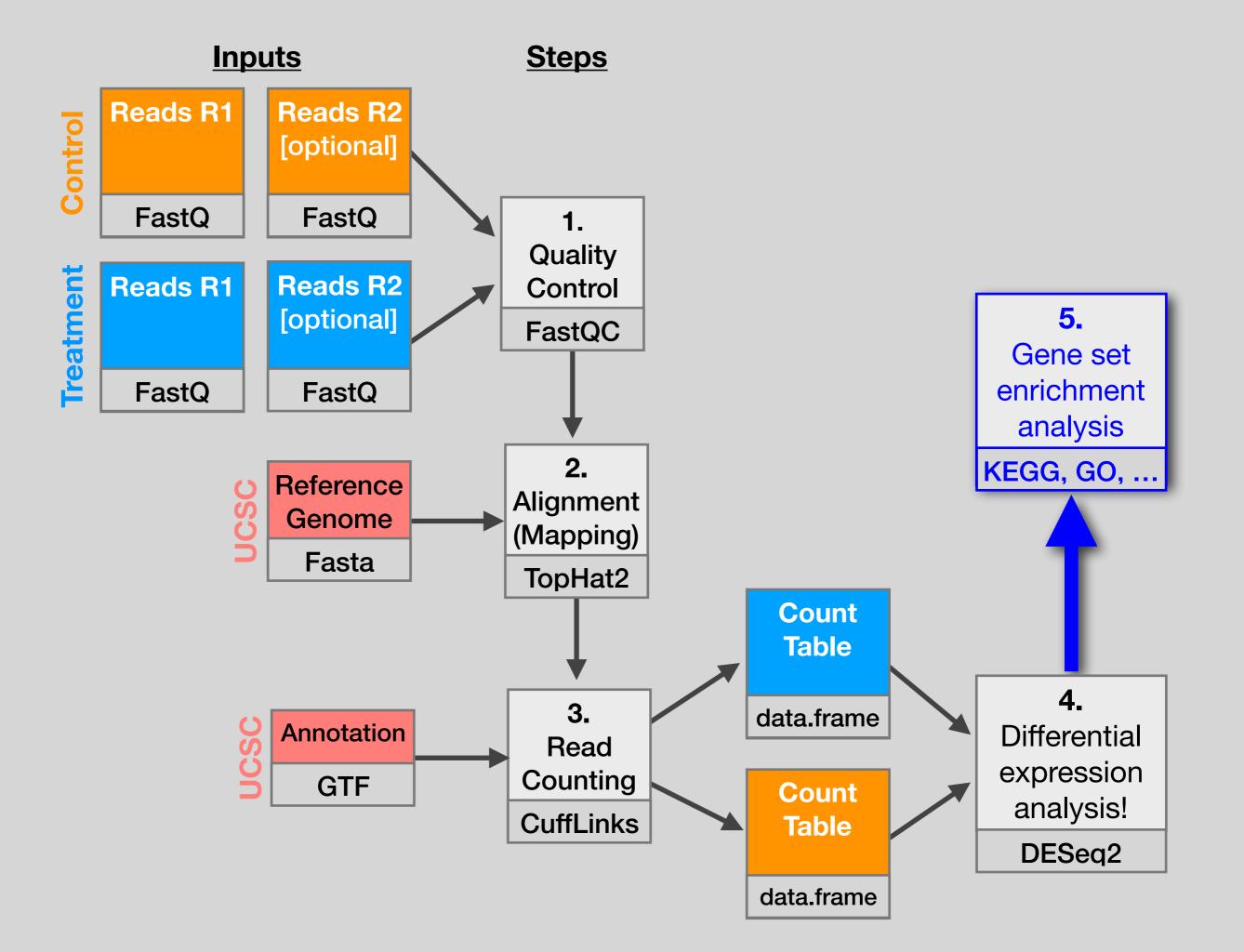

Lecture 15

Barry Grant UC San Diego

http://thegrantlab.org/bimm143

x \$	baseMean 🗘 🗘	log2FoldChange 🗘	lfcSE [‡]	stat 🗘	¢ pvalue	padj [‡]	symbol 🗘
ENSG00000152583	954.77093	4.3683590	0.23713648	18.421286	8.867079e-76	1.342919e-71	SPARCL1
ENSG00000179094	743.25269	2.8638885	0.17555825	16.313039	7.972621e-60	6.037267e-56	PER1
ENSG00000116584	2277.91345	-1.0347000	0.06505273	-15.905557	5.798513e-57	2.927283e-53	ARHGEF2
ENSG00000189221	2383.75371	3.3415441	0.21241508	15.731200	9.244206e-56	3.500088e-52	MAOA
ENSG00000120129	3440.70375	2.9652108	0.20370277	14.556557	5.306416e-48	1.607313e-44	DUSP1
ENSG00000148175	13493.92037	1.4271683	0.10036663	14.219550	6.929711e-46	1.749175e-42	STOM
ENSG00000178695	2685.40974	-2.4890689	0.17806407	-13.978501	2.108817e-44	4.562576e-41	KCTD12
ENSG00000109906	439.54152	5.9275950	0.42819442	13.843233	1.397758e-43	2.646131e-40	ZBTB16
ENSG00000134686	2933.64246	1.4394898	0.10582729	13.602255	3.882769e-42	6.533838e-39	PHC2
ENSG00000101347	14134.99177	3.8504143	0.28490701	13.514635	1.281894e-41	1.941428e-38	SAMHD1
ENSG00000096060	2630.23049	3.9450524	0.29291821	13.468102	2.409807e-41	3.317866e-38	FKBP5
ENSG00000166741	7542.25287	2.2195906	0.16673544	13.312050	1.970000e-40	2.486304e-37	NNMT
ENSG00000125148	3695.87946	2.1985636	0.16700546	13.164621	1.402400e-39	1.633797e-36	MT2A
ENSG00000162614	5646.18314	1.9711402	0.15020631	13.122885	2.434854e-39	2.633990e-36	NEXN
ENSG00000106976	989.04683	-1.8501713	0.14778657	-12.519211	5.861471e-36	5.918132e-33	DNM1
ENSG00000187193	199.07694	3.2551424	0.26090711	12.476250	1.006146e-35	9.523804e-33	MT1X
ENSG00000256235	1123.47954	1.2801193	0.10547438	12.136779	6.742862e-34	6.007096e-31	SMIM3
ENSG00000177666	2639.57020	1.1399947	0.09606884	11.866436	1.768422e-32	1.487930e-29	PNPLA2
ENSG00000164125	7257.00808	1.0248523	0.08657600	11.837603	2.494830e-32	1.988642e-29	FAM198B
ENSG00000198624	2020.04495	2.8141014	0.24063429	11.694515	1.359615e-31	1.029569e-28	CCDC69
ENSG00000123562	5008.55294	1.0045453	0.08901501	11.285123	1.554241e-29	1.120904e-26	MORF4L2
ENSG00000144369	1283.77980	-1.3090041	0.11714863	-11.173875	5.473974e-29	3.768333e-26	FAM171B
ENSG00000196517	241.91536	-2.3456877	0.21047366	-11.144804	7.591120e-29	4.998588e-26	SLC6A9
ENSG00000135821	19973.40000	3.0413943	0.27601796	11.018828	3.100706e-28	1.956675e-25	GLUL

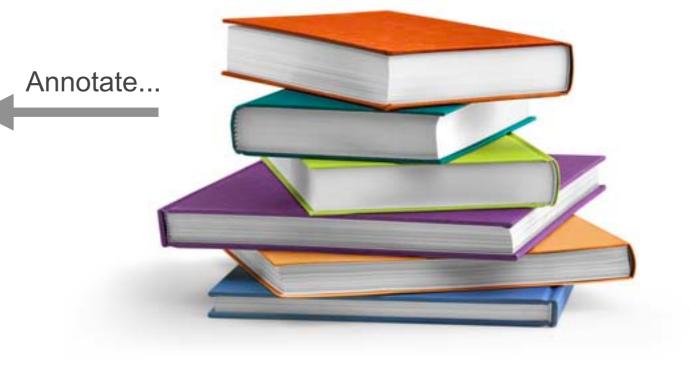
Log2(FoldChange)


My high-throughput experiment generated a long list of genes/proteins...

What do I do now?

Pathway analysis! (a.k.a. geneset enrichment)

Use bioinformatics methods to help extract biological meaning from such lists...

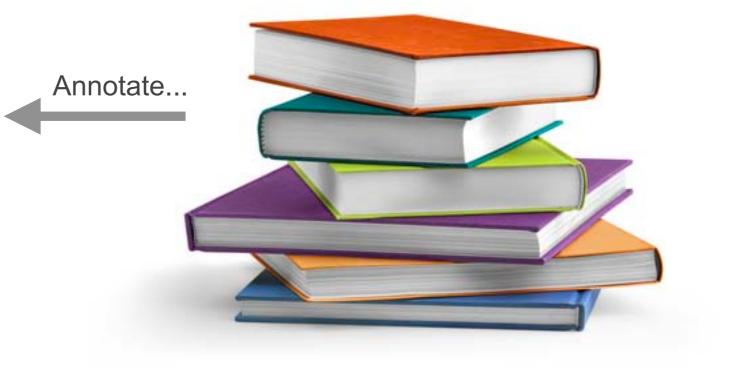


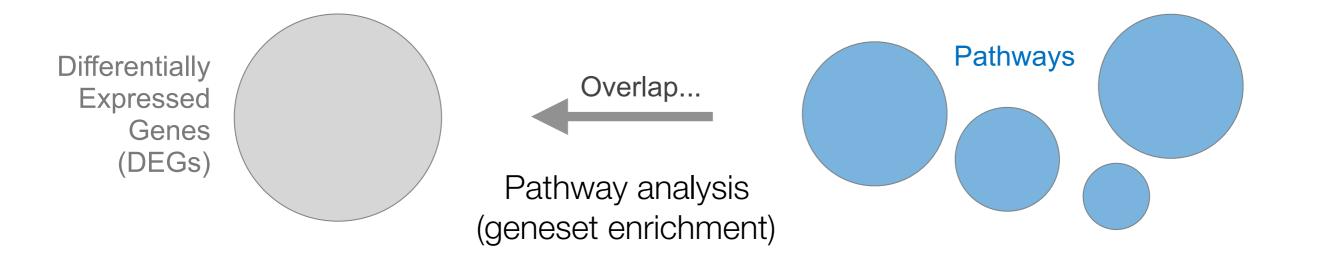
Basic idea

Differentially Expressed Genes (**DEGs**)

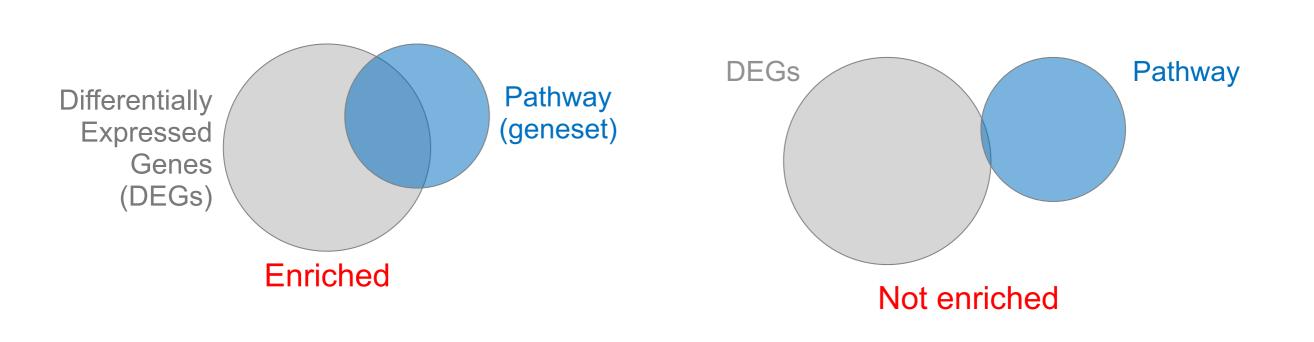
x ÷	baseMean 🗘	log2FoldChange 🗘	lfcSE 🗘	stat 🗘	pvalue 🗘	padj [‡]	symbol 🗘
ENSG00000152583	954.77093	4.3683590	0.23713648	18.421286	8.867079e-76	1.342919e-71	SPARCL1
ENSG00000179094	743.25269	2.8638885	0.17555825	16.313039	7.972621e-60	6.037267e-56	PER1
ENSG00000116584	2277.91345	-1.0347000	0.06505273	-15.905557	5.798513e-57	2.927283e-53	ARHGEF2
ENSG00000189221	2383.75371	3.3415441	0.21241508	15.731200	9.244206e-56	3.500088e-52	MAOA
ENSG00000120129	3440.70375	2.9652108	0.20370277	14.556557	5.306416e-48	1.607313e-44	DUSP1
ENSG00000148175	13493.92037	1.4271683	0.10036663	14.219550	6.929711e-46	1.749175e-42	STOM
ENSG00000178695	2685.40974	-2.4890689	0.17806407	-13.978501	2.108817e-44	4.562576e-41	KCTD12
ENSG00000109906	439.54152	5.9275950	0.42819442	13.843233	1.397758e-43	2.646131e-40	ZBTB16
ENSG00000134686	2933.64246	1.4394898	0.10582729	13.602255	3.882769e-42	6.533838e-39	PHC2
ENSG00000101347	14134.99177	3.8504143	0.28490701	13.514635	1.281894e-41	1.941428e-38	SAMHD1
ENSG00000096060	2630.23049	3.9450524	0.29291821	13.468102	2.409807e-41	3.317866e-38	FKBP5
ENSG00000166741	7542.25287	2.2195906	0.16673544	13.312050	1.970000e-40	2.486304e-37	NNMT
ENSG00000125148	3695.87946	2.1985636	0.16700546	13.164621	1.402400e-39	1.633797e-36	MT2A
ENSG00000162614	5646.18314	1.9711402	0.15020631	13.122885	2.434854e-39	2.633990e-36	NEXN
ENSG00000106976	989.04683	-1.8501713	0.14778657	-12.519211	5.861471e-36	5.918132e-33	DNM1
ENSG00000187193	199.07694	3.2551424	0.26090711	12.476250	1.006146e-35	9.523804e-33	MT1X
ENSG00000256235	1123.47954	1.2801193	0.10547438	12.136779	6.742862e-34	6.007096e-31	SMIM3
ENSG00000177666	2639.57020	1.1399947	0.09606884	11.866436	1.768422e-32	1.487930e-29	PNPLA2
ENSG00000164125	7257.00808	1.0248523	0.08657600	11.837603	2.494830e-32	1.988642e-29	FAM198B
ENSG00000198624	2020.04495	2.8141014	0.24063429	11.694515	1.359615e-31	1.029569e-28	CCDC69
ENSG00000123562	5008.55294	1.0045453	0.08901501	11.285123	1.554241e-29	1.120904e-26	MORF4L2
ENSG00000144369	1283.77980	-1.3090041	0.11714863	-11.173875	5.473974e-29	3.768333e-26	FAM171B
ENSG00000196517	241.91536	-2.3456877	0.21047366	-11.144804	7.591120e-29	4.998588e-26	SLC6A9
ENSG00000135821	19973.40000	3.0413943	0.27601796	11.018828	3.100706e-28	1.956675e-25	GLUL

Gene-sets (Pathways, annotations, etc...)




Basic idea

Differentially Expressed Genes (DEGs)

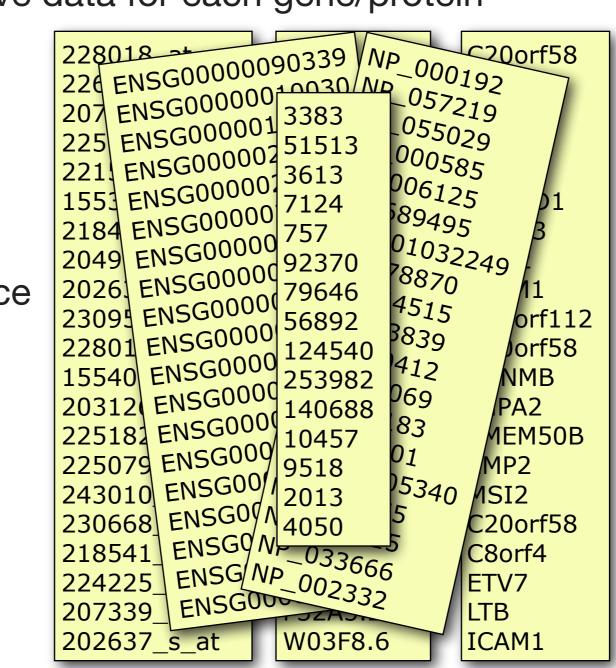

x ÷	baseMean 🗘	log2FoldChange 🗘	lfcSE 🗘	stat 🗘	pvalue 🗘	padj 🗘	symbol 🗘
ENSG00000152583	954.77093	4.3683590	0.23713648	18.421286	8.867079e-76	1.342919e-71	SPARCL1
ENSG00000179094	743.25269	2.8638885	0.17555825	16.313039	7.972621e-60	6.037267e-56	PER1
ENSG00000116584	2277.91345	-1.0347000	0.06505273	-15.905557	5.798513e-57	2.927283e-53	ARHGEF2
ENSG00000189221	2383.75371	3.3415441	0.21241508	15.731200	9.244206e-56	3.500088e-52	MAOA
ENSG00000120129	3440.70375	2.9652108	0.20370277	14.556557	5.306416e-48	1.607313e-44	DUSP1
ENSG00000148175	13493.92037	1.4271683	0.10036663	14.219550	6.929711e-46	1.749175e-42	STOM
ENSG00000178695	2685.40974	-2.4890689	0.17806407	-13.978501	2.108817e-44	4.562576e-41	KCTD12
ENSG00000109906	439.54152	5.9275950	0.42819442	13.843233	1.397758e-43	2.646131e-40	ZBTB16
ENSG00000134686	2933.64246	1.4394898	0.10582729	13.602255	3.882769e-42	6.533838e-39	PHC2
ENSG00000101347	14134.99177	3.8504143	0.28490701	13.514635	1.281894e-41	1.941428e-38	SAMHD1
ENSG0000096060	2630.23049	3.9450524	0.29291821	13.468102	2.409807e-41	3.317866e-38	FKBP5
ENSG00000166741	7542.25287	2.2195906	0.16673544	13.312050	1.970000e-40	2.486304e-37	NNMT
ENSG00000125148	3695.87946	2.1985636	0.16700546	13.164621	1.402400e-39	1.633797e-36	MT2A
ENSG00000162614	5646.18314	1.9711402	0.15020631	13.122885	2.434854e-39	2.633990e-36	NEXN
ENSG00000106976	989.04683	-1.8501713	0.14778657	-12.519211	5.861471e-36	5.918132e-33	DNM1
ENSG00000187193	199.07694	3.2551424	0.26090711	12.476250	1.006146e-35	9.523804e-33	MT1X
ENSG00000256235	1123.47954	1.2801193	0.10547438	12.136779	6.742862e-34	6.007096e-31	SMIM3
ENSG00000177666	2639.57020	1.1399947	0.09606884	11.866436	1.768422e-32	1.487930e-29	PNPLA2
ENSG00000164125	7257.00808	1.0248523	0.08657600	11.837603	2.494830e-32	1.988642e-29	FAM198B
ENSG00000198624	2020.04495	2.8141014	0.24063429	11.694515	1.359615e-31	1.029569e-28	CCDC69
ENSG00000123562	5008.55294	1.0045453	0.08901501	11.285123	1.554241e-29	1.120904e-26	MORF4L2
ENSG00000144369	1283.77980	-1.3090041	0.11714863	-11.173875	5.473974e-29	3.768333e-26	FAM171B
ENSG00000196517	241.91536	-2.3456877	0.21047366	-11.144804	7.591120e-29	4.998588e-26	SLC6A9
ENSG00000135821	19973.40000	3.0413943	0.27601796	11.018828	3.100706e-28	1.956675e-25	GLUL

Gene-sets (Pathways, annotations, etc...)

Pathway analysis (a.k.a. geneset enrichment) Principle

- DEGs come from your experiment
- Pathway genes ("geneset") come from annotations > Important, but typically not a competitive advantage
- > Critical, needs to be as clean as possible
- Variations of the math: overlap, ranking, networks... > Not critical, different algorithms show similar performances

Pathway analysis (a.k.a. geneset enrichment) Limitations


Geneset annotation bias: can only discover what is already known

Side note.

- Non-model organisms: no high-quality genesets available
- Post-transcriptional regulation is neglected
- Tissue-specific variations of pathways are not annotated
 - e.g. NF-κB regulates metabolism, not inflammation, in adipocytes
- Size bias: stats are influenced by the size of the pathway
 - Many pathways/receptors converge to few regulators
 e.g. Tens of innate immune receptors activate four TFs: NF-kB, AP-1, IRF3/7, NFAT

Starting point for pathway analysis: Your gene list

- You have a list of genes/proteins of interest
- You have quantitative data for each gene/protein
 - Fold change
 - p-value
 - Spectral counts
 - Presence/absence

Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- Often you will have to translate one set of ids into another
 - A program might only accept certain types of ids
 - You might have a list of genes with one type of id and info for genes with another type of id

Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- Often you will have to translate one set of ids into another
 - A program might only accept certain types of ids
 - You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < <u>www.uniprot.org</u>>; IDConverter < <u>idconverter.bioinfo.cnio.es</u> >

Translating between identifiers: UniProt < <u>www.uniprot.org</u> >

UniProt		Downloads · Contact · Documentation/Help
Search in Query Protein Knowledgebase (UniProtKB) \$	Search Clear Fields » Search Blast Align	Retrieve ID Mapping
WELCOME	NEWS	
Identifiers	From EMBL/GenBank/DDBJ	Map Swap Clear

Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- Often you will have to translate one set of ids into another
 - A program might only accept certain types of ids
 - You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < <u>www.uniprot.org</u>>; IDConverter < <u>idconverter.bioinfo.cnio.es</u> >

VLOOKUP in Excel - good if you are an excel whizz - I am not!

 Download flat file from Entrez, Uniprot, etc; Open in Excel; Find columns that correspond to the 2 IDs you want to convert between; Sort by ID; Use vlookup to translate your list

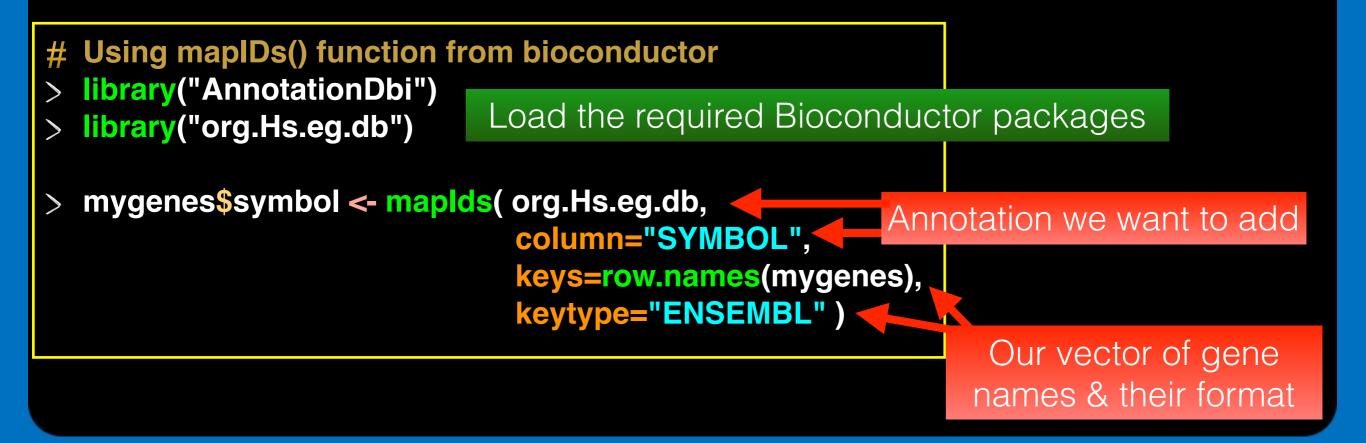
Translating between identifiers: Excel VLOOKUP

VLOOKUP(lookup_value, table_array, col_index_num)

	Edit			Font			Aligr	nment		Nu	umber
ſ	🖣 🖕 💽 Fil	II 🔻 Cali	bri (Body)	• 12	• A• A•		≡ ab	c 🔻 📆 Wra	ap Text 🔻 🛛	General	
Pa	Paste 🖉 Clear • 🖪 I U 🔄 • 📥 • 🗮 🗏 🗐 🖅 🖉 • % > 😤										
	B3	\$ ⊗	💿 (= f	× =VLOOK	(UP(A3,\$G\$	3:\$0\$304	90,2,FALSE)				
_	A	B	C	D	E	F	G	Н	1	J	K
1	Data Table						Annotation 1	Table			
2	RefSeq	Symbol	Exp1	Exp2	Exp3		RefSeq	Symbol	Entrez ID	Unigene	RefSeq
3	NM_153103	Kif1c ,	2.31975457	1.24558927	2.78816871		NM_001001	Zfp85-rs1	22746	Mm.288396	NM_001
4	NM_146017	Gabrp	4.15029735	3.08055836	1.18919962		NM_001001	Scap	235623	Mm.288741	NM_001
5	NM_018883	Camkk1	3.83282512	0.0522951	0.64684259		NM_001001	Scap	235623	Mm.288741	NM_001
6	NM_145936	Tspyl2	0.45449369	1.62761318	7.59770627		NM_001001	Fbxo41	330369	Mm.38777	NM_001
7	NM_026599	Cgnl1	4.84541871	2.84751796	1.61595768		NM_001001	Taf9b	407786	Mm.19440	NM_001
8	NM_013926	Cbx8	1.22903318	0.2863077	0.02952665		NM_001001	Taf9b	407786	Mm.19440	NM_001
9	NR_015566	A330023F24	1.44695053	0.98809479	1.59330144		NM_001001	BC051142	407788	Mm.73205	NM_001
10	NM_008623	Mpz	0.50749263	0.94350028	6.10581569		NM_001001	BC051142	407788	Mm.73205	NM_001
11	NM_183127	Fate1	2.45672795	4.87960794	3.60759511		NM_001001	BC048546	232400	Mm.259234	NM_001
12	NM_008943		4.78701069	4.15302647	0.85432314		NM_001001	Zfp941	407812	Mm.359154	NM_001
13	NM_025382		0.66397344	1.40664187	3.09539802		NM_001001	BC031181	407819	Mm.29866	NM_001
14	NM_182841		1.25528938	0.20505996	2.76879488		NM_001001	Baz2b	407823	Mm.486364	NM_001
15	NM_030061		0.17670108	2.75415469	2.98900691		NM_001001	Tmem204	407831	Mm.34379	NM_001
16	NM_133216		6.572343	0.59671282	3.84650536		NM_001001	Ccdc111	408022	Mm.217385	NM_001
17	NM 030063		7.05132762	0.65043627	1.68111836		NM 001001	BC048507	408058	Mm.177840	NM 001

Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- Often you will have to translate one set of ids into another
 - A program might only accept certain types of ids
 - You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < <u>www.uniprot.org</u> >; IDConverter < <u>idconverter.bioinfo.cnio.es</u> >
- VLOOKUP in Excel -> good if you are an excel whizz I am not!
 - Download flat file from Entrez, Uniprot, etc; Open in Excel; Find columns that correspond to the two ids you want to convert between; Use vlookup to translate your list
- Use the merge() or mapIDs() functions in R <u>fast</u>, *versatile* & reproducible!
 - Also clusterProfiler::bitr() function and many others... [Link to clusterProfiler vignette]



> merge(mygenes, anno, by.x="row.names", by.y= "ensgene")

This is our differential expressed genes

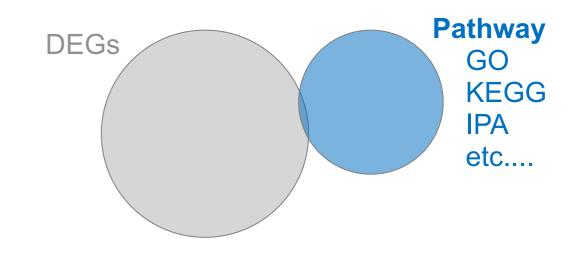
Pennincier.

- # Using the merge() function
- > anno <- read.csv("data/annotables_grch38.csv")</pre>
- > merge(mygenes, anno, by.x="row.names", by.y= "ensgene")

bitr: Biological Id TranslatoR

clusterProfiler provides bitr and bitr_kegg for converting ID types. Both bitr and bitr_kegg support many species including model and many non-model organisms.

x <− c("GPX3",	"GLRX",	"LBP",	"CRYAB",	"DEFB1",	"HCLS1",	"SOD2",	"HSPA2",
"ORM1",	"IGFBP1",	"PTHLH",	"GPC3",	"IGFBP3"	,"TOB1",	"MITF",	"NDRG1",
"NR1H4",	"FGFR3",	"PVR",	"IL6",	"PTPRM",	"ERBB2",	"NID2",	"LAMB1",
"COMP",	"PLS3",	"MCAM",	"SPP1",	"LAMC1",	"COL4A2",	"COL4A1",	"MYOC",
"ANXA4",	"TFPI2",	"CST6",	"SLPI",	"TIMP2",	"CPM",	"GGT1",	"NNMT",
"MAL",	"EEF1A2",	"HGD",	"TCN2",	"CDA",	"PCCA",	"CRYM",	"PDXK",
"STC1",	"WARS",	"HMOX1",	"FXYD2",	"RBP4",	"SLC6A12",	"KDELR3",	"ITM2B")
eg = bitr(x, fr)	<pre>comType="SY</pre>	MBOL", to	Type="ENT	REZID", O	rgDb="org.H	s.eg.db")	
head(eg)							


##		SYMBOL	ENTREZID
##	1	GPX3	2878
##	2	GLRX	2745
##	3	LBP	3929
##	4	CRYAB	1410
##	5	DEFB1	1672
##	6	HCLS1	3059

See package vignette:

https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html

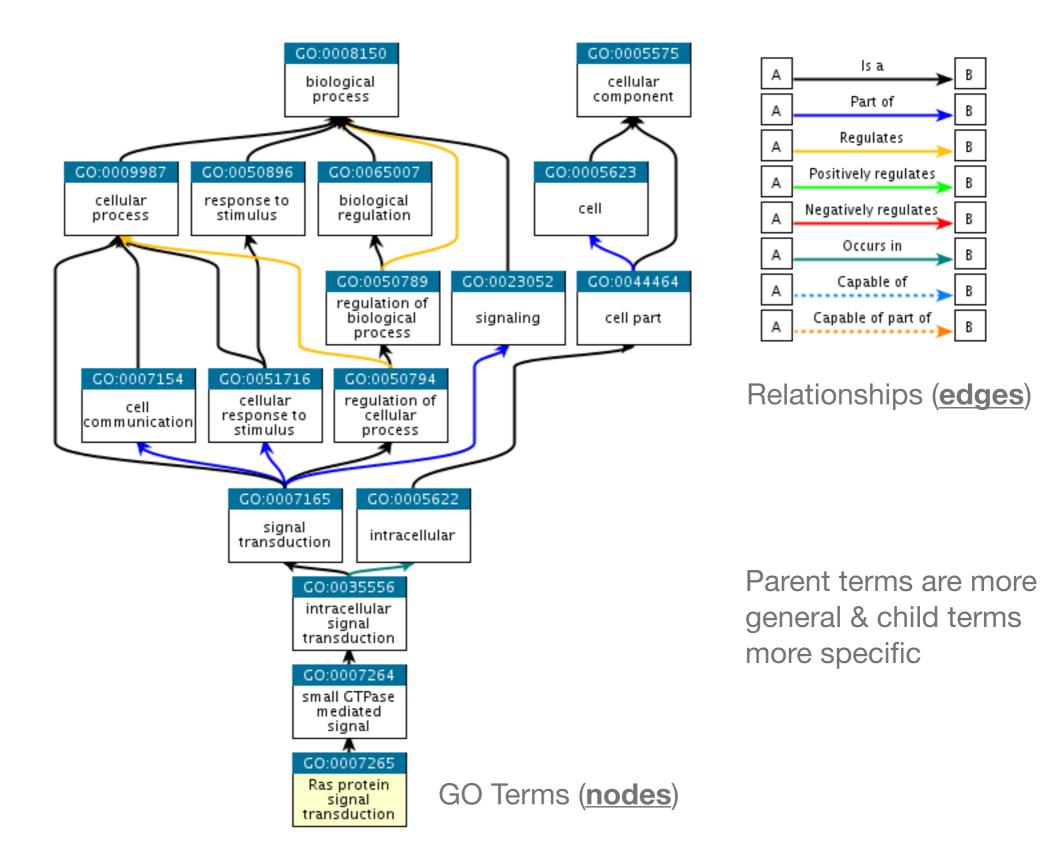
What functional set databases do you want?

- Most commonly used:
 - Gene Ontology (GO)
 - KEGG Pathways (mostly metabolic)
 - GeneGO MetaBase
 - Ingenuity Pathway Analysis (IPA) INGENUITY
- Many others...
 - Enzyme Classification, PFAM, Reactome,
 - Disease Ontology, MSigDB, Chemical Entities of Biological Interest, Network of Cancer Genes etc...
 - See: Open Biomedical Ontologies (<u>www.obofoundry.org</u>)

GO < <u>www.geneontology.org</u> >

- What function does HSF1 perform?
 - response to heat; sequence-specific DNA binding; transcription; etc

 Ontology => a structured and controlled vocabulary that allows us to annotate gene products consistently, interpret the relationships among annotations, and can easily be *handled by a computer*

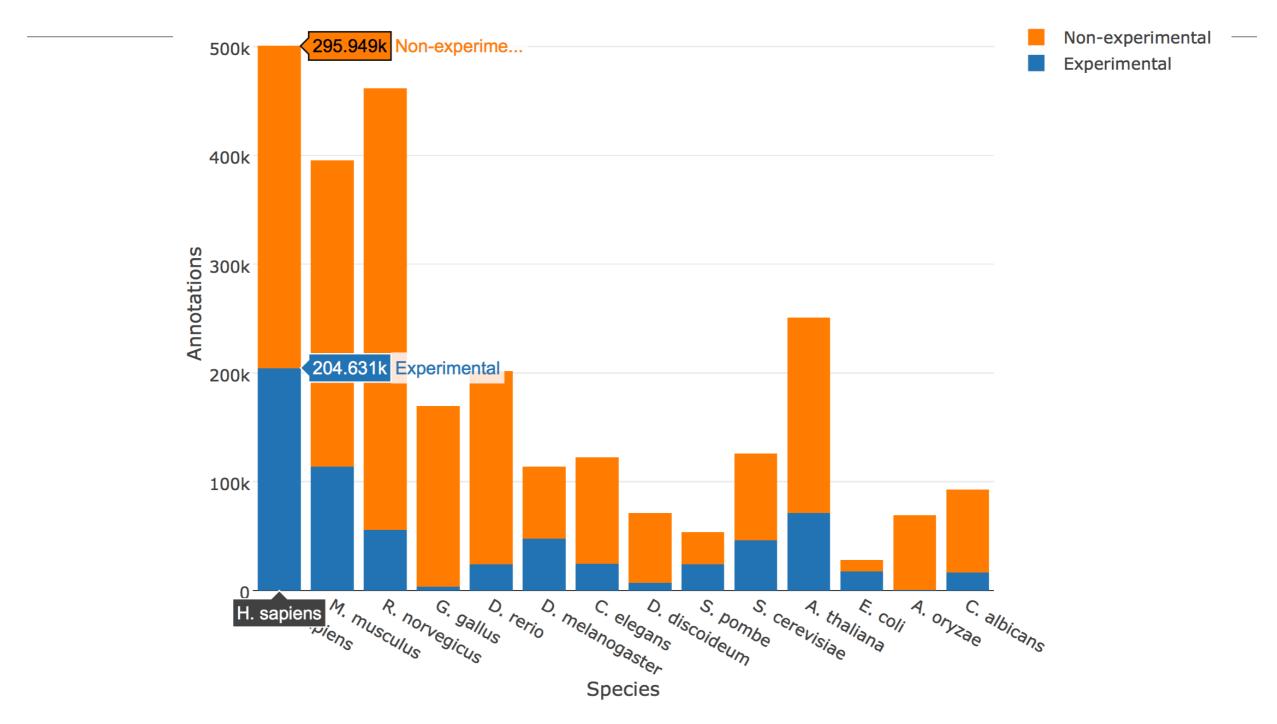

 GO database consists of 3 ontologies that describe gene products in terms of their associated biological processes, cellular components and molecular functions

GO Annotations

- GO is <u>not</u> a stand-alone database of genes/proteins or sequences
- Rather gene products get annotated with **GO terms** by UniProt and other organism specific databases, such as Flybase, Wormbase, MGI, ZFIN, etc.
- Annotations are available through AmiGO < <u>amigo.geneontology.org</u> >

DA contaction DA packaging DA contaction packaging DA contaction packaging DA contaction DA contaction	the state	e Gen	Α	miGO				
	Search	Browse	BLAST	Homolog Annotations	Tools & Resources	Help		
	Search the Gene Ontology database							
	GO terms GO terms Genes or proteins Genes or							
AmiGO versio Try AmiGO La					Cite this data • Terms	ase release 2013-10-05 s of use • GO helpdesk 2010 the Gene Ontology		

GO is structured as a "directed graph"

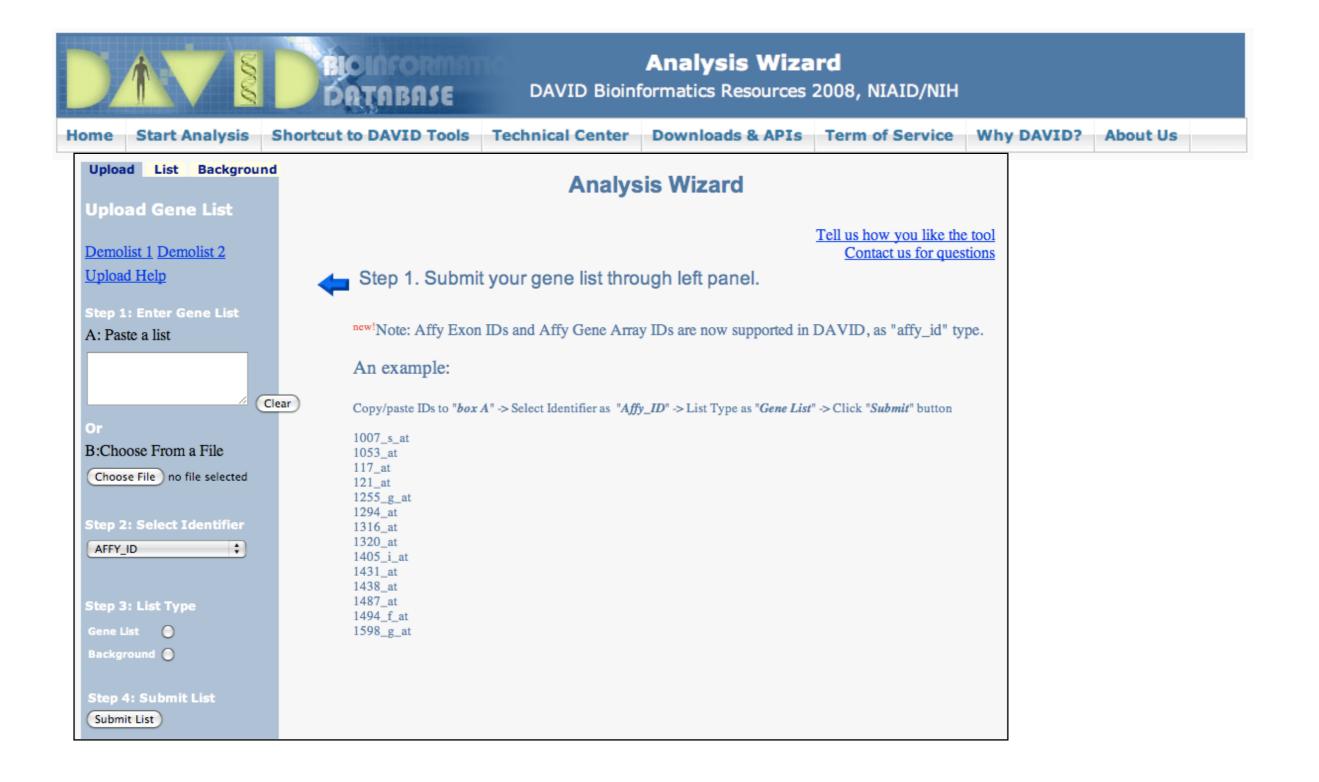


GO evidence codes

Evidence code	Evidence code description	Source of evidence	Manually checked	Current number of annotations*
IDA	Inferred from direct assay	Experimental	Yes	71,050
IEP	Inferred from expression pattern	Experimental	Yes	4,598
IGI	Inferred from genetic interaction	Experimental	Yes	8,311
IMP	Inferred from mutant phenotype	Experimental	Yes	61,549
IPI	Inferred from physical interaction	Experimental	Yes	17,043
ISS	Inferred from sequence or structural similarity	Computational	Yes	196,643
RCA	Inferred from reviewed computational analysis	Computational	Yes	103,792
IGC	Inferred from genomic context	Computational	Yes	4
IEA	Inferred from electronic annotation	Computational	No	15,687,382
IC	Inferred by curator	Indirectly derived from experimental or computational evidence made by a curator	Yes	5,167
TAS	Traceable author statement	Indirectly derived from experimental or computational evidence made by the author of the published article	Yes	44,564
NAS	Non-traceable author statement	No 'source of evidence' statement given	Yes	25,656
ND	No biological data available	No information available	Yes	132,192
NR	Not recorded	Unknown	Yes	1,185

*October 2007 release

Use and misuse of the gene ontology annotations Seung Yon Rhee, Valerie Wood, Kara Dolinski & Sorin Draghici *Nature Reviews Genetics* **9**, 509-515 (2008) Experimental annotations by species



• See AmiGO for details: <u>http://amigo.geneontology.org/amigo/base_statistics</u>

Can now do gene list analysis with GeneGO online!

		pantherdb.org/webservices/go/overrep.jsp	Ċ	
GENEONTOLOGY Unifying Biology	Clas	NTHER sification System	LOGIN RE	EGISTER CONTACT US
Home About PANTHER Date New! PANTHER13.1 release		ace Downloads Help/Tutorial		
Search	Gene List Analysis	Browse Sequence Search	cSNP Scoring	Keyword Search
Go Quick links	Please refer to our articl Error parsing request, n	e in <u>Nature Protocols</u> for detailed instructions on how to use th o <i>input specified</i>	is page.	
Whole genome function views Genome statistics Data Version How to cite PANTHER NEW! Recent publication describing PANTHER News PANTHER13.1 Released Click for additional info. Newsletter subscription	Help Tips Steps: 1. Select list and list type to analyze 2. Select Organism 3. Select operation		results	
Enter your Email: Subscribe		 Select organism. Homo sapiens Mus musculus Rattus norvegicus Gallus gallus Danio rerio Select Analysis. 		
		• Functional classification viewed in gene list		

Another popular online tool: DAVID at NIAID < <u>david.abcc.ncifcrf.gov</u> >

DAVID

• Functional Annotation Chart

Current Current	Functional Annotation Chart Current Gene List: Uploaded List_1 Current Background: Homo sapiens 2316 DAVID IDs							
Options								F A
(Rerun Using	Options Create Sublist							Download File
Sublist	Category	🗧 Term	RT	Genes	Count	\$ <u>%</u>	P-Value	♦ <u>Benjamini</u> ♦
	GOTERM_BP_5	regulation of progression through cell cycle	<u>RT</u>	=	98	4.2	3.3E-7	8.6E-4
	GOTERM_BP_5	apoptosis	RT	=	131	5.7	1.6E-6	2.1E-3
	GOTERM_BP_5	<u>cell death</u>	RT		136	5.9	3.8E-6	3.3E-3
	GOTERM_BP_5	regulation of transcription from RNA polymerase II promoter	RT	=	83	3.6	3.7E-5	2.4E-2
	GOTERM_BP_5	protein kinase cascade	RT		71	3.1	4.7E-5	2.4E-2
	GOTERM_BP_5	regulation of kinase activity	RT	Ξ.	48	2.1	5.4E-5	2.3E-2
	GOTERM_BP_5	negative regulation of cell proliferation	RT	E	48	2.1	1.0E-4	3.7E-2
	GOTERM_BP_5	regulation of cell size	RT	2 - C	41	1.8	1.2E-4	3.9E-2
	GOTERM_BP_5	monocarboxylic acid metabolic process	RT	E	48	2.1	1.3E-4	3.6E-2
	GOTERM_BP_5	positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	<u>RT</u>	a (1)	61	2.6	1.5E-4	3.8E-2
	GOTERM_BP_5	positive regulation of cellular metabolic process	RT	=	72	3.1	1.7E-4	3.8E-2

Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Da Wei Huang, Brad T Sherman & Richard A Lempicki *Nature Protocols* **4**, *44 - 57 (2009)*

Overlapping functional sets

Many functional sets overlap

• In particular those from databases that are hierarchical in nature (e.g. GO)

Hierarchy enables:

- Annotation flexibility (e.g. allow different degrees of annotation completeness based on what is known)
- Computational methods to "understand" function relationships (e.g. ATPase function is a subset of enzyme function)

Unfortunately, this also makes functional profiling trickier

• Clustering of functional sets can be helpful in these cases

DAVID

• DAVID now offers functional annotation clustering:

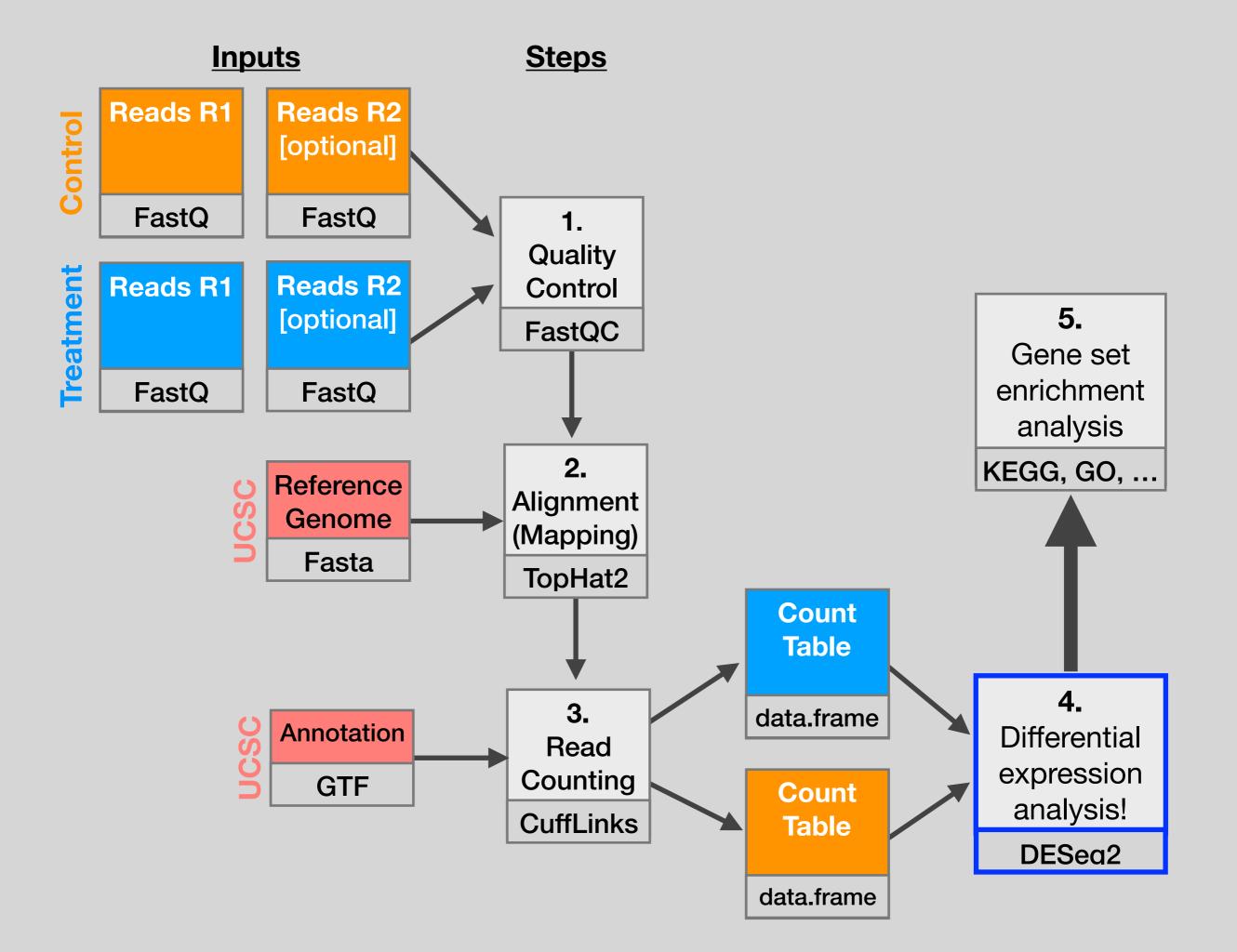
Annotation Summary Results		
Current Gene List: Uploaded List_3	2320 DAVID IDs	<u>Help and Tool Manual</u>
Current Background: HOMO SAPIENS	Check Defaults 🗹	Clear All
Main Accessions (0 selected)		
Other Accessions (0 selected)		
Gene Ontology (4 selected)		
Protein Domains (3 selected)		
Pathways (3 selected)		
General Annotations (0 selected)		
E Functional Categories (3 selected)		
Protein Interactions (0 selected)		
Eiterature (0 selected)		
Disease (1 selected)		
Tissue Expression		
Combined View for Selected Annotation		
Functional Annotation Clustering		
Functional Annotation Chart		
Functional Annotation Table		

DAVID Functional Annotation Clustering

Based on shared genes between functional sets

	Functional Annotation Clustering Help and Manu Current Gene List: Uploaded List_3												
2320	2320 DAVID IDs												
🗄 Opti	Options Classification Stringency Medium 🗘												
Rerun	Rerun using options Create Sublist												
	Annotation Cluster 1	Enrichment Score: 3.72	G			Count	P_Value	Benjamini					
	GOTERM_BP_5	regulation of transcription from RNA polymerase II promoter	RT	=		83	3.7E-5	2.4E-2					
	GOTERM_BP_5	positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	RT	•		61	1.5E-4	3.8E-2					
	GOTERM_BP_5	positive regulation of cellular metabolic process	RT	Ξ.		72	1.7E-4	3.8E-2					
	GOTERM_BP_5	positive regulation of transcription	RT	-		58	3.8E-4	5.0E-2					
	GOTERM_BP_5	positive regulation of transcription, DNA- dependent	<u>RT</u>	Ξ.		48	7.4E-4	7.6E-2					
	Annotation Cluster 2	Enrichment Score: 3.54	G			Count	P_Value	Benjamini					
	GOTERM_BP_5	regulation of cell size	<u>RT</u>	Ξ.		41	1.2E-4	3.9E-2					
	GOTERM_BP_5	regulation of cell growth	RT	÷		33	3.7E-4	5.1E-2					
	GOTERM_BP_5	cell morphogenesis	RT	=		81	5.2E-4	5.7E-2					
	Annotation Cluster 3	Enrichment Score: 3.37	G			Count	P_Value	Benjamini					
	GOTERM_BP_5	apoptosis	<u>RT</u>	=		131	1.6E-6	2.1E-3					
	GOTERM_BP_5	<u>cell death</u>	RT	-		136	3.8E-6	3.3E-3					
	GOTERM_BP_5	regulation of programmed cell death	RT	=		88	3.2E-4	5.8E-2					
	GOTERM_BP_5	positive regulation of apoptosis	RT	a 10		48	3.3E-4	5.6E-2					
	GOTERM_BP_5	regulation of apoptosis	RT	=		87	3.5E-4	5.2E-2					
	GOTERM_BP_5	positive regulation of programmed cell death	RT	=		48	4.0E-4	5.0E-2					

Want more?



- GeneGO < portal.genego.com >
 - MD/PhD curated annotations, great for certain domains (eg, Cystic Fibrosis)
 - Nice network analysis tools
 - Email us for access
- Oncomine < www.oncomine.org >
 - Extensive cancer related expression datasets
 - Nice concept analysis tools
 - Research edition is free for academics, Premium edition \$\$\$
- Lots and lots other R/Bioconductor packages in this area!!!

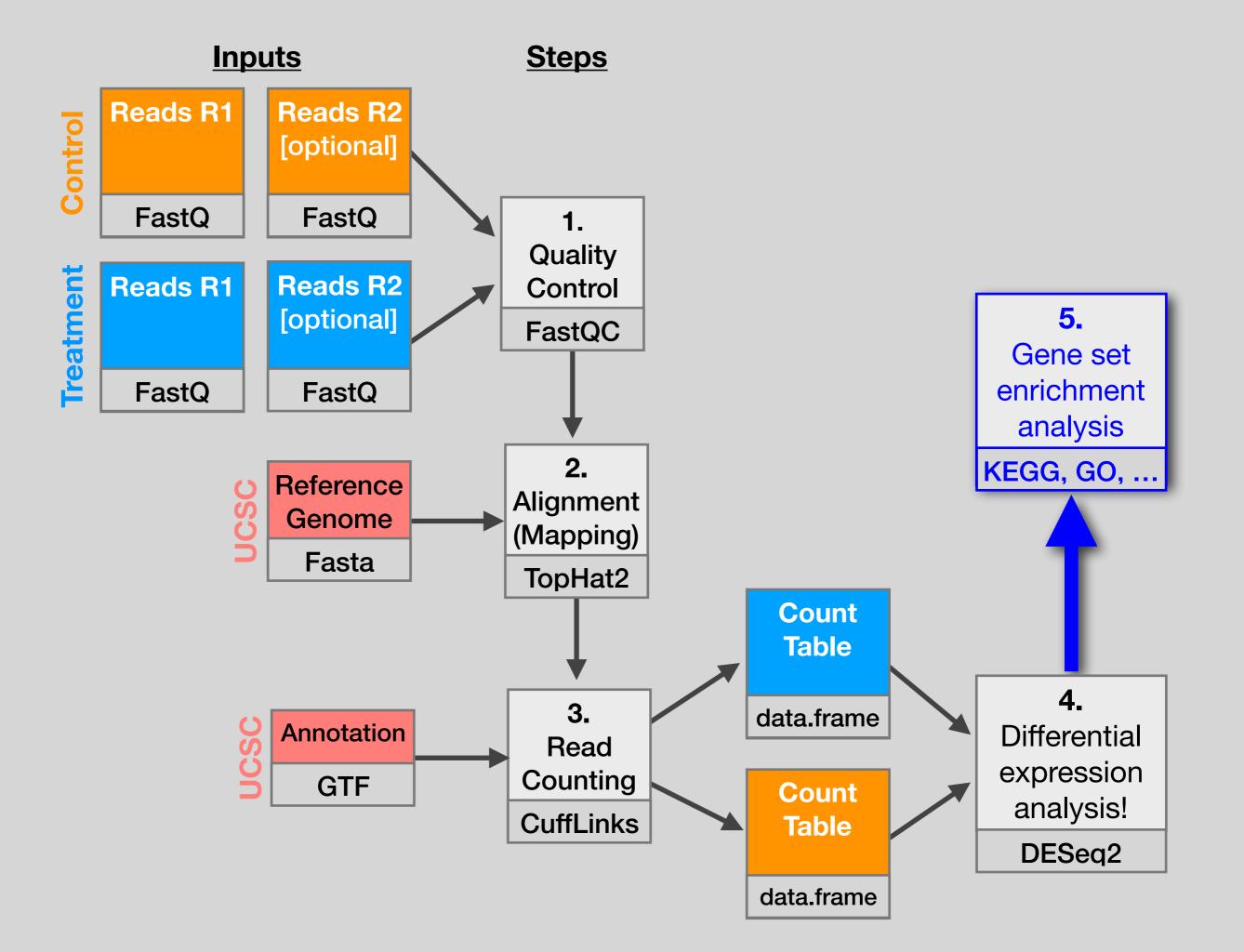
Hands-on time!

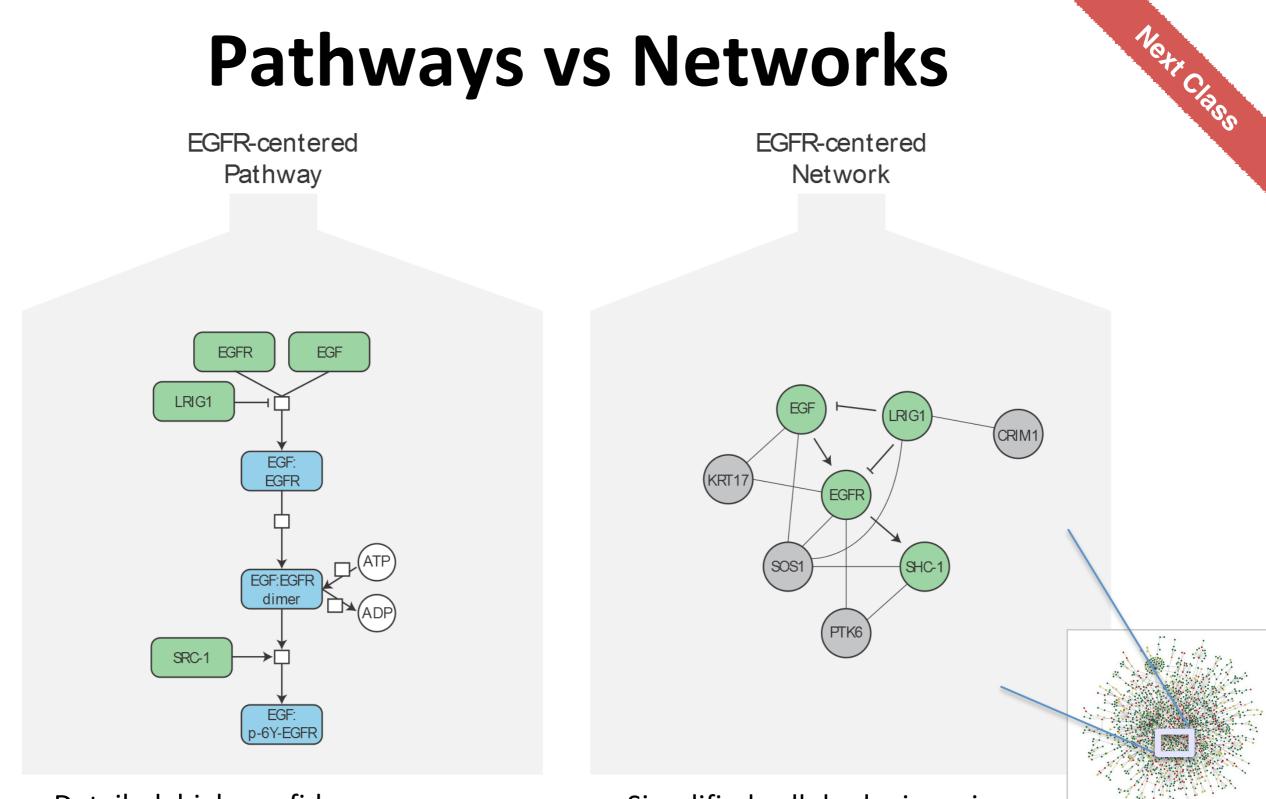
Do it Lourself

http://thegrantlab.org/bimm143

counts + metadata

<u>countData</u>


gene	ctrl_1	ctrl_2	exp_1	exp_2	-
geneA	10	11	56	45	
geneB	0	0	128	54	
geneC	42	41	59	41	
geneD	103	122	1	23	
geneE	10	23	14	56	
geneF	0	1	2	0	


<u>countData</u> is the count matrix (Number of reads coming from each gene for each sample) <u>colData</u>

id	treatment sex		
ctrl_1	control	male	
ctrl_2	control	female	
exp_1	treated	male	
exp_2	treated	female	

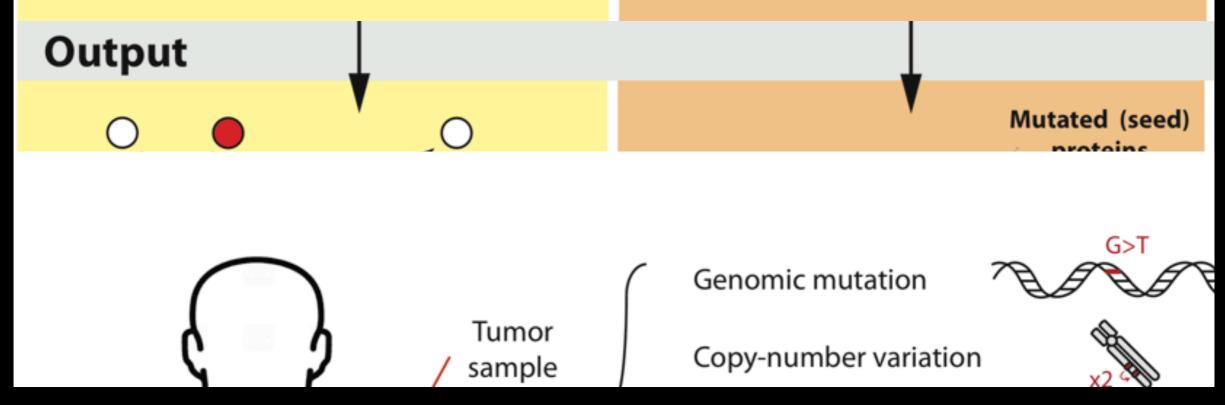
<u>colData</u> describes metadata about the *columns* of countData

N.B. First column of <u>colData</u> must match column names (i.e. sample names) of <u>countData</u> (-1st)

- Detailed, high-confidence consensus
- Biochemical reactions
- Small-scale, fewer genes
- Concentrated from decades of literature
- Simplified cellular logic, noisy
- Abstractions: directed, undirected
- Large-scale, genome-wide
- Constructed from omics data integration

Goal

1


Enrichment of fixed gene sets

Identification of pre-built pathways or networks that are enriched in a set of mutated or differentially expressed genes

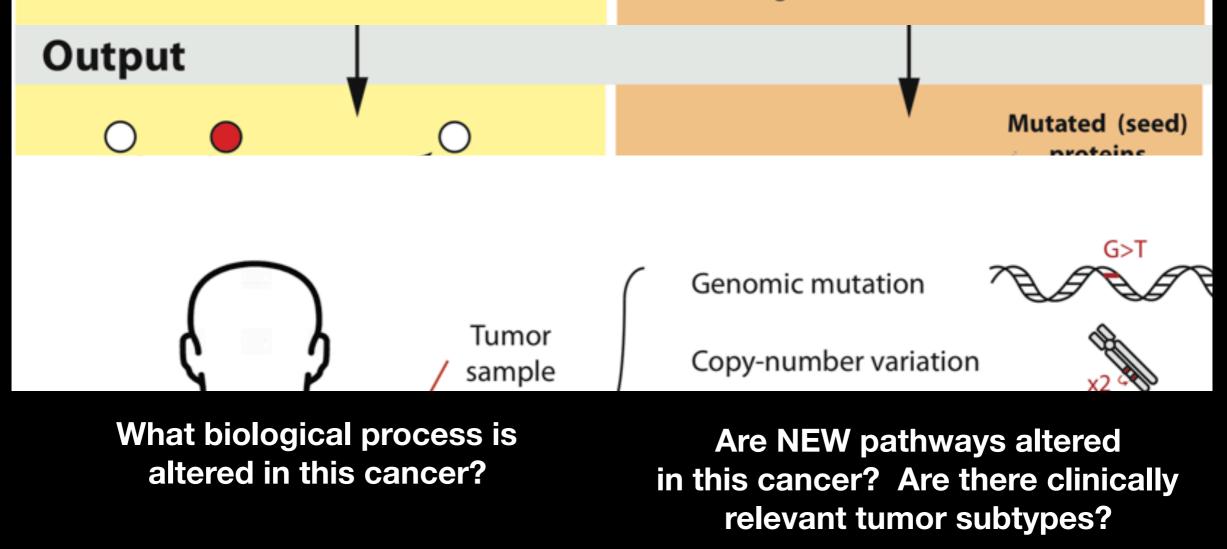
2 De novo sub-network construction and clustering

Norte Class

Construction of specific sub-networks from the set of mutated or differentially expressed genes to identify an extended list of putative cancer genes

Goal

1

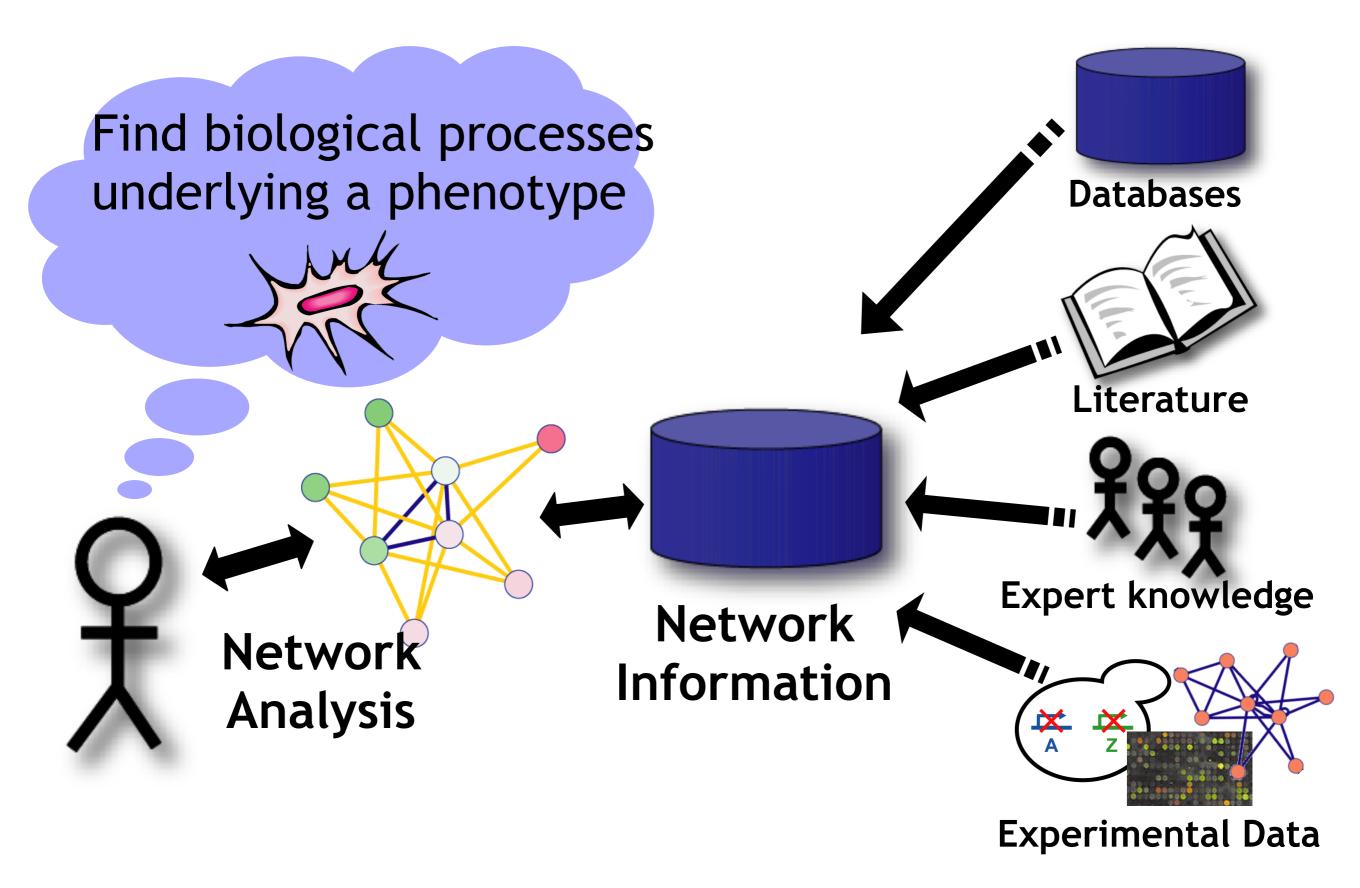

Enrichment of fixed gene sets

Identification of pre-built pathways or networks that are enriched in a set of mutated or differentially expressed genes

2 De novo sub-network construction and clustering

Norr Class

Construction of specific sub-networks from the set of mutated or differentially expressed genes to identify an extended list of putative cancer genes


Pathway analysis (a.k.a. geneset enrichment) Limitations

Geneset annotation bias: can only discover what is already known

Side note.

- Non-model organisms: no high-quality genesets available
- Post-transcriptional regulation is neglected
- Tissue-specific variations of pathways are not annotated
 - e.g. NF-κB regulates metabolism, not inflammation, in adipocytes
- Size bias: stats are influenced by the size of the pathway
 - Many pathways/receptors converge to few regulators
 e.g. Tens of innate immune receptors activate four TFs: NF-kB, AP-1, IRF3/7, NFAT

Pathway & Network Analysis Overview

R Knowledge Check For BIMM-143 Quiz

Do it Louiseir

This will be marked but not graded (*i.e.* will not factor into your course grade)

Time Limit: 40 mins