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KEY MESSAGE 

Tumor-specific mutations create neoantigens that elicit T-cell responses. Although identifying 

neoantigens is crucial for developing personalized cancer immunotherapies, accurate neoantigen 

prediction remains a daunting problem. Here, we present a new machine-learning based method 

incorporating nine features related to immune response. Our approach paves the way for improving 

neoantigen discovery. 
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ABSTRACT  

Background: Tumor-specific mutations form novel immunogenic peptides called neoantigens. 

Neoantigens can be used as a biomarker predicting patient response to cancer immunotherapy. 

Although a predicted binding affinity (IC50) between peptide and major histocompatibility complex 

class I (MHC-I) is currently used for neoantigen prediction, large number of false-positives exist.  

Materials and methods: We developed Neopepsee, a machine learning-based neoantigen prediction 

program for next-generation sequencing data. With raw RNA-seq data and a list of somatic mutations, 

Neopepsee automatically extracts mutated peptide sequences and gene expression levels. We tested 

14 immunogenicity features to construct a machine-learning classifier and compared with the 

conventional methods based on IC50 regarding sensitivity and specificity. We tested Neopepsee on 

independent data sets from melanoma, leukemia, and stomach cancer. 

Results: Nine of 14 immunogenicity features that are informative and inter-independent were used to 

construct the machine-learning classifiers. Neopepsee provides a rich annotation of candidate peptides 

with 87 immunogenicity-related values, including IC50, expression levels of neopeptides and immune 

regulatory genes (e.g., PD1, PD-L1), matched epitope sequences, and a three-level (high, medium, 

and low) call for neoantigen probability. Compared to the conventional methods, the performance was 

improved in sensitivity and especially 2- to 3-fold in the specificity. Tests with validated datasets and 

independently proven neoantigens confirmed the improved performance in melanoma and chronic 

lymphocytic leukemia. Additionally, we found sequence similarity in proteins to known pathogenic 

epitopes to be a novel feature in classification. Application of Neopepsee to 224 public stomach 

adenocarcinoma datasets predicted ~7 neoantigens per patient, the burden of which was correlated 

with patient prognosis. 

Conclusions: Neopepsee can detect neoantigen candidates with less false positives and be used to 

determine the prognosis of the patient. We expect that retrieval of neoantigen sequences with 

Neopepsee will help advance research on next-generation cancer immunotherapies, predictive 

biomarkers, and personalized cancer vaccines. 

Keywords: Cancer, Classification, Immunoinformatics, Neoantigen, Next-generation sequencing 
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INTRODUCTION 

Somatic mutations can cause tumor-specific neopeptide fragments (so-called “neoantigens”), some of 

which induce cytotoxic T cell responses [1]. Importantly, neoantigen prediction can be exploited to 

identify responders to immune checkpoint inhibitors [2-4]. Therefore, systematic evaluation of 

somatic mutations may help advance the promising clinical outcomes of immunotherapies in cancer 

treatment. 

For a somatic mutation to be recognized by cytotoxic T cells, the mutant peptide should be 

presented by major histocompatibility complex class I (MHC-I) molecules [5] (Figure 1A). First, 

mutant proteins are cut into short peptides by proteasomes and then transported into the endoplasmic 

reticulum by the transporter associated with antigen processing (TAP). When mutant peptide binds to 

the MHC-I peptide-binding groove, fully assembled peptide-MHC-I complexes (pMHC-I) are 

presented at the surface of the plasma membrane. The recognition of a neoantigen by a cytotoxic T 

cell can activate the T cell response. 

To date, most in silico approaches for neoantigen prediction have been focused on the MHC-I 

related presentation of peptides [6, 7]. Because only 0.5% of peptides can bind to MHC-I molecules, 

prediction of the binding affinity is the most selective step in the recognition of endogenous antigens 

[8]. Although these tools provide reliable measurements, practical application at the genome-level is 

limited. First, the prediction of immunogenic neoantigens primarily relies on a single arbitrary cut-off 

(50 or 500nM) of a predicted MHC-I binding affinity. Second, isoform-specific gene expression 

levels of putative neoantigens and other immune signature-related genes are mostly not estimated or 

considered. Third, the actual analysis requires a series of complex computational processes, which 

should be handled by bioinformatics experts manually.  

Here, we describe a new machine-learning based method to address the noted problems above 

and its implementation. The program, called Neopepsee, harnesses gene- and protein-level 

information and a novel feature to achieve maximum accuracy: improved performance was validated 

in a cross validation and an independent in vivo study. 

 

MATERIAL AND METHODS 

Collection of potential immunogenicity features 

To build a classifier that maximizes the usage of information, we initially collected 13 potential 

features that have been previously reported or hypothesized for predicting immunogenicity. The 13 

potential features were divided into three groups based on their representative biological meanings: (A) 
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MHC-I binding and presentation, (B) amino-acid characteristics, and (C) complex scores. For (A), 

seven features have been collected and scored, including IC50 and percentile rank based predictive 

values for MHC-I binding affinity, NetCTLpan [9] based scores for MHC-I binding, protein cleavage, 

TAP transport efficiency and their combined score. A score for T-cell recognition of the pMHC-I 

molecule [10] was also considered. For (B), four features have been collected including  

hydrophobicity of amino acids at TCR contact residues [11, 12], polarity and charged value of amino 

acids at position 2, 3, 5 and 6 [12], molecular size [13] and entropy of peptides [14]. In addition, two 

complex scores for differential agretopicity index (DAI) [15] and amino acid pairwise contact 

potentials (AAPPs) [16] were further considered. More detailed evidences and rationales for collected 

features are provided in Supplementary Data. 

In addition to the 13 feature, we defined a new score, a sequence similarity to known epitopes, 

in light of a previous hypothesis between the similarity and immunogenicity [17, 18]. As the 

fundamental objective of the immune response is to distinguish non-self peptides from self, we 

assumed that these mutations could be prioritized by developing a proper measure. The 14 features 

are enlisted in Supplementary Table 1. 

 

Construction of control positive and negative dataset 

To construct the positive dataset (Supplementary Table 2), we initially collected 1,113 epitopes and 

their corresponding HLA alleles that were reported to exhibit positive T cell response in humans [10]. 

To find epitopes that can be generated by hypothetical somatic mutations in human genome, we 

compared the sequences of the 1,113 epitopes to those of the 20,198 reviewed Swiss-Prot human 

proteins [19] to only retain 311 epitopes whose sequences are differed from the best-match by up to 

two amino acids; the best-match protein was further used as a corresponding wild-type. 

For negative dataset, we initially collected 22,245 variants from common (minor allele 

frequency [MAF] ≥0.05) non-synonymous single nucleotide polymorphisms (SNPs) from dbSNP 

v.141 with the assumption that widespread peptide variants would not lead to an immunogenic 

response. The HLA allele for negative dataset was randomly selected from HLA alleles of the positive 

set. To maintain the naturally occurring balance between positive and negative neopeptides (ratio, 1 to 

48) [20], we randomly selected 14,633 out of the 22,245 mutant peptides to finalize the negative 

dataset. 

 

Feature selection procedure 
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To achieve better classification accuracy and to reduce the risk of overfitting, we conducted feature 

selection from the 14 scores. Cleavage and TAP of the 14 scores were initially excluded due to the 

lack of consistency reported by a previous study [9]. For 12 remaining features, two major criteria 

were applied for selection: 1) informativeness of the feature in classification and 2) inter-dependency 

between features that causes redundancy.  

To measure informativeness, three different analyses were used: correlation-based feature 

selection [21], information gain-based feature selection [22], and classification power achieved by a 

single feature. The single feature based classification power enables the prediction of the 

discriminative power of a feature in a trained machine learning classifier, which is represented by area 

under a curve (AUC) and area under a precision-recall curve (AUPRC). The final informativeness is 

measured by a merged score (Supplementary Figure S1A and Supplementary Table 3). Pearson and 

Spearman correlation were used to remove overlapping effects between inner individual features. If 

correlation between two features was higher than 0.8 in both methods, one was excluded. Finally, nine 

immunogenicity features: IC50, rank, combined score, immunogenicity score, hydrophobicity, 

polarity&charged score, DAI, AAPPs and similarity were utilized to construct the machine-learning 

classifiers (see details in Supplementary Data and Supplementary Figure S2-6). 

 

Machine learning-based classification for immunogenicity prediction 

On the basis of the selected immunogenicity features, the machine learning-based classifiers were 

constructed for four learning models: Gaussian naïve Bayes (GNB), locally weighted naïve Bayes 

(LNB), random forest (RF), and support vector machine (SVM).  

To evaluate classifiers, we used 500 iterations of 10-fold cross-validation on the constructed 

dataset and measured the performance. In the training step, calculated immunogenicity features of the 

dataset were fed into four classifiers. Then we validated the performance of four trained classifiers 

and conventional methods on the independent dataset.  

  

RESULTS 

Overall workflow of Neopepsee 

The overall workflow is shown in Figure 1B. RNA-seq data and a list of somatic mutations are 

required for analysis. The HLA allele can be supplied as an optional input; otherwise, it can be 

inferred computationally from the RNA-seq data. For each non-synonymous somatic mutation, 
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affected peptides are calculated and prepared for further analysis (see details in Supplementary Data). 

Neopepsee classifies the potential neoantigens into three categories (high, medium, and low) with 

respect to the predicted immunogenicity, and reports the results along with 87 immunogenicity-related 

values, including conventional predictions (Supplementary Table 4), expression levels of neopeptides 

and immune regulatory genes (e.g., PD1, PD-L1).  

 

Evaluation of neoantigen prediction in Neopepsee 

Two types of descriptive statistics have been used to analyze the prediction accuracy of machine-

learning classifiers (Figure 2). First, the overall AUC of the ROC curve was improved in Neopepsee 

(GNB: 0.975; LNB: 0.976; RF: 0.976; SVM: 0.981) compared to conventional measures (IC50: 0.96; 

percentile rank: 0.946) in Figure 2A. Second, AUPRC (Figure 2B) was improved approximately 2 to 

3-fold (GNB: 0.41; LNB: 0.44; RF: 0.68; and SVM: 0.61) compared with the IC50 (0.24) and 

percentile rank (0.28). Overall, the results demonstrate that machine learning-based classifiers have 

higher classification power than conventional single-value based approaches. 

The overall accuracy at the specific threshold was measured. Conventional thresholds for 

immunogenicity prediction used 500nM for IC50 and 2.49 for percentile rank, respectively [2, 18, 23]. 

We divided the candidate neoantigens into three classes regarding the output membership probability 

of the trained classifiers: high (the most precise), medium (the most sensitive) and low. The lowest 

membership probability, which qualifies sensitivity level of 0.95 to exclude outliers, is set as 

threshold for medium class. The threshold for high class is the highest membership probability at 

which specificity is above 0.95. All other peptides were classified as the low class. As expected, high 

class had greatly increased precision and specificity with a slight loss of sensitivity in the test step, 

whereas the medium class was optimized for increased sensitivity.  

In terms of AUC and AUPRC, the RF and SVM classifiers showed the best performance. 

However, the low thresholds at the membership probability in the medium class implied the 

perceptual tendency to call a smaller number of answers to prioritize specificity in both models. The 

tendency led to a drastic drop of precision at obtaining higher recall (Figure 2B). Therefore, LNB was 

finally selected as a classification model based on performance robustness. 

  

Tests on independent experimental data 

Neopepsee was tested on independent data sets from recent studies that reported experimentally 

confirmed immunogenic and non-immunogenic peptides in melanoma [23] and chronic lymphocytic 
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leukemia [24] patients (Figure 3). Both studies validated the induced T-cell responses experimentally 

using a MHC dextramer assay to evaluate vaccine-induced T cell responses [23] or a IFN-γ ELISPOT 

assay to measure spontaneous T cell responses [24]. From both studies, 1,093 peptides were obtained, 

65 of which were validated (12 immunogenic and 53 non-immunogenic). The number of total calls 

and true/false positives was assessed in the medium and high classes of Neopepsee and further 

compared with the conventional criteria (Figure 3A and Supplementary Table 5).  

Regarding sensitivity, IC50 and the medium class called all 12 answers: note that the perfect 

sensitivity for IC50 is expected, because the peptides for validation were initially selected by IC50. 

Classification using percentile rank and the high class missed one and two answers, respectively. 

However, the high class only misclassified 14 non-immunogenic peptides out of the 53, increasing in 

specificity to 0.74 (compared to 0.45 of IC50 and 0.42 of percentile rank). The balanced measure (f-

score) confirmed the improved classification power (0.41-0.45 in conventional criteria vs. 0.48-0.56 in 

Neopepsee). 

For more accurate comparison of discriminative power, the distributions of scores were 

plotted for immunogenic and non-immunogenic peptide groups (Figure 3B). The P-value of 

discriminative power was calculated by Wilcoxon ranksum test. The results showed a tighter 

clustering of immunogenic peptides, with a better separation from non-immunogenic peptides (P-

value, 6.84e-05). While the majority of non-immunogenic peptides are assigned with low probabilistic 

scores (<0.5), separation of false negatives with very high scores (~1.0) would be the key to achieving 

better separation, which we expect with continued accumulation of validated data for training. 

 

Application to The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) dataset 

We applied Neopepsee to a large cancer genome cohort. A total of 224 samples were analyzed, and 

3,760 putative neoantigens were identified. The median of somatic single-nucleotide variants (SNV) 

was 49 and the median of putative neoantigens was 7 (Figure 4A). The number of somatic SNVs 

largely differed according to microsatellite instability (MSI) status (median of 452 in MSI-high, 56 in 

MSI-low, and 40 in microsatellite stable [MSS] tumors; Figure 4B). The number of neoantigens in 

MSI-high tumors (median, 68) was higher than that of MSI-low (median, 10) or MSS tumors (median, 

5). Interestingly, tumors with neoantigens exhibited better prognosis compared to tumors without 

neoantigens (29.1 versus 14.1 months without neoantigens; log-rank P=0.024; Figure 4C). However, 

MSI status was not significantly associated with overall survival (29.4 versus 26.7 months with MSS; 

log-rank P=0.616; Figure 4D). Recently, Rooney, et al. calculated immune cytolytic activity scores as 

indicators of CD8+ T cell activation and showed neoantigens to be likely to induce cytolytic activity 
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[25]. In the cox-regression analysis, the absence of neoantigens and advanced tumor stage (III and IV) 

were identified as independent prognostic factors for overall survival (Figure 4E). The positivity of 

neoantigen was associated with improved overall survival in both univariate (hazard ratio, 3.1; 

P=0.022) and multivariate analysis (hazard ratio, 2.2; P=0.040). Our data suggest that increased 

neoantigen loads by microsatellite instability, not MSI status itself, may be a favorable prognostic 

factor. Of 3,760 neoantigens, only 16 (0.42%) were found in more than one tumor sample 

(Supplementary Table 6). We compared identified neoantigens with known immune epitopes. In 

addition to known H. pylori epitopes (n=7, Supplementary Figure S7A), we identified a total of 1,867 

known immune epitopes (Supplementary Table 7). Most immune epitopes are derived from 

Mycobacterium tuberculosis (24%), Trypanosoma cruzi (19%), Vaccinia virus (6%), Human herpes 

virus (4%), and, Hepatitis C virus (2%), many of these bacteria/viruses can induce chronic 

inflammation, one of critical mediators of tumor development including gastric cancer 

(Supplementary Figure S7B). 

 

DISCUSSION 

Due to the great diversity, multi-step biochemical processes, and the stochastic nature of T-cell 

immune response, accurate prediction of neoantigen has been one of the most challenging problems in 

the immunoinformatics field. As we assumed, a single value associated with a part of the whole 

process can hardly provide sufficient information to resolve the complexity. In this context, 

systematic integration of multiple features into a unified workflow is urgently needed to increase the 

accuracy and to provide a sustainable framework that exploits the growing information. Notably, a 

recent study to predict MHC-I-binding peptides based on mass spectrometry shed light on identifying 

binding motifs and antigen processing rules [26]. We expect that such advances will reinforce 

Neopepsee through a continuous re-training of the machine learning classifier with updated data sets 

and feature selection.  

One of the ultimate goals of neoantigen prediction software is to classify patients who will 

benefit from immunotherapy, or to design a personalized cancer vaccine. Recent studies showed that 

higher mutational burden was correlated with better anti-tumor activity of CTLA4 or PD-1 blockade 

[3, 4, 18]. Although the number of neopeptides generated by somatic mutation seemed to be important 

for predicting anti-tumor activity of immunotherapy, the criteria to identify neopeptides and the 

correlation were inconsistent across studies [3, 18]. Future studies identifying optimized selection 

criteria for neopeptides and further correlative analysis are warranted. Since most neoantigenic 

peptides are not identical between tumors [4], cancer vaccines targeting neopeptides may not be a 

‘universal’ solution that provides broad coverage to cancer patients. Nevertheless, Neopepsee will 
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enable the efficient analysis of a personal somatic mutation profile and identification of potential 

neopeptides for personalized vaccination.  

In summary, Neopepsee can be applied not only to identify putative neoantigens, but also to 

compare neoantigens with known immune epitopes. The analysis results can be used for subsequent 

prognostic/predictive biomarker discovery or to design antigens for cancer vaccines. 

 

AVAILABILITY 

The program is available at http://sourceforge.net/projects/neopepsee/. 
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FIGURES LEGENDS 

Figure 1. MHC-I antigen presentation pathway and corresponding Neopepsee procedure.  

(A) The mutant peptide (mutation sequence represented in red) from a tumor-specific antigen can be 

present in the plasma membrane of the major histocompatibility complex (MHC)-I molecule as the 

result of a series of reactions. First, tumor-specific antigens are degraded by the proteasome (Process 

1). Then, the resulting peptides are transported via transporters associated with antigen presentation 

(TAP) into the endoplasmic reticulum (ER) lumen. The neopeptide binds to the binding-groove of 

MHC-I molecules (Process 2). Peptide-MHC class I complexes (pMHC-I) are then transported via the 

endoplasmic reticulum (ER)-Golgi pathway to the plasma membrane for antigen presentation to 

activate CD8+ T cells. MHC-I, major histocompatibility complex I; β2m, β2-microglobulin; TCR, T 

cell receptor. (B) Overall Neopepsee workflow. Somatic mutations and gene expressions of a given 

tumor tissue are assessed for neoantigen prediction. In total, 10 immunogenicity features are 

calculated for each mutant neopeptide and fed into a classifier. Yellow boxes denote unique modules 

in Neopepsee. 

 

Figure 2. Performance evaluation for Neopepsee. 

(A) ROC curves of four predictive models (Gaussian naïve Bayes, locally weighted naïve Bayes, 

random forest, and support vector machine,) and two conventional methods (IC50 and percentile 

rank). All four predictive models outperformed the conventional methods. (B) pROC curves of the 

same six models. All four predictive models show better performance than the conventional methods. 

AUPRC is maximized in the RF model, however, an acute drop in the high recall area is observed; 

LNB shows the best performance when the recall was 1. GNB=Gaussian naïve Bayes, LNB=locally 

weighted naïve Bayes, RF=random forest, SVM=support vector machine, RANK=percentile rank, 

High/Medium=classified with high/medium probability for immunogenicity. MCC=Matthews 

correlation coefficient. 

 

Figure 3. Performance of Neopepsee in independent validation data sets.  

(A) Comparison of performances between each method. # of calls, the total neoantigen candidates 

from the each method; # of hits, the number of true positives; # of FPs, the number of false positives. 

(B) Comparison of discriminative power for three methods. Only Neopepsee shows significance 

between immunogenic and non-immunogenic scores. The y-axis of Neopepsee was vertically inverted 

for convenient comparison. 
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Figure 4. Application of Neopepsee to stomach adenocarcinoma (TCGA-STAD) dataset.  

(A) The number of putative neoantigens and somatic point mutations in TCGA-STAD tumors (N = 

224). (B) The number of somatic point mutations according to microsatellite instability (MSI) status 

in TCGA-STAD tumors (N = 224). (C) Kaplan-Meier estimates of overall survival according to the 

positivity of neoantigens. (D) Kaplan-Meier estimates of overall survival according to the MSI status. 

(E) Univariate and multivariate Cox regression survival analyses. 
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pathway to the plasma membrane for antigen presentation to activate CD8+ T cells. MHC-I, major 
histocompatibility complex I; β2m, β2-microglobulin; TCR, T cell receptor. (B) Overall Neopepsee workflow. 
Somatic mutations and gene expressions of a given tumor tissue are assessed for neoantigen prediction. In 
total, 10 immunogenicity features are calculated for each mutant neopeptide and fed into a classifier. Yellow 

boxes denote unique modules in Neopepsee.  
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Figure 2. Performance evaluation for Neopepsee.  
(A) ROC curves of four predictive models (Gaussian naïve Bayes, locally weighted naïve Bayes, random 
forest, and support vector machine,) and two conventional methods (IC50 and percentile rank). All four 

predictive models outperformed the conventional methods. (B) pROC curves of the same six models. All four 
predictive models show better performance than the conventional methods. AUPRC is maximized in the RF 
model, however, an acute drop in the high recall area is observed; LNB shows the best performance when 
the recall was 1. GNB=Gaussian naïve Bayes, LNB=locally weighted naïve Bayes, RF=random forest, 

SVM=support vector machine, RANK=percentile rank, High/Medium=classified with high/medium probability 

for immunogenicity. MCC=Matthews correlation coefficient.  
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Figure 3. Performance of Neopepsee in independent validation data sets.  
(A) Comparison of performances between each method. # of calls, the total neoantigen candidates from the 

each method; # of hits, the number of true positives; # of FPs, the number of false positives. (B) 

Comparison of discriminative power for three methods. Only Neopepsee shows significance between 
immunogenic and non-immunogenic scores. The y-axis of Neopepsee was vertically inverted for convenient 

comparison.  
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Figure 4. Application of Neopepsee to stomach adenocarcinoma (TCGA-STAD) dataset.  
(A) The number of putative neoantigens and somatic point mutations in TCGA-STAD tumors (N = 224). (B) 
The number of somatic point mutations according to microsatellite instability (MSI) status in TCGA-STAD 

tumors (N = 224). (C) Kaplan-Meier estimates of overall survival according to the positivity of neoantigens. 
(D) Kaplan-Meier estimates of overall survival according to the MSI status. (E) Univariate and multivariate 

Cox regression survival analyses.  
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