Module 2: Introduction to Statistics

Niko Kaciroti, Ph.D. BIOINF 525 Module 2: W17 University of Michigan

Topic

- Dichotomous Variables
- Compare Proportions
 - Two sample test (Normal approximation theory)
 - Chi-square test
 - Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
 - Absolute Risk Reduction (ARR)
 - Relative Risk (RR)
 - Odds Ratio (OR)
- Application and Discussion of a Research Article
 - Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

Dichotomous Variables: Binary Data

- Binary variables indicate two different states
 - Presence or absence of a characteristic: X=1 (Yes)/ 0(No)
 - Tossing a Coin: *Pr(Tail)=0.5*
 - *Pr*(Carrying Gene G)=*p*

X_i ~ Bernoulli(p)

- Choose a cutoff point in continuous measure
 - Obesity: $BMI \ge 30 \text{ kg/m2}$
 - Hypertension: SBP \geq 140 or DBP \geq 90 mmHg
- Assign status based on a checklist
 - Depressed: (If 16 or more items from the checklist are checked)
 - Control: (If < 16 items from the checklist are checked)

Binomial Distribution

- Y is the number of successes in a fixed number (n) of independent Bernoulli trials (X_i) with the same probability of success in each trial
 - X_i ~ Bernoulli(p)
 - Y= $\sum_{i=1}^{n} X_i$

Y ~ Bin(n, p)

- Requirements
 - 1. Each trial has one of two possible outcomes (1=success/0=fail)
 - 2. The trials are independent
 - 3. Probability of success (event) is the same in all trials
 - 4. A fixed number of trials (i.e. n=100)

- Mean of Y:
 - If a coin is tossed n=100, what is the expected number of Tails?

- Mean of Y:
 - If a coin is tossed n=100, what is the expected number of Tails?

E(Y)=np=?

- Mean of Y:
 - If a coin is tossed n=100, what is the expected number of Tails?

E(Y)=np=50

- n is the number of trials
- p is the probability of success
- Variance and Standard Deviation:

Var(Y)=np(1-p) SD(Y)= $\sqrt{np(1-p)}$

- Mean of Y:
 - If a coin is tossed n=100, what is the expected number of Tails?

E(Y)=np=50

- n is the number of trials
- p is the probability of success
- Variance and Standard Deviation:

Var(Y)=np(1-p)=100 x 0.5 x 0.5=25 SD(Y)= $\sqrt{np(1-p)}$

Mean and Standard Deviation of Proportion Y ~ Bin(n,p)

- Estimate of Proportion:
 - If an unfair coin is tossed 100 times and the result is 25 Tails, what is the expected value of p?

Mean and Standard Deviation of Proportion Y ~ Bin(n,p)

- Estimate of Proportion:
 - If an unfair coin is tossed 100 times and the result is 25 Tails, what is the expected value of p?

$$\hat{p} = \frac{Y}{n} = \overline{Y} = \frac{25}{100} = .25$$
$$E(\overline{Y}) = p$$

- Y number of successes
- n number of trials
- p probability of success
- Variance and Standard Deviation of \overline{Y} :

 $Var(\overline{Y}) = p(1-p)/n \approx \hat{p}(1-\hat{p})/100$ $SD(\overline{Y}) = \sqrt{p(1-p)/n}$

Which of These Variables Would Have a Binomial Distribution?

- Number of female students in this class given the total number of students
- BMI of 100 people
- Number of people with $BMI \ge 30 \text{ kg/m2}$

Which of These Variables Would Have a Binomial Distribution?

- Number of female students in this class given the total number of students
 - ✓ Yes
- BMI of 100 people
- Number of people with $BMI \ge 30 \text{ kg/m2}$

Which of These Variables Would Have a Binomial Distribution?

 Number of female students in this class given the total number of students

✓ Yes

- BMI of 100 people
 - X No
- Number of people with $BMI \ge 30 \text{ kg/m2}$

Which of These Variables Would Have a Binomial Distribution?

 Number of female students in this class given the total number of students

✓ Yes

- BMI of 100 people
 - X No
- Number of people with $BMI \ge 30 \text{ kg/m2}$
 - ✓ Yes

Торіс

- Dichotomous Variables
- Compare Proportions
 - Two sample test (Normal approximation theory)
 - Chi-square test
 - Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
 - Absolute Risk Reduction (ARR)
 - Relative Risk (RR)
 - Odds Ratio (OR)
- Application and Discussion of a Research Article
 - Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

Examples of Testing for Differences Between Two Proportions

 Does the proportion of patients with hypertension differ between two groups?

– Treatment vs. Control

– Smoker vs. Non smoker

Notation and Display of Categorical Data 2 x 2 Contingency Tables

	Hypertension		
	Yes	No	Total
Treatment	n ₁₁	n ₁₂	n _{1.}
Placebo	n ₂₁	n ₂₂	n _{2.}
Total	n _{.1}	n _{.2}	n

n_{ii} are referred to as cell frequencies.

 $n_{,j}$ and $n_{i}_{,i}$ are refereed to as marginal frequencies n is the total sample size

Example: 2 x 2 Tables

	Hypertension		
TROPHY data	Yes	No	Total
Treatment	14	113	127
Placebo	57	71	128
Total	71	184	255

Example: 2 x 2 Tables

Hypertension			
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

Proportion of HT in Treatment group: Proportion of HT at Placebo group: Proportion of HT in both groups:

 $p_1 = 14/127 = 11\%$ $p_2 = 57/128 = 44.5\%$ p = 71/255 = 27.8%

Q: What is the number of subjects with HT from the Treated group?

Test for Differences in Proportions Between Two Groups

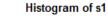
• Testing whether the proportions for some outcome (e.g. HT) are different between two groups:

$$H_0: p_1 = p_2$$
$$H_A: p_1 \neq p_2$$

Vs.

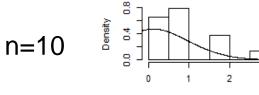
Three Tests for Differences in Proportions Between Two Groups

- Two-sample test for differences in two proportions
 - Normal theory test, works for large n due to CLT

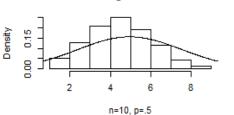

 $Y=\sum_{i=1}^n X_i$

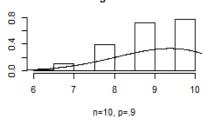
Chi-Square test

- Works when *n* > 5 in all cells


- Fisher's Exact test
 - Works for any *n*, but computationally intensive when *n* is large
 - Used when *n* is not large, otherwise use the Chi-Square test

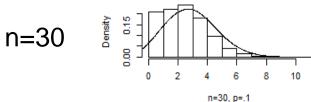
Normal theory test: Y ~ Bin(n, p) is approximate normal for large n (CLT)

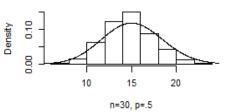

Histogram of s2

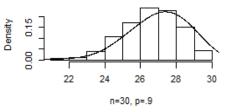

Histogram of s3

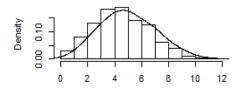
n=10, p=.1

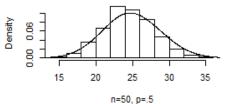
3

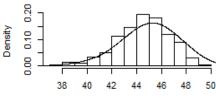



Density


Histogram of s4


Histogram of s6




Histogram of s7

n=50, p=.1

Histogram of s8

Histogram of s9

p=.1

p=.5

p=.9

n=50

Test Statistics for Difference in Two Binomial Proportions (Normal theory test)

 \hat{p}_1 : proportion in group 1 with outcome (sample size is n₁)

- \hat{p}_2 : proportion in group 2 with outcome (sample size is n₂)
- \hat{p} : Overall proportion for group 1 and 2 combined

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p} (1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

Can be used only if $n_1 \hat{p}_1 (1 - \hat{p}_1) > 5$ $n_2 \hat{p}_2 (1 - \hat{p}_2) > 5$

e.g. p=.5 and n > 20 p=.1 and n > 56

TROPHY Data test for Binomial Proportions (Normal theory test)

	Hypertension		
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127 (n ₁)
Placebo	57(44.5%)	71	128 (n ₂)
Total	71(27.8%)	184	255

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

 $\hat{p}_1 = 14/127 = 11\%$ $\hat{p}_2 = 57/128 = 44.5\%$ $\hat{p} = 71/255 = 27.8\%$

TROPHY Data test for Binomial Proportions (Normal theory test)

$$z = \frac{.11 - .445}{\sqrt{.278 * (1 - .278)(\frac{1}{127} + \frac{1}{128})}} = \frac{-.335}{\sqrt{.207 * .01569}} = -5.96$$

p-value=2.52 x 10^{-9} , Reject H₀: $p_1 = p_2$

Chi-Square (χ^2) Test

The Chi-Square test is the most commonly used test for categorical data analysis

- Can be used for 2 x 2 tables
- Can be used for n x m tables (for any n and m)

Observed Cell Proportions (Deriving χ^2 Test)

	Hypertension		
	Yes	No	Total
Treatment	14	113	127
Placebo	57	71	128
Total	71	184	255

Cell % relative to the overall n=255

E.g. What proportion of the total sample is from the treatment group and has HT?

Observed Cell Proportions (Deriving χ^2 Test)

	Hypertension		
	Yes	No	Total
Treatment	14(5.5%)	113(44.3%)	127
Placebo	57(22.4%)	71(27.8%)	128
Total	71	184	255

Cell % relative to the overall n=255

E.g. What proportion of the total sample is from the treatment group and has HT?

Expected Cell Proportions (Deriving χ^2 Test)

TROPHY data	Hypertension		
	Yes	No	Total
Treatment	14	113	127(49.8%)
Placebo	57	71	128(50.2%)
Total	71(27.8%)	184(72.2%)	255

Marginal Proportions:

- Marginal Row %: What proportion is in the Treatment (Placebo) group? 127/255 =49.2%
- Marginal Column %: What proportion is HT (Not HT)? 71/255=27.8%

Expected Cell Proportions (Deriving χ^2 Test)

TROPHY	Hypertension		
Data	Yes	No	Total
Treatment	?		49.8%
Placebo	?		50.2%
Total	27.8%	72.2%	255(100%)

Marginal proportions are fixed.

Q: What proportion of the total sample is expected in each cell (when H₀ is true)?

Expected Cell Proportions (Deriving χ^2 Test)

TROPHY	Hypertension		
Data	Yes	No	Total
Treatment	13.8%	36%	49.8%
Placebo	14%	36.2%	50.2%
Total	27.8%	72.2%	255(100%)

Marginal proportion are fixed.

Q: What <u>proportion</u> of the total sample is expected in each cell (when H_0 is true)? Multiply the row percent with column percent:

27.8% x 49.8% = 13.8%

Expected Cell Frequency (Deriving χ^2 Test)

TROPHY	Hypertension		
Data	Yes	No	Total
Treatment	35.2(13.8%)	91.8	127
Placebo	35.7	92.3	128
Total	71	184	255

What <u>number</u> from the total sample is expected in each cell?

Expected Cell Frequency (Deriving χ^2 Test)

TROPHY	Hypertension		
Data	Yes	No	Total
Treatment	35.2(13.8%)	91.8	127
Placebo	35.7	92.3	128
Total	71	184	255

What <u>number</u> from the total sample is expected in each cell?

13.8% x 255=35.2

Compare Observed vs. Expected Frequencies (Deriving χ^2 Test)

TROPHY	Hypertension		
Data	Yes	No	Total
Treatment	14/35.2	113/91.8	127
Placebo	57/35.7	71/92.3	128
Total	71	184	255

Observed frequencies: $O_{11} = 14$

Expected frequency: $E_{11} = 35.2$

If H_0 is true then O_{11} should be close to E_{11}

Chi-Square Test

• Chi-Square test, with Yate's correction, is based on:

$$\chi^{2} = \frac{(|O_{11} - E_{11}| - .5)^{2}}{E_{11}} + \frac{(|O_{12} - E_{12}| - .5)^{2}}{E_{12}} + \frac{(|O_{21} - E_{21}| - .5)^{2}}{E_{21}} + \frac{(|O_{22} - E_{22}| - .5)^{2}}{E_{22}}$$

- χ^2 has a Chi-Square distribution with df = k(?)
- Calculate the p-value based on the Chi-Square distribution with k df
 If p-value < 0.05 reject H₀

Chi-Square Test: Calculating Degrees of Freedom

	Hypertension		
TROPHY Data	Yes	No	Total
Treatment	14		127
Placebo			128
Total	71	184	255

For 2 x 2 tables, the frequency number in only one cell is free to vary. Frequencies in the remaining 3 cell are constrained and can be derived.

What is the frequency for non HT in the Treated group?

Chi-Square Test: Calculating Degrees of Freedom

	Hyper	tension	
TROPHY Data	Yes	No	Total
Treatment	14	113(127-14)	127
Placebo			128
Total	71	184	255

Chi-Square Test: Calculating Degrees of Freedom

	Hyper	tension	
TROPHY Data	Yes	No	Total
Treatment	14	113(<mark>127</mark> -14)	127
Placebo	57 (<mark>71</mark> -14)	71(<mark>128</mark> -57)	128
Total	71	184	255

Chi-Square Test: Calculating Degrees of Freedom

	Hyper	tension	
TROPHY Data	Yes	No	Total
Treatment	14	113(<mark>127</mark> -14)	127
Placebo	57 (<mark>71</mark> -14)	71(<mark>128</mark> -57)	128
Total	71	184	255

- df=(Rows-1) x (Columns-1)=1
- Then, use the Chi-Square with 1 *df* to derive the p-value. If p-value < .05, then reject H_0 : $p_1 = p_2$

Chi-Square Test in R

• In R: chisq.test(HT,Trt)

• Output:

Pearson's Chi-squared test with Yates' continuity correction

data: HT and Trt X-squared = 33.9775, df = 1, p-value = 5.575e-09

Chi-Square Test in R

• In R: chisq.test(HT,Trt)

• Output:

Pearson's Chi-squared test with Yates' continuity correction

data: HT and Trt X-squared = 33.9775, df = 1, p-value = $5.575e-09 \longrightarrow$ Reject H₀ of no treatment effect

Fisher's Exact Test

- Fisher's exact test is not based on the normal approximation theory. It is an exact test
- It calculates the <u>exact probability</u> (under H₀) that one would observe a 2 x 2 table same or more extreme than the one observed (if < .05 reject H₀)
- It is used when n is small, and the Chi-square test or the normal approximation theory might not apply

Example: 2 x 2 Contingency Table Fisher's Exact Test (Small Sample)

Example	Not HT	НТ	Total
Treated	4	0	4
Placebo	1	3	4
Total	5	3	8

Marginal counts (are fixed)

• Under the H₀ of no difference on HT between two groups, calculate the probability of each table with the same marginal counts

Example: 2 x 2 Contingency Table Fisher's Exact Test (Small Sample)

Example	Not HT	НТ	Total
Treated	4	0	4
Placebo	1	3	4
Total	5	3	8

Marginal counts (are fixed)

- Under the H₀ of no difference on HT between two groups, calculate the probability of each table with the same marginal counts
- How many Tables with these given margins are possible?

Example	Not HT	нт	Total
Treated	?		4
Placebo			4
Total	5	3	8

Table 1	No HT	HT	Total	Table 2	No HT
Treated	4		4	Treated	3
Placebo			4	Placebo	
Total	5	3	8	Total	5
Table 3	No HT	нт	Total	Table 4	No HT
Treated	2		4	Treated	1
Placebo			4	Placebo	
Total	5	3	8	Total	5
Table 5	No HT	НТ	Total		
Treated	0		4		
Placebo			4		
Total	5	3	8		

Table 2	No HT	HT	Total
Treated	3		4
Placebo			4
Total	5	3	8
Table 4	No HT	нт	Total
Table 4Treated	No HT 1	нт	Total 4
		HT	

Table 1	No HT	HT	Total	Table 2	No HT
Treated	4		4	Treated	3
Placebo			4	Placebo	
Total	5	3	8	Total	5
Table 3	No HT	нт	Total	Table 4	No HT
Treated	2		4	Treated	1
Placebo			4	Placebo	
Total	5	3	8	Total	5
Table 5	No HT	нт	Total		
Treated	0		4		
Placebo	5(?)		4		
Total	5	3	8		

Table 2	No HT	нт	Total
Treated	3		4
Placebo			4
Total	5	3	8
Table 4	No HT	нт	Total
Table 4Treated	No HT 1	HT	Total 4
		HT	

Table 1	No HT	нт	Total
Treated	4	0	4
Placebo	1	3	4
Total	5	3	8
Table 3	No HT	нт	Total
Table 3Treated	No HT 2	HT 2	Total 4

Table 2	No HT	нт	Total
Treated	3	1	4
Placebo	2	2	4
Total	5	3	8
Table 4	No HT	нт	Total
Table 4Treated	No HT 1	HT 3	Total 4

Total Probabilities:	Table 1 = 0.071
	Table 2 = 0.429
	Table 3 = 0.429
	Table 4 = 0.071

Table 1	No HT	HT	Total	Table 2	No HT	HT	Total
Treated	4	0	4	Treated	3	1	4
Placebo	1	3	4	Placebo	2	2	4
Total	5	3	8	Total	5	3	8
Table 3	No HT	НТ	Total	Table 4	No HT	НТ	Total
Treated	2	2	4	Treated	1	3	4
Placebo	3	1	4	Placebo	4	0	4
Total	5	3	8	Total	5	3	8
Tables (1 and 4) are <u>same or less likely</u> than the observed data (Table 1)		Total Pro	babilities:	Table 1 = Table 2 = Table 3 =	0.429		

Table 4 = 0.071

The p-value for Fisher exact test is: p=.071+.071=.142

Table1: How Many Combinations Can Have This Result?

Table 1	No HT	НТ	Total
Treated	4	0	4(A,B,C,D)
Placebo	1	3	4(a,b,c,d)
Total	5	3	8

Table1: How Many Combinations Can Have This Result?

Table 1	No HT	НТ	Total	Table 1a	No HT	нт	Total
Treated	4	0	4(A,B,C,D)	Treated	4 (A,B,C,D)	0	4
Placebo	1	3	4(a,b,c,d)	Placebo			4
Total	5	3	8	Total	5	3	8

Treatment row: 1 combination Placebo row: ? combinations

Total: 1*?=? Tables

Table1: How Many Combinations Can Have This Result?

Table 1	No HT	HT	Total	Table 1a	No HT	HT	Total
Treated	4	0	4(A,B,C,D)	Treated	4 (A,B,C,D)	0	4
Placebo	1	3	4(a,b,c,d)	Placebo	1 (a)	3 (b,c,d)	4
Total	5	3	8	Total	5	3	8
Treatme	Treatment row: 1 combination				No HT	HT	Total
	Placebo row: 4 combinations			Treated	4 (A,B,C,D)	0	4
Total: 1*4	Total: 1*4=4 Tables			Placebo	1 (b)	3 (a,c,d)	4
				Total	5	3	8
Table 1d	No HT	HT	Total	Table 1c	No HT	HT	Total
Treated	4 (A,B,C,D)	0	4	Treated	4 (A,B,C,D)		4
Placebo	1 (d)	3 (a,b	,c) <mark>4</mark>	Placebo	1 (c)	3 (a,b,d)	4
Total	5	3	8	Total	5	3	8

How Many Total Tables are Possible?

Table 1	Not HT	нт	# Tables	Proportion
Treatment	4	0	1*4=4	4/56=.071
Placebo	1	3		
Table 2				
Treatment	3	1	4*6=24	24/56=.429
Placebo	2	2		
Table 3				
Treatment	2	2	6*4=24	24=56=.429
Placebo	3	1		
Table 4				
Treatment	1	3	4*1=4	4/56=.071
Placebo	4	0		
Total			56	1.00

Fisher's Exact Test in R

• In R: fisher.test(HT,Trt)

• R output:

Fisher's Exact Test for Count Data

data: HT and Trt

p-value = 0.1429

alternative hypothesis: true odds ratio is not equal to 1

Торіс

- Dichotomous Variables
- Compare Proportions
 - Two sample test (Normal approximation theory)
 - Chi-square test
 - Fisher Exact test

Measuring Treatment Effect on Binary Outcomes

- Absolute Risk Reduction (ARR)
- Relative Risk (RR)
- Odds Ratio (OR)
- Application and Discussion of a Research Article
 - Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

There are several measures of a treatment effect (or associations) for binary data. Three most commonly used are:

- Absolute Risk Reduction (ARR)
- Relative Risk (RR)
- Odds Ratio (OR)

Absolute Risk Reduction (ARR)

	Hyperte		
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

• Risk of HT is measured by the probability of developing HT: Pr(HT=Yes).

Pr(HT=Yes|Treated)=11% Pr(HT=Yes|Placebo)=44.5%

Absolute Risk Reduction (ARR)

	Hyperte		
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

• Risk of HT is measured by the probability of developing HT: Pr(HT=Yes).

Pr(HT=Yes|Treated)=11% Pr(HT=Yes|Placebo)=44.5%

 Absolute risk reduction (ARR) measures how much the risk is reduced due to Treatment?

```
ARR=44.5% - 11%=33.5%
```

• If ARR=0, no Trt effect

Relative Risk Reduction (RRR)

	Hyperte		
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

• Relative risk (RR) measures how much the risk is reduced due to Treatment relative to Placebo?

Relative Risk (RR)

	Hyperte		
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

• Relative risk (RR) measures how much the risk is reduced due to Treatment relative to Placebo?

$$\mathsf{RR} = \frac{0.11}{0.445} = 0.25$$

• If RR=1, no Trt effect

Which is a Better Measure: ARR or RR?

• The ARR and RR are sensitive to the magnitude of the proportions:

Ex 1: ARR=2%-1%=1% (small effect) RR=1%/2%=0.5 (big effect)

Which is a Better Measure: ARR or RR?

• The ARR and RR are sensitive to the magnitude of the proportions:

Ex 1: ARR=2%-1%=1% (small effect) RR=1%/2%=0.5 (big effect)

Ex 2: ARR=95%-80%=15% (big effect) RR=.95/.8=0.84 (small effect)

Which is a Better Measure: ARR or RR?

• The ARR and RR are sensitive to the magnitude of the proportions:

Ex 1: ARR=2%-1%=1% (small effect) RR=1%/2%=0.5 (big effect)

- Ex 2: ARR=95%-80%=15% (big effect) RR=.95/.8=0.84 (small effect)
- Always report both the ARR and the RR

Odds Ratio(OR)

	Hyperte		
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

• Odds of developing HT are: $ODD = \frac{\Pr(HT=Yes)}{\Pr(HT=No)} = p/1-p$

ODD(Treated)=.11/.89=.124 ODD(Placebo)=.445/.556=.80

Odds Ratio(OR)

	Hyperte		
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

• Odds of developing HT are: $ODD = \frac{\Pr(HT=Yes)}{\Pr(HT=No)} = p/1-p$

ODD(Treated)=.11/.89=.124 ODD(Placebo)=.445/.556=.80

 Odds Ratio (OR) measures how much the Odds are reduced due to Treatment compared to Placebo.

$$OR = \frac{.124}{.80} = 0.16$$
 (If OR=1, no Trt effect)

Odds Ratio(OR)

• OR are useful for measuring the relationship of any variable (Age, Trt) with a binary outcome (HT). They are usually derived using logistic regression

 In short, logistic regression is a statistical modeling technique used to predict the ODDs of HT (or any binary outcome) based on one <u>or more</u> variables

Modeling OR (log-OR) as a function of other predictors

• Logistic regression model is:

$$\log(\frac{\Pr(HT=1)}{1-\Pr(HT=1)}) = \beta_0 + \beta_1 * \text{Trt} + \beta_2 * \text{BMI} + \beta_3 * X + \dots$$

• OR(Trt)= e^{β_1}

Compares the ODDs of HT between Treatment and Placebo

• OR(BMI)= e^{β_2}

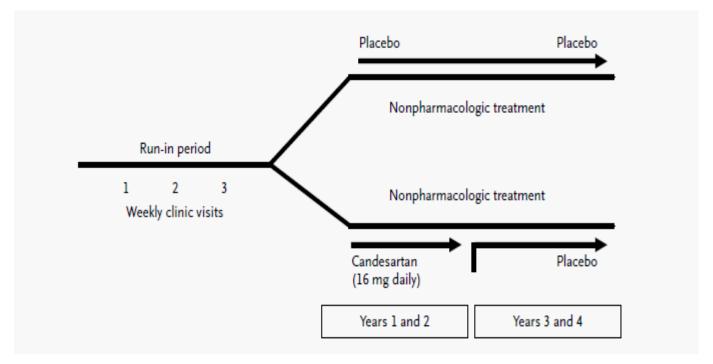
How much the ODDs of HT change if BMI increases by 1 (e.g. BMI=27 vs. BMI=26)

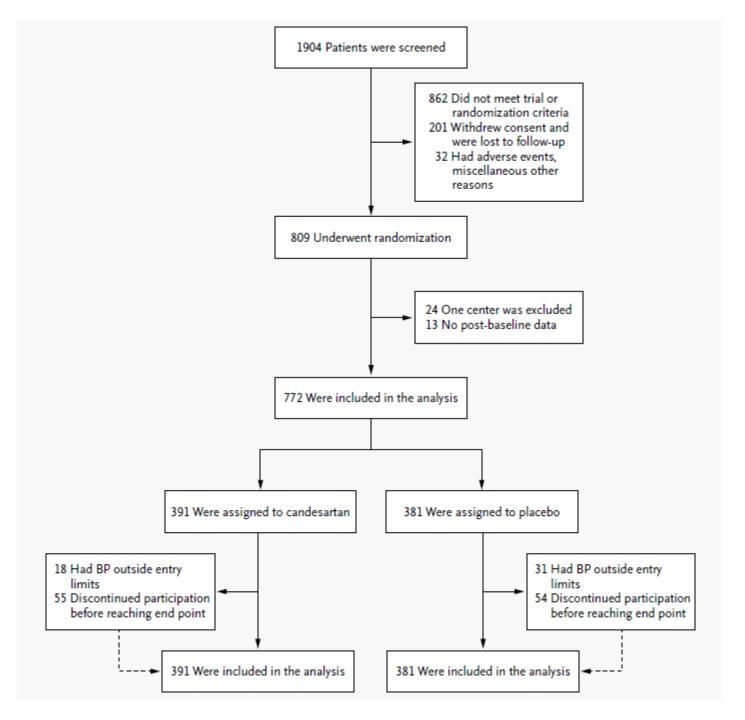
• $OR(X)=e^{\beta_3}=1$, implies no relationship between X and Y.

Q: If X does not relate to Y, what is β_3 ?

Торіс

- Dichotomous Variables
- Compare Proportions
 - Two sample test (Normal approximation theory)
 - Chi-square test
 - Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
 - Absolute Risk Reduction (ARR)
 - Relative Risk (RR)
 - Odds Ratio (OR)
- Application and Discussion of a Research Article
 - Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97


Application and Discussion of a Research Article*


- **Tr**ial of **P**reventing **Hy**pertension (TROPHY Study)
 - Background: Hypertension is a strong predictor of excessive cardiovascular risk. TROPHY study investigated whether pharmacologic treatment of prehypertension prevents or postpones hypertension, thus reducing the CV risk.

*Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et. al. N Engl J Med. 2006; 354:1685-97

TROPHY Study

• **Objective:** The primary hypothesis of the study was to determine whether two years of treatment with candesartan reduces the incidence of hypertension two years after treatment <u>and</u> 2 years <u>after discontinuation</u> of treatment.

Characteristics of the Study Population

Table 1. Baseline Characteristics of the Study Participants.*				
	Candesartan Group (N = 391)	Placebo Group (N = 381)		
Age — yr	48.6±7.9	48.3±8.2		
Male sex — no. (%)	231 (59.1)	229 (60.1)		
Race — no. (%)†				
White	312 (79.8)	321 (84.3)		
Black	48 (12.3)	31 (8.1)		
Other	31 (7.9)	29 (7.6)		
Weight — kg	89.0±17	88.8±17.7		
Body-mass index‡	29.9±5.1	30.0±5.5		
Blood pressure — mm Hg				
Measured at clinic visit with automated device§	133.9±4.3/84.8±3.8	134.1±4.2/84.8±4.1		

Table 2. Incident Hypertension and Incidence of Serious Adverse Events.*				
	Candesartan Group (N=391)	Placebo Group (N = 381)	P Value	Relative Risk (95% CI)
New-onset hypertension				
No. of participants in whom hypertension developed	208	240		
Hypertension at year 2 visit — %	13.6	40.4	<0.001†	0.34 (0.25-0.44)
Hypertension at year 4 visit — %	53.2	63.0	0.007†	0.84 (0.75-0.95)
Hypertension during study period			<0.001‡	0.58 (0.49-0.70)
Clinical criteria for end-point determination				
BP at three clinic visits, ≥140 mm Hg systolic, ≥90 mm Hg diastolic, or both — no. (%)	142 (36)	168 (44)	0.03†	0.82 (0.69–0.98)
BP at any clinic visit ≥160 mm Hg systolic, ≥100 mm Hg diastolic, or both — no. (%)	15 (3.8)	19 (5.0)	0.49†	0.77 (0.40-1.49)
BP requiring pharmacologic treatment — no. (%)	45 (12)	48 (13)	0.66†	0.91 (0.62–1.34)
BP at month 48 clinic visit ≥140 mm Hg systolic, ≥90 mm Hg diastolic, or both — no. (%)	6 (1.5)	5 (1.3)	>0.99†	1.17 (0.36–3.80)

New-onset hypertension	Candesartan Group (N=391)	Placebo Group (N=381)	P Value	Relative Risk (95% CI)
No. of participants in whom hypertension developed	208	240		
Hypertension at year 2 visit — %	13.6	40.4	<0.001†	0.34 (0.25-0.44)
Hypertension at year 4 visit — %	53.2	63.0	0.007†	0.84 (0.75-0.95)

At 2 Years	Hypertension		
	Yes(row %) No		Total
Candesartan	13.6%		391
Placebo	40.4%		381
Total			772

ARR at 2 years: 40.4-13.6=26.8%

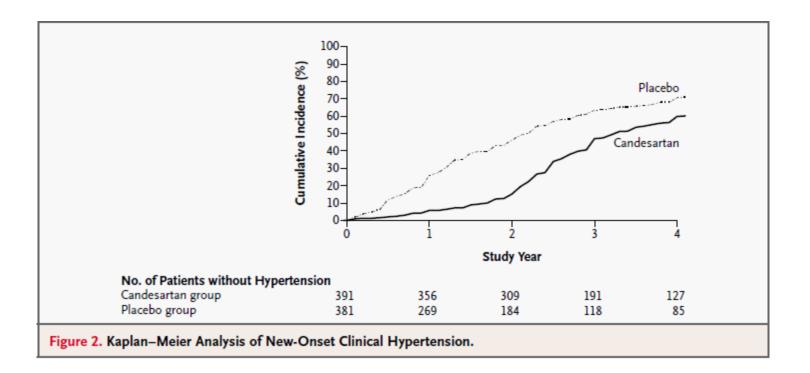
RR at 2 years: .136/.404=.34

New-onset hypertension	Candesartan Group (N=391)	Placebo Group (N=381)	P Value	Relative Risk (95% CI)
No. of participants in whom hypertension developed	208	240		
Hypertension at year 2 visit — %	13.6	40.4	<0.001†	0.34 (0.25-0.44)
Hypertension at year 4 visit — %	53.2	63.0	0.007†	0.84 (0.75-0.95)

At 2 Years	Hypertension		
	Yes(row %) No		Total
Candesartan	53 <mark>(13.6%)</mark>	338	391
Placebo	154 <mark>(40.4%)</mark>	227	381
Total	207	565	772

ARR at 2 years: 40.4-13.6=26.8%

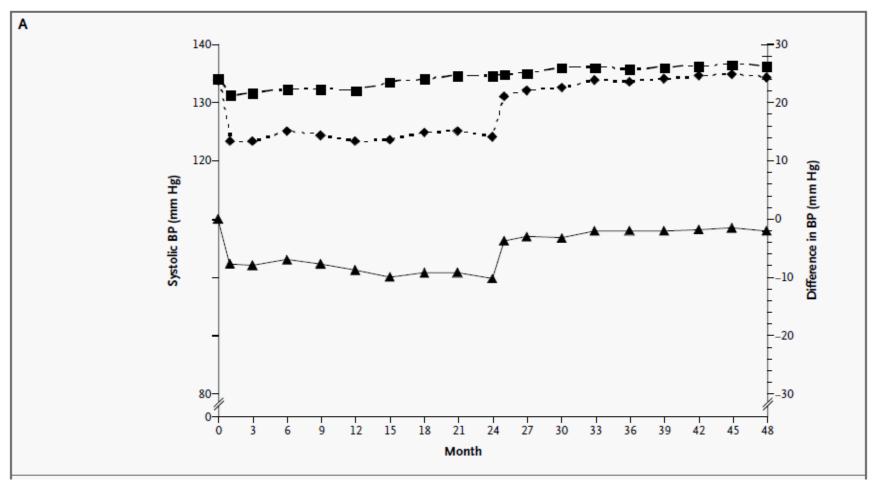
RR at 2 years: .136/.404=.34


New-onset hypertension	Candesartan Group (N=391)	Placebo Group (N=381)	P Value	Relative Risk (95% CI)
No. of participants in whom hypertension developed	208	240		
Hypertension at year 2 visit — %	13.6	40.4	<0.001†	0.34 (0.25-0.44)
Hypertension at year 4 visit — %	53.2	63.0	0.007†	0.84 (0.75-0.95)

At 4 Years	Hypertension		
	Yes(row %) No		Total
Candesartan	208 <mark>(53.2%)</mark>	183	391
Placebo	240 <mark>(63.0%)</mark>	141	381
Total	448	324	772

ARR at 4 years: 63.0-53.2=9.8%

RR at 4 years: 53.2/63.0=.84


Cumulative Incidence of HT by Treatment Group

Kaplan-Meier Analysis shows if the overall cumulative incidence of HT is different between groups <u>over time</u>. It gives the full picture on the development of HT over the 4 year follow-up.

Note: Cumulative incidence is calculated as 100% - K-M curve

SBP Values Over 4 Years

SBP curve (mean of SBP at each visit) over 4 years

Two-ample t-test: Showed 2.0 mm Hg (p=0.037) decrease in SBP at year 4 due to Candesartan

Subgroup Analysis: Does Candesartan work the same way for different subgroups

ubgroups			Relative Risk (95% CI)
Blood pressure			
At home systolic pressure >132 mm Hg			0.56 (0.45-0.70)
At home systolic pressure ≤132 mm Hg			0.63 (0.45-0.89)
At home diastolic pressure >82 mm Hg			0.54 (0.43-0.68)
At home diastolic pressure ≤ 82 mm Hg	_ 		0.67 (0.49-0.93)
At clinic systolic pressure >135 mm Hg	-•		0.51 (0.39-0.68)
At clinic systolic pressure ≤135 mm Hg			0.64 (0.49-0.82)
At clinic diastolic pressure >85 mm Hg			0.60 (0.47-0.77)
At clinic diastolic pressure ≤85 mm Hg			0.59 (0.45-0.79)
Age			
≥50 yr			0.54 (0.41-0.70)
<50 yr			0.64 (0.49-0.83)
Sex			
Male	-•		0.54 (0.43-0.69)
Female	— •—		0.66 (0.49-0.90)
Body-mass index			
≥30			0.68 (0.52-0.91)
<30			0.52 (0.40-0.66)
Weight			
≥200 lb	-•		0.65 (0.49-0.87)
<200 lb			0.52 (0.41-0.67)
Race			
White			0.55 (0.44-0.67)
Black			0.74 (0.42-1.32)
All participants			0.58 (0.49-0.70)
	0 1	2	
	Candesartan	Placebo	
	Better	Better	

Summary Points

Tests for Comparing Proportions: H_0 : $p_1 = p_2$ vs. H_A : $p_1 \neq p_2$

Statistical test

Two-sample normal theory test

$$- z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p} (1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

Used when
$$n_1 \hat{p}_1 (1 - \hat{p}_1) > 5$$

 $n_2 \hat{p}_2 (1 - \hat{p}_2) > 5$

n > 5 in all cells

• Chi-square test

- Use χ^2_k where k=(nrow-1) x (ncol-1)

- Fisher's exact test
 - Calculates the exact p-value

n is small and the other two tests does not apply

Summary Points

Measure of association (treatment effect) for Dichotomous Outcomes. "Risk" is defined as: Pr(Y=Yes)=p, $(p_1 \text{ is for treatment}, p_2 \text{ is for control})$

Measure of association

- Absolute Risk Reduction (ARR)
 - ARR = $p_2 p_1$
- Relative Risk (RR)
 - $RR = \frac{p_1}{p_2}$
- Odds Ratio (OR)

$$- \text{ ODDs} = \frac{\Pr(Y=1)}{\Pr(Y=0)} = \frac{p}{1-p}$$
$$- \text{ OR} = \frac{ODDs(Trt)}{ODDS(Control)} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)}$$

Interpretation

(ARR=0 do not reject $H_0: p_1 = p_2$)

(RR=1 do not reject $H_0: p_1 = p_2$)

(OR=1 do not reject H_0 : $p_1 = p_2$