Module 2: Introduction to Statistics

Niko Kaciroti, Ph.D. BIOINF 525 Module 2: W17

University of Michigan

Topic

- Dichotomous Variables
- Compare Proportions
- Two sample test (Normal approximation theory)
- Chi-square test
- Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
- Absolute Risk Reduction (ARR)
- Relative Risk (RR)
- Odds Ratio (OR)
- Application and Discussion of a Research Article
- Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

Dichotomous Variables: Binary Data

- Binary variables indicate two different states
- Presence or absence of a characteristic: X=1 (Yes)/ 0(No)
- Tossing a Coin: $\operatorname{Pr}($ Tail $)=0.5$
- $\operatorname{Pr}($ Carrying Gene G$)=p$

$$
X_{i} \sim \text { Bernoulli(p) }
$$

- Choose a cutoff point in continuous measure
- Obesity: BMI $\geq 30 \mathrm{~kg} / \mathrm{m} 2$
- Hypertension: SBP ≥ 140 or DBP $\geq 90 \mathrm{mmHg}$
- Assign status based on a checklist
- Depressed: (If 16 or more items from the checklist are checked)
- Control: (If < 16 items from the checklist are checked)

Binomial Distribution

- Y is the number of successes in a fixed number (n) of independent Bernoulli trials $\left(X_{i}\right)$ with the same probability of success in each trial
- $\mathrm{X}_{\mathrm{i}} \sim$ Bernoulli(p)
$-\mathrm{Y}=\sum_{i=1}^{n} X_{i}$

$$
Y \sim \operatorname{Bin}(n, p)
$$

- Requirements

1. Each trial has one of two possible outcomes ($1=$ success $/ 0=$ fail)
2. The trials are independent
3. Probability of success (event) is the same in all trials
4. A fixed number of trials (i.e. $n=100$)

Mean and Standard Deviation of Number of Successes: Y ~ Bin(n,p)

- Mean of Y :
- If a coin is tossed $n=100$, what is the expected number of Tails?

Mean and Standard Deviation of Number of Successes: Y ~ Bin(n,p)

- Mean of Y :
- If a coin is tossed $n=100$, what is the expected number of Tails?

$$
E(Y)=n p=?
$$

Mean and Standard Deviation of Number of Successes: Y ~ Bin(n,p)

- Mean of Y :
- If a coin is tossed $n=100$, what is the expected number of Tails?

$$
E(Y)=n p=50
$$

-n is the number of trials
$-p$ is the probability of success

- Variance and Standard Deviation:

$$
\begin{aligned}
& \operatorname{Var}(\mathrm{Y})=\mathrm{np}(1-\mathrm{p}) \\
& \mathrm{SD}(\mathrm{Y})=\sqrt{n p(1-p)}
\end{aligned}
$$

Mean and Standard Deviation of Number of Successes: Y ~ Bin(n,p)

- Mean of Y :
- If a coin is tossed $n=100$, what is the expected number of Tails?

$$
E(Y)=n p=50
$$

-n is the number of trials
$-p$ is the probability of success

- Variance and Standard Deviation:

$$
\begin{aligned}
& \operatorname{Var}(\mathrm{Y})=\mathrm{np}(1-\mathrm{p})=100 \times 0.5 \times 0.5=25 \\
& \mathrm{SD}(\mathrm{Y})=\sqrt{n p(1-p)}
\end{aligned}
$$

Mean and Standard Deviation of Proportion $Y \sim \operatorname{Bin}(n, p)$

- Estimate of Proportion:
- If an unfair coin is tossed 100 times and the result is 25 Tails, what is the expected value of p ?

Mean and Standard Deviation of Proportion $Y \sim \operatorname{Bin}(n, p)$

- Estimate of Proportion:
- If an unfair coin is tossed 100 times and the result is 25 Tails, what is the expected value of p ?

$$
\begin{aligned}
& \hat{p}=\frac{Y}{n}=\bar{Y}=\frac{25}{100}=.25 \\
& \mathrm{E}(\bar{Y})=\mathrm{p}
\end{aligned}
$$

- Y number of successes
- n number of trials
- p probability of success
- Variance and Standard Deviation of \bar{Y} :

$$
\begin{aligned}
& \operatorname{Var}(\bar{Y})=\mathrm{p}(1-\mathrm{p}) / \mathrm{n} \approx \hat{p}(1-\hat{p}) / 100 \\
& \operatorname{SD}(\bar{Y})=\sqrt{p(1-p) / n}
\end{aligned}
$$

Which of These Variables Would Have a Binomial Distribution?

- Number of female students in this class given the total number of students
- BMI of 100 people
- Number of people with $\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m} 2$

Which of These Variables Would Have a Binomial Distribution?

- Number of female students in this class given the total number of students
\checkmark Yes
- BMI of 100 people
- Number of people with $\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m} 2$

Which of These Variables Would Have a Binomial Distribution?

- Number of female students in this class given the total number of students
\checkmark Yes
- BMI of 100 people X No
- Number of people with $\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m} 2$

Which of These Variables Would Have a Binomial Distribution?

- Number of female students in this class given the total number of students
\checkmark Yes
- BMI of 100 people

X No

- Number of people with $\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m} 2$
\checkmark Yes

Topic

- Dichotomous Variables
- Compare Proportions
- Two sample test (Normal approximation theory)
- Chi-square test
- Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
- Absolute Risk Reduction (ARR)
- Relative Risk (RR)
- Odds Ratio (OR)
- Application and Discussion of a Research Article
- Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

Examples of Testing for Differences Between Two Proportions

- Does the proportion of patients with hypertension differ between two groups?
- Treatment vs. Control
- Smoker vs. Non smoker

Notation and Display of Categorical Data 2×2 Contingency Tables

	Hypertension			
Yes	No	Total		
Treatment	n_{11}	n_{12}	$\mathrm{n}_{1 .}$	
Placebo	n_{21}	n_{22}	$\mathrm{n}_{2 .}$	
Total	$\mathrm{n}_{.1}$	$\mathrm{n}_{.2}$	n	

n_{ij} are referred to as cell frequencies.
$n_{. j}$ and $n_{i .}$ are refereed to as marginal frequencies
n is the total sample size

Example: 2 x 2 Tables

TROPHY data	Hypertension		Total
	Yes	No	
Treatment	14	113	127
Placebo	57	71	128
Total	71	184	255

Example: 2×2 Tables

TROPHY data	Hypertension		Total
	Yes $(\%$ of row)	No	
Treatment	$14(11 \%)$	113	127
Placebo	$57(44.5 \%)$	71	128
Total	$71(27.8 \%)$	184	255

Proportion of HT in Treatment group: $\quad p_{1}=14 / 127=11 \%$
Proportion of HT at Placebo group: $\quad p_{2}=57 / 128=44.5 \%$
Proportion of HT in both groups: $\quad p=71 / 255=27.8 \%$
Q: What is the number of subjects with HT from the Treated group?

Test for Differences in Proportions Between Two Groups

- Testing whether the proportions for some outcome (e.g. HT) are different between two groups:

$$
\mathrm{H}_{0}: p_{1}=p_{2}
$$

vs.

$$
\mathrm{H}_{\mathrm{A}}: p_{1} \neq p_{2}
$$

Three Tests for Differences in Proportions Between Two Groups

- Two-sample test for differences in two proportions
- Normal theory test, works for large n due to CLT

$$
\mathrm{Y}=\sum_{i=1}^{n} X_{i}
$$

- Chi-Square test
- Works when $n>5$ in all cells
- Fisher's Exact test
- Works for any n, but computationally intensive when n is large
- Used when n is not large, otherwise use the Chi-Square test

Normal theory test: $Y \sim \operatorname{Bin}(\mathrm{n}, \mathrm{p})$ is approximate normal for large n (CLT)

Test Statistics for Difference in Two Binomial Proportions (Normal theory test)

\hat{p}_{1} : proportion in group 1 with outcome (sample size is n_{1})
\hat{p}_{2} : proportion in group 2 with outcome (sample size is n_{2})
\hat{p} : Overall proportion for group 1 and 2 combined

$$
\mathrm{z}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

Can be used only if

$$
\begin{aligned}
& \mathrm{n}_{1} \hat{p}_{1}\left(1-\hat{p}_{1}\right)>5 \\
& \mathrm{n}_{2} \hat{p}_{2}\left(1-\hat{p}_{2}\right)>5
\end{aligned}
$$

e.g. $p=.5$ and $n>20$
$p=.1$ and $n>56$

TROPHY Data test for Binomial Proportions (Normal theory test)

TROPHY data	Hypertension		Total
	Yes (\% of row)	No	
Treatment	$14(11 \%)$	113	$127\left(\mathrm{n}_{1}\right)$
Placebo	$57(44.5 \%)$	71	$128\left(\mathrm{n}_{2}\right)$
Total	$71(27.8 \%)$	184	255

$$
\mathrm{z}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \quad \begin{array}{ll}
\hat{p}_{1}=14 / 127=11 \% \\
\hat{p}_{2}=57 / 128=44.5 \% \\
\hat{p}=71 / 255=27.8 \%
\end{array}
$$

TROPHY Data test for Binomial Proportions (Normal theory test)

$$
\mathrm{z}=\frac{.11-.445}{\sqrt{.278 *(1-.278)\left(\frac{1}{127}+\frac{1}{128}\right)}}=\frac{-.335}{\sqrt{.207 * .01569}}=-5.96
$$

p-value $=2.52 \times 10^{-9}$, Reject $\mathrm{H}_{0}: p_{1}=p_{2}$

Chi-Square (χ^{2}) Test

The Chi-Square test is the most commonly used test for categorical data analysis

- Can be used for 2×2 tables
- Can be used for $\mathrm{n} \times \mathrm{m}$ tables (for any n and m)

Observed Cell Proportions (Deriving χ^{2} Test)

	Hypertension		
	Yes	No	
Treatment	14	113	127
Placebo	57	71	128
Total	71	184	255

Cell \% relative to the overall $\mathrm{n}=255$

E.g. What proportion of the total sample is from the treatment group and has HT?

Observed Cell Proportions (Deriving χ^{2} Test)

	Hypertension		
	Yes	No	
Treatment	$14(5.5 \%)$	$113(44.3 \%)$	127
Placebo	$57(22.4 \%)$	$71(27.8 \%)$	128
Total	71	184	255

Cell \% relative to the overall $\mathrm{n}=255$
E.g. What proportion of the total sample is from the treatment group and has HT?

$$
14 / 255=5.5 \%
$$

Expected Cell Proportions (Deriving χ^{2} Test)

TROPHY data	Hypertension		Total
	Yes	No	
Treatment	14	113	127
Placebo	57	71	$128(50.2 \%)$
Total	$71(27.8 \%)$	$184(72.2 \%)$	255

Marginal Proportions:

- Marginal Row \%: What proportion is in the Treatment (Placebo) group?

$$
127 / 255=49.2 \%
$$

- Marginal Column \%: What proportion is HT (Not HT)?

71/255=27.8\%

Expected Cell Proportions (Deriving χ^{2} Test)

TROPHY Data	Hypertension		Total
	Yes	No	
Treatment	$?$		49.8%
Placebo	$?$		50.2%
Total	27.8%	72.2%	$255(100 \%)$

Marginal proportions are fixed.
Q: What proportion of the total sample is expected in each cell (when H_{0} is true)?

Expected Cell Proportions (Deriving χ^{2} Test)

TROPHY Data	Hypertension		Total
	Yes	No	
Treatment	13.8%	36%	49.8%
Placebo	14%	36.2%	50.2%
Total	27.8%	72.2%	$255(100 \%)$

Marginal proportion are fixed.
Q: What proportion of the total sample is expected in each cell (when H_{0} is true)? Multiply the row percent with column percent:

$$
27.8 \% \times 49.8 \%=13.8 \%
$$

Expected Cell Frequency (Deriving χ^{2} Test)

TROPHY Data	Hypertension		Total
	Yes	No	
Treatment	$35.2(13.8 \%)$	91.8	127
Placebo	35.7	92.3	128
Total	71	184	255

What number from the total sample is expected in each cell?

Expected Cell Frequency (Deriving χ^{2} Test)

TROPHY Data	Hypertension		Total
	Yes	No	
Treatment	$35.2(13.8 \%)$	91.8	127
Placebo	35.7	92.3	128
Total	71	184	255

What number from the total sample is expected in each cell?

$$
13.8 \% \times 255=35.2
$$

Compare Observed vs. Expected Frequencies

 (Deriving χ^{2} Test)| TROPHY
 Data | Hypertension | | Total |
| :--- | :---: | :---: | :--- |
| | Yes | No | |
| Treatment | $14 / 35.2$ | $113 / 91.8$ | 127 |
| Placebo | $57 / 35.7$ | $71 / 92.3$ | 128 |
| Total | 71 | 184 | 255 |

Observed frequencies: $\mathrm{O}_{11}=14$
Expected frequency: $\quad \mathrm{E}_{11}=35.2$
If H_{0} is true then O_{11} should be close to E_{11}

Chi-Square Test

- Chi-Square test, with Yate's correction, is based on:

$$
\chi^{2}=\frac{\left(\left|O_{11}-E_{11}\right|-.5\right)^{2}}{E_{11}}+\frac{\left(\left|O_{12}-E_{12}\right|-.5\right)^{2}}{E_{12}}+\frac{\left(\left|O_{21}-E_{21}\right|-.5\right)^{2}}{E_{21}}+\frac{\left(\left|O_{22}-E_{22}\right|-.5\right)^{2}}{E_{22}}
$$

- χ^{2} has a Chi-Square distribution with $d f=k(?)$
- Calculate the p -value based on the Chi-Square distribution with $\mathrm{k} d f$
- If p-value <0.05 reject H_{0}

Chi-Square Test: Calculating Degrees of Freedom

TROPHY Data	Hypertension		Total
	Yes	No	
Treatment	14		127
Placebo			128
Total	71	184	255

For 2×2 tables, the frequency number in only one cell is free to vary. Frequencies in the remaining 3 cell are constrained and can be derived.

What is the frequency for non HT in the Treated group?

Chi-Square Test: Calculating Degrees of Freedom

TROPHY Data	Hypertension		Total
	Yes	No	
Treatment	14	$113(127-14)$	127
Placebo			128
Total	71	184	255

Chi-Square Test: Calculating Degrees of Freedom

TROPHY Data	Hypertension		Total
	Yes	No	
Treatment	14	$113(127-14)$	127
Placebo	$57(71-14)$	$71(128-57)$	128
Total	71	184	255

Chi-Square Test: Calculating Degrees of Freedom

TROPHY Data	Hypertension		Total
	Yes	No	
Treatment	14	$113(127-14)$	127
Placebo	$57(71-14)$	$71(128-57)$	128
Total	71	184	255

- $d f=($ Rows -1$) \times($ Columns -1$)=1$
- Then, use the Chi-Square with $1 d f$ to derive the p -value. If p-value $<.05$, then reject $\mathrm{H}_{0}: p_{1}=p_{2}$

Chi-Square Test in R

- In R: chisq.test(HT,Trt)
- Output:

Pearson's Chi-squared test with Yates' continuity correction
data: HT and Trt
X-squared $=33.9775, \mathrm{df}=1, \mathrm{p}$-value $=5.575 \mathrm{e}-09$

Chi-Square Test in R

- In R: chisq.test(HT,Trt)
- Output:

Pearson's Chi-squared test with Yates' continuity correction
data: HT and Trt
X-squared $=33.9775, \mathrm{df}=1, \mathrm{p}$-value $=5.575 \mathrm{e}-09 \longrightarrow$ Reject H_{0} of no treatment effect

Fisher's Exact Test

- Fisher's exact test is not based on the normal approximation theory. It is an exact test
- It calculates the exact probability (under H_{0}) that one would observe a 2×2 table same or more extreme than the one observed (if < . 05 reject H_{0})
- It is used when n is small, and the Chi-square test or the normal approximation theory might not apply

Example: 2×2 Contingency Table Fisher's Exact Test

 (Small Sample)| Example | Not HT | HT | Total |
| :--- | :--- | :--- | :--- |
| Treated | 4 | 0 | 4 |
| Placebo | 1 | 3 | 4 |
| Total | 5 | 3 | 8 |

Marginal counts (are fixed)

- Under the H_{0} of no difference on HT between two groups, calculate the probability of each table with the same marginal counts

Example: 2×2 Contingency Table Fisher's Exact Test (Small Sample)

Example	Not HT	HT	Total
Treated	4	0	4
Placebo	1	3	4
Total	5	3	8

Marginal counts (are fixed)

- Under the H_{0} of no difference on HT between two groups, calculate the probability of each table with the same marginal counts
- How many Tables with these given margins are possible?

Example	Not HT	HT	Total
Treated	$?$		4
Placebo			4
Total	5	3	8

All Tables With Same Marginal Counts

Table 1	No HT	HT	Total
Treated	4		4
Placebo			4
Total	5	3	8
Table 3	No HT	HT	Total
Treated	2		4
Placebo			4
Total	5	3	8
Table 5	No HT	HT	Total
Treated	0		4
Placebo			4
Total	5	3	8

Table 2	No HT	HT	Total
Treated	3		4
Placebo			4
Total	5	3	8
Table 4	No HT	HT	Total
Treated	1		4
Placebo		3	8
Total	5		

All Tables With Same Marginal Counts

Table 1	No HT	HT	Total
Treated	4		4
Placebo			4
Total	5	3	8
Table 3	No HT	HT	Total
Treated	2		4
Placebo			4
Total	5	3	8
Table 5	No HT	HT	Total
Treated	0		4
Placebo	5 (?)		4
Total	5	3	8

Table 2	No HT	HT	Total
Treated	3		4
Placebo			4
Total	5	3	8
Table 4	No HT	HT	Total
Treated	1		4
Placebo			4
Total	5	3	8

All Tables With Same Marginal Counts

Table 1	No HT	HT	Total
Treated	4	0	4
Placebo	1	3	4
Total	5	3	8
Table 3	No HT	HT	Total
Treated	2	2	4
Placebo	3	1	4
Total	5	3	8

Table 2	No HT	HT	Total
Treated	3	1	4
Placebo	2	2	4
Total	5	3	8
Table 4	No HT	HT	Total
Treated	1	3	4
Placebo	4	0	4
Total	5	3	8

$$
\begin{array}{ll}
\text { Total Probabilities: } & \text { Table } 1=0.071 \\
& \text { Table } 2=0.429 \\
& \text { Table } 3=0.429 \\
& \text { Table } 4=0.071
\end{array}
$$

All Tables With Same Marginal Counts

Table 1	No HT	HT	Total
Treated	4	0	4
Placebo	1	3	4
Total	5	3	8
Table 3	No HT	HT	Total
Treated	2	2	4
Placebo	3	1	4
Total	5	3	8

Tables (1 and 4) are same or less likely than the observed data (Table 1)

Table 2	No HT	HT	Total
Treated	3	1	4
Placebo	2	2	4
Total	5	3	8
Table 4	No HT	HT	Total
Treated	1	3	4
Placebo	4	0	4
Total	5	3	8

Total Probabilities: Table $1=0.071$
Table $2=0.429$
Table $3=0.429$
Table $4=0.071$
The p-value for Fisher exact test is: $p=.071+.071=.142$

Table1: How Many Combinations Can Have This Result?

Table 1	No HT	HT	Total
Treated	4	0	$4(A, B, C, D)$
Placebo	1	3	$4(a, b, c, d)$
Total	5	3	8

Table1: How Many Combinations Can Have This Result?

Table 1	No HT	HT	Total	Table 1a	No HT	HT	Total
Treated	4	0	4(A,B,C,D)	Treated	$4(A, B, C, D)$	0	4
Placebo	1	3	4(a,b,c,d)	Placebo			4
Total	5	3	8	Total	5	3	8

Treatment row: 1 combination
Placebo row: ? combinations
Total: 1*?=? Tables

Table1: How Many Combinations Can Have This Result?

Table 1	No HT	HT Tota	Total	Table 1a	No HT	HT	Total
Treated	4	0 4	4(A, B, C, D)	Treated	4 (A, B, C, D)	0	4
Placebo	1	3 4	4(a,b,c, d)	Placebo	1 (a)	3 (b,c,d)	4
Total	5	38	8	Total	5	3	8
Treatment row: 1 combination Placebo row: 4 combinations				Table 1b	No HT	HT	Total
				Treated	$4(A, B, C, D)$	0	4
Total: 1*4=4 Tables				Placebo	1 (b)	3 (a,c,d)	4
				Total	5	3	8
Table 1d	No HT	HT	Total	Table 1c	No HT	HT	Total
Treated	$4(A, B, C, D)$	0	4	Treated	$4(A, B, C, D)$		4
Placebo	1 (d)	$3(\mathrm{a}, \mathrm{b}, \mathrm{c})$	c) 4	Placebo	1 (c)	3 (a,b,d)	4
Total	5	3	8	Total	5	3	8

How Many Total Tables are Possible?

Table 1	Not HT	HT	\# Tables	Proportion
Treatment	4	0	$1 * 4=4$	$4 / 56=.071$
Placebo	1	3		
Table 2			$4 * 6=24$	$24 / 56=.429$
Treatment	3	1		
Placebo	2	2	$6 * 4=24$	$24=56=.429$
Table 3		2		
Treatment	2	1	$4 * 1=4$	$4 / 56=.071$
Placebo	3	3		
Table 4		0	56	1.00
Treatment	1			
Placebo	4			
Total				

Fisher's Exact Test in R

- In R: fisher.test(HT,Trt)
- R output:

Fisher's Exact Test for Count Data
data: HT and Trt
p -value $=0.1429$
alternative hypothesis: true odds ratio is not equal to 1

Topic

- Dichotomous Variables
- Compare Proportions
- Two sample test (Normal approximation theory)
- Chi-square test
- Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
- Absolute Risk Reduction (ARR)
- Relative Risk (RR)
- Odds Ratio (OR)
- Application and Discussion of a Research Article
- Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

How to Measure Treatment Effect for Binary Data

There are several measures of a treatment effect (or associations) for binary data. Three most commonly used are:

- Absolute Risk Reduction (ARR)
- Relative Risk (RR)
- Odds Ratio (OR)

Absolute Risk Reduction (ARR)

TROPHY data	Hypertension		Total
	Yes $(\%$ of row)	No	
Treatment	$14(11 \%)$	113	127
Placebo	$57(44.5 \%)$	71	128
Total	$71(27.8 \%)$	184	255

- Risk of HT is measured by the probability of developing HT: $\operatorname{Pr}(H T=Y e s)$.

$$
\operatorname{Pr}(H T=Y e s / \text { Treated })=11 \%
$$

$$
\operatorname{Pr}(H T=\text { Yes/Placebo) }=44.5 \%
$$

Absolute Risk Reduction (ARR)

TROPHY data	Hypertension		Total
	Yes $(\%$ of row)	No	
Treatment	$14(11 \%)$	113	127
Placebo	$57(44.5 \%)$	71	128
Total	$71(27.8 \%)$	184	255

- Risk of HT is measured by the probability of developing HT: $\operatorname{Pr}(H T=Y e s)$.

$$
\operatorname{Pr}(H T=Y e s / \text { Treated })=11 \% \quad \operatorname{Pr}(H T=\text { Yes } / \text { Placebo })=44.5 \%
$$

- Absolute risk reduction (ARR) measures how much the risk is reduced due to Treatment?

$$
\text { ARR=44.5\% }-11 \%=33.5 \%
$$

- If $A R R=0$, no Trt effect

Relative Risk Reduction (RRR)

TROPHY data	Hypertension		Total
	Yes $(\%$ of row)	No	
Treatment	$14(11 \%)$	113	127
Placebo	$57(44.5 \%)$	71	128
Total	$71(27.8 \%)$	184	255

- Relative risk (RR) measures how much the risk is reduced due to Treatment relative to Placebo?

Relative Risk (RR)

TROPHY data	Hypertension		Total
	Yes $(\%$ of row $)$	No	
Treatment	$14(11 \%)$	113	127
Placebo	$57(44.5 \%)$	71	128
Total	$71(27.8 \%)$	184	255

- Relative risk (RR) measures how much the risk is reduced due to Treatment relative to Placebo?

$$
R R=\frac{0.11}{0.445}=0.25
$$

- If $R R=1$, no Trt effect

Which is a Better Measure: ARR or RR?

- The ARR and RR are sensitive to the magnitude of the proportions:

$$
\begin{array}{lll}
\text { Ex 1: } & \text { ARR }=2 \%-1 \%=1 \% & \text { (small effect) } \\
& R R=1 \% / 2 \%=0.5 & \text { (big effect) }
\end{array}
$$

Which is a Better Measure: ARR or RR?

- The ARR and RR are sensitive to the magnitude of the proportions:

$$
\begin{array}{lll}
\text { Ex 1: } & \text { ARR }=2 \%-1 \%=1 \% & \text { (small effect) } \\
& \text { RR=1\%/2\%=0.5 } & \text { (big effect) }
\end{array}
$$

Which is a Better Measure: ARR or RR?

- The ARR and RR are sensitive to the magnitude of the proportions:

$$
\begin{array}{lll}
\text { Ex 1: } & \text { ARR }=2 \%-1 \%=1 \% & \text { (small effect) } \\
& R R=1 \% / 2 \%=0.5 & \text { (big effect) } \\
\text { Ex 2: } & \text { ARR }=95 \%-80 \%=15 \% & \text { (big effect) } \\
& \text { RR=.95/.8=0.84 } & \text { (small effect) }
\end{array}
$$

- Always report both the ARR and the RR

Odds Ratio(OR)

TROPHY data	Hypertension		Total
	Yes $(\%$ of row $)$	No	
Treatment	$14(11 \%)$	113	127
Placebo	$57(44.5 \%)$	71	128
Total	$71(27.8 \%)$	184	255

- Odds of developing HT are: $O D D=\frac{\operatorname{Pr}(H T=Y e s)}{\operatorname{Pr}(H T=N o)}=p / 1-p$

$$
\text { ODD(Treated) }=.11 / .89=.124 \quad O D D(\text { Placebo })=.445 / .556=.80
$$

Odds Ratio(OR)

TROPHY data	Hypertension		Total
	Yes $(\%$ of row)	No	
Treatment	$14(11 \%)$	113	127
Placebo	$57(44.5 \%)$	71	128
Total	$71(27.8 \%)$	184	255

- Odds of developing HT are: $O D D=\frac{\operatorname{Pr}(H T=Y e s)}{\operatorname{Pr}(H T=N o)}=p / 1-p$

$$
\text { ODD(Treated) }=.11 / .89=.124 \quad O D D(\text { Placebo })=.445 / .556=.80
$$

- Odds Ratio (OR) measures how much the Odds are reduced due to Treatment compared to Placebo.

$$
\mathrm{OR}=\frac{.124}{.80}=0.16 \quad \text { (If } \mathrm{OR}=1, \text { no Trt effect) }
$$

Odds Ratio(OR)

- OR are useful for measuring the relationship of any variable (Age, Trt) with a binary outcome (HT). They are usually derived using logistic regression
- In short, logistic regression is a statistical modeling technique used to predict the ODDs of HT (or any binary outcome) based on one or more variables

Modeling OR (log-OR) as a function of other predictors

- Logistic regression model is:

$$
\log \left(\frac{\operatorname{Pr}(H T=1)}{1-P t(H T=1)}\right)=\beta_{0}+\beta_{1}{ }^{*} \operatorname{Trt}+\beta_{2}{ }^{*} \mathrm{BMI}+\beta_{3}{ }^{*} \mathrm{X}+\ldots
$$

- $\operatorname{OR}(\operatorname{Trt})=e^{\beta_{1}}$

Compares the ODDs of HT between Treatment and Placebo

- $\operatorname{OR}(\mathrm{BMI})=e^{\beta_{2}}$

How much the ODDs of HT change if BMI increases by 1 (e.g. $\mathrm{BMI}=27$ vs. $\mathrm{BMI}=26$)

- $O R(X)=e^{\beta_{3}=1 \text {, implies no relationship between } X \text { and } Y \text {. } . \text {. } 0 \text {. }}$
Q : If X does not relate to Y, what is β_{3} ?

Topic

- Dichotomous Variables
- Compare Proportions
- Two sample test (Normal approximation theory)
- Chi-square test
- Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
- Absolute Risk Reduction (ARR)
- Relative Risk (RR)
- Odds Ratio (OR)
- Application and Discussion of a Research Article
- Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

Application and Discussion of a Research Article*

- Trial of Preventing Hypertension (TROPHY Study)
- Background: Hypertension is a strong predictor of excessive cardiovascular risk. TROPHY study investigated whether pharmacologic treatment of prehypertension prevents or postpones hypertension, thus reducing the CV risk.
*Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et. al. N Engl J Med. 2006; 354:1685-97

TROPHY Study

- Objective: The primary hypothesis of the study was to determine whether two years of treatment with candesartan reduces the incidence of hypertension two years after treatment and 2 years after discontinuation of treatment.

Characteristics of the Study Population

Table 1. Baseline Characteristics of the Study Participants.*		
	Candesartan Group $(\mathrm{N}=391)$	Placebo Group $(\mathrm{N}=381)$
Age-yr	48.6 ± 7.9	48.3 ± 8.2
Male sex - no. (\%)	231 (59.1)	229 (60.1)
Race - no. (\%) \dagger		
White	312 (79.8)	321 (84.3)
Black	48 (12.3)	31 (8.1)
Other	31 (7.9)	29 (7.6)
Weight - kg	89.0 ± 17	88.8 ± 17.7
Body-mass index \ddagger	29.9 ± 5.1	30.0 ± 5.5
Blood pressure - mm Hg		
Measured at clinic visit with automated device§	$133.9 \pm 4.3 / 84.8 \pm 3.8$	$134.1 \pm 4.2 / 84.8 \pm 4.1$

Main Results of the Study

Table 2. Incident Hypertension and Incidence of Serious Adverse Events.*

	Candesartan Group ($\mathrm{N}=391$)	Placebo Group $(\mathrm{N}=381)$	P Value	Relative Risk (95\% CI)
New-onset hypertension				
No. of participants in whom hypertension developed	208	240		
Hypertension at year 2 visit - \%	13.6	40.4	$<0.001 \dagger$	0.34 (0.25-0.44)
Hypertension at year 4 visit - \%	53.2	63.0	$0.007 \dagger$	0.84 (0.75-0.95)
Hypertension during study period			$<0.001 \dagger$	0.58 (0.49-0.70)
Clinical criteria for end-point determination				
BP at three clinic visits, $\geq 140 \mathrm{~mm} \mathrm{Hg}$ systolic, $\geq 90 \mathrm{~mm} \mathrm{Hg}$ diastolic, or both - no. (\%)	142 (36)	168 (44)	$0.03 \dagger$	0.82 (0.69-0.98)
BP at any clinic visit $\geq 160 \mathrm{~mm} \mathrm{Hg}$ systolic, $\geq 100 \mathrm{~mm} \mathrm{Hg}$ diastolic, or both - no. (\%)	15 (3.8)	19 (5.0)	0.49†	0.77 (0.40-1.49)
BP requiring pharmacologic treatment - no. (\%)	45 (12)	48 (13)	$0.66 \dagger$	0.91 (0.62-1.34)
BP at month 48 clinic visit $\geq 140 \mathrm{~mm} \mathrm{Hg}$ systolic, $\geq 90 \mathrm{~mm} \mathrm{Hg}$ diastolic, or both - no. (\%)	6 (1.5)	5 (1.3)	>0.99 \dagger	1.17 (0.36-3.80)

Main Results of the Study

	Candesartan	Placebo		
Group	Group			
	$(\mathrm{N}=391)$	$(\mathrm{N}=381)$	P Value	Relative Risk
		$95 \% \mathrm{CI})$		

New-onset hypertension
No. of participants in whom hypert
Hypertension at year 2 visit—\%
Hypertension at year 4 visit_\%

208	240		
13.6	40.4	$<0.001 \uparrow$	$0.34(0.25-0.44)$
53.2	63.0	$0.007 \uparrow$	$0.84(0.75-0.95)$

At 2 Years	Hypertension		Total
	Yes(row \%)	No	
Candesartan	13.6%		391
Placebo	40.4%		381
Total			772

ARR at 2 years: 40.4-13.6=26.8\%
RR at 2 years: . 136/.404=. 34

Main Results of the Study

	Candesartan	Placebo		Relative Risk
Group	Group			
$(\mathrm{N}=391)$	$(\mathrm{N}=381)$	P Value	$(95 \% \mathrm{Cl})$	

New-onset hypertension

No. of participants in whom hypertension developed	208	240		
Hypertension at year 2 visit —\%	13.6	40.4	$<0.001 \uparrow$	$0.34(0.25-0.44)$
Hypertension at year 4 visit -\%	53.2	63.0	$0.007 \uparrow$	$0.84(0.75-0.95)$

At 2 Years	Hypertension		Total
	Yes(row \%)	No	
Candesartan	$53(13.6 \%)$	338	391
Placebo	$154(40.4 \%)$	227	381
Total	207	565	772

ARR at 2 years: 40.4-13.6=26.8\%
RR at 2 years: . 136/.404=. 34

Main Results of the Study

	Candesartan	Placebo		Relative Risk
Group	Group			
$(\mathrm{N}=391)$	$(\mathrm{N}=381)$	P Value	$(95 \% \mathrm{Cl})$	

New-onset hypertension

No. of participants in whom hypertension developed	208	240		
Hypertension at year 2 visit - \%	13.6	40.4	$<0.001 \uparrow$	$0.34(0.25-0.44)$
Hypertension at year 4 visit -\%	53.2	63.0	$0.007 \uparrow$	$0.84(0.75-0.95)$

At 4 Years	Hypertension		Total
	Yes(row \%)	No	
Candesartan	$208(53.2 \%)$	183	391
Placebo	$240(63.0 \%)$	141	381
Total	448	324	772

ARR at 4 years: 63.0-53.2=9.8\%
RR at 4 years: $53.2 / 63.0=.84$

Cumulative Incidence of HT by Treatment Group

Kaplan-Meier Analysis shows if the overall cumulative incidence of HT is different between groups over time. It gives the full picture on the development of HT over the 4 year follow-up.

Note: Cumulative incidence is calculated as 100% - K-M curve

SBP Values Over 4 Years

SBP curve (mean of SBP at each visit) over 4 years
Two-ample t-test: Showed $2.0 \mathrm{~mm} \mathrm{Hg}(\mathrm{p}=0.037)$ decrease in SBP at year 4 due to Candesartan

Subgroup Analysis: Does Candesartan work the same way for different subgroups

Summary Points

Tests for Comparing Proportions: $\mathrm{H}_{0}: p_{1}=p_{2}$ vs. $\mathrm{H}_{\mathrm{A}}: p_{1} \neq p_{2}$

Statistical test

- Two-sample normal theory test
$-\quad \mathrm{z}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$
- Chi-square test
- Use $\chi^{2}{ }_{k}$ where $\mathrm{k}=($ nrow- 1$) \mathrm{x}(\mathrm{ncol}-1)$
- Fisher's exact test
- Calculates the exact p-value

Used when

$\mathrm{n}_{1} \hat{p}_{1}\left(1-\hat{p}_{1}\right)>5$
$\mathrm{n}_{2} \hat{p}_{2}\left(1-\hat{p}_{2}\right)>5$
$n>5$ in all cells

Summary Points

Measure of association (treatment effect) for Dichotomous Outcomes. "Risk" is defined as: $\operatorname{Pr}(Y=Y e s)=p,\left(p_{1}\right.$ is for treatment, p_{2} is for control)

Measure of association

Interpretation

- Absolute Risk Reduction (ARR)
$-\operatorname{ARR}=p_{2}-p_{1}$
(ARR=0 do not reject $\mathrm{H}_{0}: p_{1}=p_{2}$)
- Relative Risk (RR)
$-\mathrm{RR}=\frac{p_{1}}{p_{2}}$
(RR=1 do not reject $\mathrm{H}_{0}: p_{1}=p_{2}$)
- Odds Ratio (OR)
$-\mathrm{ODDs}=\frac{\operatorname{Pr}(Y=1)}{\operatorname{Pr}(Y=0)}=\frac{p}{1-p}$
$-\mathrm{OR}=\frac{O D D s(\text { Trt })}{O D D S(\text { Control })}=\frac{p_{1} /\left(1-p_{1}\right)}{p_{2} /\left(1-p_{2}\right)}$
(OR=1 do not reject $\mathrm{H}_{0}: p_{1}=p_{2}$

