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Topic

• Dependence/Association/Relationship
– Visual Display

• Scatterplot

– Covariance and Correlation
• Pearson and Spearman Correlation

• Regression Model
– Simple Linear Regression
– Multiple Regression

• Nonlinear (Quadratic) Relationship
• Testing for Interactions 



Dependence, Association, Relationship
Between X and Y 

• Let (x1,y1), (x2,y2),…., (xn,yn) be a sample of pairs of data of 
variables X (i.e. weight) and Y (i.e. height) 

• Hypothesis: Is there a relationship between X and Y?
– Can one variable predict variation in the second variable?
– Do changes in X relate to changes in Y?



Dependence, Association, Relationship
Between X and Y 

• Dependence between two variables X and Y roughly means that 
knowing the value of X provides some information about the 
value of Y

• Other terms used interchangeably for dependence are: 
Association between X and Y; Relationship between X and Y; X 
predicts Y

• Different measures of association are used depending if X or Y 
are discrete or continuous



Dependence, Association, Relationship
(X is Binary, Y is Continuous) 

• X is a group variable (Male/Female), Y is Continuous (HDL or LDL).
– Group differences are a form of dependence

Does HDL depend on the gender of a subject? How about LDL?



Dependence, Association, Relationship
(X is Binary, Y is Binary) 

• X is a group variable (Male/Female), Y is binary (Yes/No).
– OR is a measure of dependence for binary data:

OR = 𝑂𝑂𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑂𝑂𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

– E.g.  Does having HDL <= 40 depend on the gender of the patient? Or, 
equivalently, are the Odds different between males and females? 

𝑂𝑂𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 HDL ≤ 40 = 0.82

𝑂𝑂𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 HDL ≤ 40 = 0.11

OR = .82
.11

= 7.5



Dependence, Association, Relationship
(X and Y are Continuous) 

• Association between two continuous variables X and Y implies 
that changes in X are related with changes in Y 

• Scatterplot can be initially used to visually explore for possible 
associations
– A scatterplot is a graphical display of the data by plotting pairs of x and y 
– The presence of any pattern indicates dependence



Scatterplot Examples

Which scatterplot indicate strongest dependence?



Scatterplot Examples



How to Measure the Association For 
Continuous X and Y

• The scatterplot can help in identifying patterns and the 
direction of an association. However, it does not provide a 
numerical estimate of the association 

• Covariance is used to capture the linear association and the 
direction of the association (positive or negative) between 
two variables X and Y



Covariance Between Two Variables

• Let (x1,y1), (x2,y2),…., (xn,yn) be a sample of pairs of data of 
variables X and Y. The covariance is defined as:

Cov(X,Y)=
∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)(𝑦𝑦𝑖𝑖−𝜇𝜇𝑦𝑦)

𝑁𝑁

�𝐶𝐶𝐶𝐶𝐶𝐶(X,Y)= ∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−𝑥𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦)

𝑁𝑁−1

Var(X)=Cov(X,X )= ∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)2

𝑁𝑁



Covariance Between Two Variables

• Example data on height and weight for 9 people. Are they 
related?

Height      Weight
60              84       
62              95
64             140          
66             155
68             119
70             175
72             145
74             197 
76 150



Scatterplot: Plot of Height vs. Weight



Intuitive Interpretation of Covariance

�𝐶𝐶𝐶𝐶𝐶𝐶(X,Y)= ∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−𝑥𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦)

𝑁𝑁−1

• The covariance can be viewed intuitively as a sum of “matches” 
(or “mismatches”) in terms of a subject being on the same side of 
the mean for each variable X or Y

• A “match” is when 𝑥𝑥𝑖𝑖 − 𝑥𝑥 and 𝑦𝑦𝑖𝑖 − 𝑦𝑦 have the same sign. 
– For example, if 𝑥𝑥𝑖𝑖 is greater than the mean (𝑥𝑥𝑖𝑖 − 𝑥𝑥 > 0) then 𝑦𝑦𝑖𝑖 is also 

greater than the mean (𝑦𝑦𝑖𝑖 − 𝑦𝑦 > 0)

• A “mismatch” is when  𝑥𝑥𝑖𝑖 − 𝑥𝑥 and 𝑦𝑦𝑖𝑖 − 𝑦𝑦 have the opposite sign.
– If 𝑥𝑥𝑖𝑖 is above the mean (𝑥𝑥𝑖𝑖 − 𝑥𝑥 > 0) and 𝑦𝑦𝑖𝑖 is below the mean (𝑦𝑦𝑖𝑖 − 𝑦𝑦 < 0), 

or vice versa



Intuitive Interpretation of Covariance

�𝐶𝐶𝐶𝐶𝐶𝐶(X,Y)= ∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−𝑥𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦)

𝑁𝑁−1
(1)

For a particular subject i, a “match” leads to a positive product in 
Equation (1), whereas a “mismatch” leads to a negative product

– If Eq. (1) is dominated by “matches”, then Cov(X,Y) > 0 and the association 
between X and Y is said to be positive

– If Eq. (1) is dominated by “mismatches”, the Cov(X,Y) < 0 and the association 
is negative

– If there are more or less the same “matches” and “mismatches”, then there 
is no relationship between X and Y



Scatterplot: Plot of Height vs. Weight

How many “mismatched” points are in the plot?



Covariance Between Two Variables

• Example data on height and weight for 9 people. Are they 
related?

Height     Weight 
60              84
62              95
64             140                             
66             155                             
68             119                              
70             175                              
72             145
74             197                              
76 150                              



Covariance Between Two Variables

• Example data on height and weight for 9 people. Are they 
related?

Height     Weight                Height – 68     Weight - 140
60              84                              -8                         -56
62              95 -6                         -45
64             140                             -4                            0
66             155                             -2                          15
68             119                              0                         -21
70             175                              2                           35
72             145                              4                             5
74             197                              6                           57
76 150 8                           10

Mean    68            140



Covariance Between Two Variables

• Example data on height and weight for 9 people. Are they 
related?

Height     Weight                Height – 68     Weight - 140 Product
60              84                              -8                         -56 448
62              95 -6                         -45 270
64             140                             -4                            0 0
66             155                             -2                          15 -30
68             119                              0                         -21 0
70             175                              2                           35 70
72             145                              4                             5 20
74             197                              6                           57 342
76 150 8                           10 80

Mean    68            140 Cov(H,W)=1200/8=150 



Properties of Covariance

• Cov(X+a,Y)=Cov(X,Y)

Cov(X+a,Y) =
∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖+𝑎𝑎−(𝜇𝜇𝑥𝑥+𝑎𝑎))(𝑦𝑦𝑖𝑖−𝜇𝜇𝑦𝑦)

𝑁𝑁

=
∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)(𝑦𝑦𝑖𝑖−𝜇𝜇𝑦𝑦)

𝑁𝑁
= Cov(X,Y)

• If there is a systematic error when measuring X or Y the 
covariance (association) is not effected 
– Examples of systematic error are when the measurement instruments 

are not calibrated; Different labs may have different calibrations

• “Good” property: It allows replication of the results from 
different labs etc.



Properties of Covariance

• Cov(aX,bY)=a*b*Cov(X,Y)

Cov(aX,bY) =
∑𝑖𝑖=1
𝑛𝑛 (𝑎𝑎𝑥𝑥𝑖𝑖−𝑎𝑎𝜇𝜇𝑥𝑥)(𝑏𝑏𝑦𝑦𝑖𝑖−𝑏𝑏𝜇𝜇𝑦𝑦)

𝑁𝑁

= 𝑎𝑎∗𝑏𝑏∗∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)(𝑦𝑦𝑖𝑖−𝜇𝜇𝑦𝑦)

𝑁𝑁
=a*b*Cov(X,Y)

• The covariance will change if X or Y are multiplied by a scalar

• “Bad” property: The covariance will change if the units change 
(e.g. from inches to feet). However the associations should not 
change regardless of the unit of measure



Correlation of Two Variables
(Pearson Correlation)

• Correlation is derived by standardizing the covariance, so its 
value does not depend on the unit of measurement

ρ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)
𝑆𝑆𝑆𝑆 𝑋𝑋 ∗𝑆𝑆𝑆𝑆(𝑌𝑌)

= ∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−𝑥𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦)

∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−𝑥𝑥)2 ∑𝑖𝑖=1

𝑛𝑛 (𝑦𝑦𝑖𝑖−𝑦𝑦)2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏 =
∑𝑖𝑖𝑛𝑛(𝑎𝑎𝑥𝑥𝑖𝑖 − 𝑎𝑎𝑥𝑥)(𝑏𝑏𝑦𝑦𝑖𝑖 − 𝑏𝑏𝑦𝑦)

∑𝑖𝑖𝑛𝑛(𝑎𝑎𝑥𝑥𝑖𝑖 − 𝑎𝑎𝑥𝑥)2 ∑𝑖𝑖𝑛𝑛(𝑏𝑏𝑦𝑦𝑖𝑖 − 𝑏𝑏𝑦𝑦)2
=

𝑎𝑎𝑎𝑎 ∑𝑖𝑖𝑛𝑛(𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦)
𝑎𝑎𝑎𝑎 ∑𝑖𝑖𝑛𝑛(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2 ∑𝑖𝑖𝑛𝑛(𝑦𝑦𝑖𝑖 − 𝑦𝑦)2

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦)

• The correlation between x and y is the same regardless of what 
unit is used for x and y



Correlation of Two Variables
(Pearson Correlation)

ρ =
Cov(X, Y)

SD X SD(Y)

• The correlation coefficient ρ, is referred to as the Pearson 
correlation. It is a measure of the linear relationship between X and Y

• Correlation can be positive or negative:   -1  ≤ ρ ≤ 1
– ρ > 0: Increases on X are related with increases on Y
– ρ < 0: Increases on X are related with decreases on Y
– ρ = 0: No association between X and Y 
– |ρ| = 1: Perfect correlation, Y is a linear transformation of X, Y=a+bX

If ρ = -1,  is b > 0 or b < 0?



Correlation of Two Variables
(Spearman Correlation)

• Spearman correlation is a nonparametric correlation that 
does not depend on the linearity between X and Y. It is also 
not affected by outliers

• For each pair, x and y, calculate their corresponding ranks, 
rank(x) and rank(y). The Spearman correlation is the same as 
the Pearson correlation, but applied on the ranks of X and Y:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑆𝑆 𝑋𝑋,𝑌𝑌 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃 (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑋𝑋 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑌𝑌 )



Pearson vs. Spearman Correlation

Pearson r=.92 Spearman r=1



Test for Correlation 

The estimate for correlation ρ is r = .76, with some margin of error.
How do we test if ρ is different from 0?  



Test for Correlation 

• Testing  the null hypothesis that X is not associated with Y:
𝐻𝐻0: 𝜌𝜌 = 0 vs. 𝐻𝐻𝐴𝐴: 𝜌𝜌 ≠ 0

• The following test is used for testing 𝐻𝐻0:

𝑡𝑡𝑛𝑛−2 =
𝑟𝑟

𝑠𝑠𝑠𝑠(𝑟𝑟)
=

𝑟𝑟
1 − 𝑟𝑟
𝑛𝑛 − 2

• If data are normally distributed, then 𝑡𝑡𝑛𝑛−2 follows a t-distribution 
with n-2 degrees of freedom. The usual p-value < 0.05 criteria is 
then used to reject 𝐻𝐻0



Test for Correlation in R

• cor.test(height,weight)

Pearson's product-moment correlation 

t = 3.0805, df = 7, p-value = 0.0178 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval:  0.1904203, 0.9460844 
sample estimates: cor

0.7586069



Test for Difference on Correlation Coefficients 
By Group

• Another question of interest is for testing whether the relationship 
between X and Y is different by groups. 
– E.g. Correlation between weight and height is different for males (𝜌𝜌𝑚𝑚) vs. 

females (𝜌𝜌𝑓𝑓):

𝐻𝐻0:𝜌𝜌𝑚𝑚 = 𝜌𝜌𝑓𝑓 vs. 𝐻𝐻𝐴𝐴: 𝜌𝜌𝑚𝑚 ≠ 𝜌𝜌𝑓𝑓

• We will test this hypothesis later using the regression model 
approach with interaction terms 



Topic

• Dependence/Association/Relationship
– Visual Display

• Scatterplot

– Covariance and Correlation
• Pearson and Spearman Correlation

• Regression Model
– Simple Linear Regression
– Multiple Regression

• Nonlinear (Quadratic) Relationship
• Testing for Interactions 



Correlation vs. Regression Model

• Correlation is a measure of association 
– It shows: if X and Y are related; the magnitude of the relationship; and its 

direction  
– However, correlation does not show how to predict Y from X (or X from Y)

• Regression is a modeling technique 
– It builds models for the variable Y as a function of one (or more) variable X 
– It measures the association between X and Y, and also can be used to 

predict Y from X 



Simple Linear Regression

• Simple linear regression model describes the value of variable Y 
as a linear function of another variable X plus some error terms

𝑌𝑌𝑖𝑖=𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖

• When X may explain changes in Y, then X is called an explanatory
variable (or predictor variable, or independent variable, or 
covariate)

• The variable Y is called the response variable (or the outcome
variable, or the dependent variable)

• 𝜀𝜀𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎2) is the error term (or residual)



What Line Best Describes the Relationship of 
Weight and Height?

1 2

3
4



How Far is the Observed Weight from the 
Predicted Weight?



Estimating the Line That Best Describes the 
Relationship of Weight and Height?

• Find the line for which the predicted values ( �𝑌𝑌𝑖𝑖) are closest to 
the actual values (𝑌𝑌𝑖𝑖)

• First, for each subject i define the error between the 
predicted value and the actual value, ( �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑖𝑖), then minimize 
the sum of errors across all subjects



Estimating the Line That Best Describes the 
Relationship of Weight and Height?



Least Squares Estimate for Regression 
Parameters 𝛽𝛽0 and 𝛽𝛽1

• Least squares is a technique used to estimate parameters in a 
regression model:

𝑌𝑌𝑖𝑖=𝛽𝛽0+𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖

• Least squares minimizes the sum of squares for the residuals:

SSR= ∑𝑖𝑖=1𝑛𝑛 𝜀𝜀𝑖𝑖2 = (𝑌𝑌1 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋1)2+(𝑌𝑌2 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋2)2+…+(𝑌𝑌𝑛𝑛 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋𝑛𝑛)2



Least Squares Estimate for Regression 
Parameters 𝛽𝛽0 and 𝛽𝛽1

• The “least squares estimate” are given by the values of 𝑏𝑏0 and 
𝑏𝑏1 as follows:

𝑏𝑏1 = ∑𝑖𝑖 𝑌𝑌𝑖𝑖(𝑋𝑋𝑖𝑖−𝑋𝑋)
∑𝑖𝑖(𝑋𝑋𝑖𝑖−𝑋𝑋)2

= �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑌𝑌,𝑋𝑋 ∗
�𝑆𝑆𝑆𝑆(𝑌𝑌)
�𝑆𝑆𝑆𝑆(𝑋𝑋)

𝑏𝑏0 = 𝑌𝑌 − 𝑏𝑏1𝑋𝑋

• After we have calculated the estimates, 𝑏𝑏0 and 𝑏𝑏1, the “fitted 
values” (or predicted values) for Y are given by:

�𝑌𝑌𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋𝑖𝑖



Geometric Interpretation of the Regression Parameters 
Intercept (𝛽𝛽0) and Slope (𝛽𝛽1)



Geometric Interpretation of the Regression Parameters 
Intercept (𝛽𝛽0) and Slope (𝛽𝛽1)

𝛽𝛽0

Intercept: 𝛽𝛽0is the expected 
value of Y when X=0



Geometric Interpretation of the Regression Parameters 
Intercept (𝛽𝛽0) and Slope (𝛽𝛽1)

𝛽𝛽1= tan(𝛼𝛼)

𝛽𝛽0
α 𝛽𝛽1

Intercept: 𝛽𝛽0is the expected 
value of Y when X=0

Slope: 𝛽𝛽1measures changes 
in Y for one unit increase in X



Testing for Relationship Between X and Y 
Using Regression Model

• Test whether Y is related to X: 𝐻𝐻0:  𝛽𝛽1= 0  vs.  𝐻𝐻𝐴𝐴:  𝛽𝛽1 ≠ 0. 

• The following test is used for testing 𝐻𝐻0:

𝑡𝑡𝑛𝑛−1 = 𝑏𝑏1
𝑠𝑠𝑠𝑠(𝑏𝑏1)

• When 𝜀𝜀𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎2), then 𝑡𝑡𝑛𝑛−1 follows a t-distribution with n-1 
degrees of freedom. The usual p-value < 0.05 criteria is then used 
to reject 𝐻𝐻0



Simple Linear Regression in R

• summary(lm(weight~height))

• Coefficients: 
Estimate Std. Error t-value        Pr(>|t|) 

(Intercept) -200.000 110.690      -1.807 0.1137 
height                        5.000              1.623        3.080           0.0178 * 

R-squared: 0.5755   



R-Square: Measure of Goodness of Fit of a 
Regression Model

• A regression model provides a “good” fit if the predicted values 
�𝑌𝑌 are closely related to the actual values Y 

• 𝑅𝑅2 measures the goodness of fit. It is equal to the squared 
correlation between Y and �𝑌𝑌 (or Y and X):

𝑅𝑅2 = 𝑟𝑟𝑦𝑦 �𝑦𝑦2 = 𝑟𝑟𝑦𝑦𝑥𝑥2



Assumptions for Linear Regression Model

• There are several assumptions made in a linear regression model:

𝑌𝑌𝑖𝑖=𝛽𝛽0+𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖

– The observations are independent
– The relationship between x and y is linear

• Scatterplot

– 𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎2) are normally distributed with zero mean and 
constant variance

• Q-Q Plot, Shapiro-Wilk’s test



Topic

• Dependence/Association/Relationship
– Visual Display

• Scatterplot

– Covariance and Correlation
• Pearson and Spearman Correlation

• Regression Model
– Simple Linear Regression
– Multiple Regression

• Nonlinear (Quadratic) Relationship
• Testing for Interactions 



Multiple Regression

• Multiple regression model is an extension of the simple linear 
regression. It permits any number of predictor variables. 
Multiple regression simply means “multiple predictors”

• The model is similar to the case with one predictor; it just has 
more X’s and β’s.

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝𝑖𝑖 + 𝜀𝜀𝑖𝑖

𝜀𝜀𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎2)

𝛽𝛽0:  Intercept
𝛽𝛽𝑘𝑘:  Slope for 𝑋𝑋𝑘𝑘, for k=1,2,…,p
𝜀𝜀𝑖𝑖:   Error term (residual)



Least Square Estimate

• The least square estimates for multiple regression are defined 
in the same way, by minimizing the “residuals” 𝜀𝜀𝑖𝑖 = 𝑌𝑌𝑖𝑖 − 𝛽𝛽0 −
𝛽𝛽1𝑋𝑋𝑖𝑖 − 𝛽𝛽2𝑋𝑋2𝑖𝑖 − ⋯− 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝𝑝𝑝. Thus, the parameter estimates 
are chosen to minimize the “sum of squared residuals”:

SSR= ∑𝑖𝑖=1𝑛𝑛 (𝑌𝑌𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋𝑖𝑖 −𝛽𝛽2𝑋𝑋2𝑖𝑖 − ⋯− 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝𝑖𝑖)2

𝜀𝜀𝑖𝑖2



Features of Multiple Regression

• Multiple regression model improves the prediction of Y by using 
multiple variables

• It is used to estimate partial association of X and Y. That is, how much 
X contributes in predicting Y that is unique to X and does not overlap 
with other covariates

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝜀𝜀𝑖𝑖
– 𝛽𝛽1, is unadjusted/overall association between 𝑋𝑋1 and Y 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝𝑖𝑖 + 𝜀𝜀𝑖𝑖
– 𝛽𝛽1 is the adjusted association between 𝑋𝑋1 and Y, adjusted for 𝑋𝑋2,…, 𝑋𝑋𝑝𝑝

• 𝑅𝑅2 is used to measure the overall association of 𝑋𝑋1,𝑋𝑋2,…, 𝑋𝑋𝑝𝑝 with Y



Testing for Relationship Between 𝑋𝑋𝑘𝑘 and Y 
Using Multiple Regression

• Test for 𝐻𝐻0:  𝛽𝛽𝑘𝑘= 0  vs.  𝐻𝐻𝐴𝐴:  𝛽𝛽𝑘𝑘 ≠ 0.

• The following test is used:

𝑡𝑡𝑛𝑛−1 = 𝑏𝑏𝑘𝑘
𝑠𝑠𝑠𝑠(𝑏𝑏𝑘𝑘)

• If 𝜀𝜀𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎2), then 𝑡𝑡𝑛𝑛−1 follows a t-distribution with n-1 degrees 
of freedom. The p-value < 0.05 criteria is then used to reject 𝐻𝐻0



Multiple Regression Example in R
(TROPHY Data)

• We want to test whether LDL, Insulin, Age, and DBP are 
related to or predict  BMI24?

– Then fit the following multiple regression

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 + 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 + 𝛽𝛽3𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖 + 𝛽𝛽4𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝜀𝜀𝑖𝑖



Multiple Regression Example in R
(TROPHY Data)

R Output:

Coefficients: Estimate      Std. Error t-value       Pr(>|t|) 
(Intercept) 22.1                 7.24              3.0            0.00285 ** 
LDL                          0.03                 0.014           2.33          0.02189 * 
Insulin                    0.25                  0.05             4.56          1.32e-05 *** 
Age                       -0.05                  0.059          -0.86          0.39085 
DBP0                      0.036                0.078           0.46          0.64564 

Multiple R-squared: 0.2101 
Adjusted R-squared: 0.1814 
F-statistic: 7.314 on 4 and 110 DF, p-value: 2.92e-05.  



Interpretation of R-Square

• The total sum of squares for Y,  which is a measure of variation, 
can be decomposed as follows:

𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅2 = 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇

: It is the proportion of the variance on Y explained by the model

1-𝑅𝑅2 = 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇

: It is the proportion of the unexplained variance

• 𝑅𝑅2=.21, means that 21% of the variation on BMI24 is explained by 
the model or by LDL, Insulin, Age, and DBP

∑𝑖𝑖𝑛𝑛(𝑦𝑦𝑖𝑖 − 𝑦𝑦)2 = ∑𝑖𝑖𝑛𝑛(𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖)2 + ∑𝑖𝑖𝑛𝑛( �𝑦𝑦𝑖𝑖 − 𝑦𝑦)2



Nonlinear Scatterplot

What do you do if the scatterplot of the raw data suggests that 
the association between Y and X is not linear, (i.e. Y≈ 𝑋𝑋2)?



Nonlinear Scatterplot

Y≈36.7+0*X

Y = 𝑋𝑋2

What do you do if the scatterplot of the raw data suggests that 
the association between Y and X is not linear, (i.e. Y≈ 𝑋𝑋2)?



Nonlinear (Quadratic) Regression Model

• Linear regression can be extended by including a quadratic term.  
Then, multiple regression can be used to fit a quadratic regression: 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋21𝑖𝑖 + 𝜀𝜀𝑖𝑖

𝜀𝜀𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎2)

• Along similar lines, you could include 𝑋𝑋3 or log(X), etc., depending 
on the type of relationship between X and Y. Here 𝛽𝛽2 is the curvature 
coefficient

• 𝐻𝐻0: 𝛽𝛽2= 0  vs. 𝐻𝐻𝐴𝐴: 𝛽𝛽2 ≠ 0. If 𝐻𝐻0 is rejected, the relationship between 
X and Y is not linear



Testing if the Association Between X and Y 
Varies by Group

• Q: Is the association between DBP and BMI24 different between 
subjects in the Treatment group versus subjects in the Placebo 
group?

• First, fit separate models by group:

– Treatment Group: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 = 𝛽𝛽0𝑇𝑇 + 𝛽𝛽1𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝜀𝜀𝑖𝑖

– Placebo Group:  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖= 𝛽𝛽0𝑃𝑃 + 𝛽𝛽1𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝜀𝜀𝑖𝑖



Subgroup Analysis: Model the Relationship of X 
on Y for Each Treatment Group

Y=16.7+0.16X

Y=35.0-0.07X

How to test 𝐻𝐻0: 𝛽𝛽1𝑇𝑇 = 𝛽𝛽1𝑃𝑃?

𝛽𝛽1𝑃𝑃
𝛽𝛽1𝑇𝑇



Interactions

• Interaction term is defined as the product of two predictors 
(i.e. Trt x DBP). We will fit the following multiple regression:

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 +𝜀𝜀𝑖𝑖

Placebo:     𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 0: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽2𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝜀𝜀𝑖𝑖
Treatment:  𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 1: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 = (𝛽𝛽0 + 𝛽𝛽1) + (𝛽𝛽2+𝛽𝛽3)𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝜀𝜀𝑖𝑖

• If the relationship between X and Y is the same for each 
group, then 𝛽𝛽2 = 𝛽𝛽2 + 𝛽𝛽3, which implies 𝛽𝛽3 must be 0 
– Use multiple regression to test: 𝐻𝐻0: 𝛽𝛽3=0. 



Modeling Interactions
(TROPHY Data)

Trt
Placebo



Modeling Interactions
(TROPHY Data)

R Output

Coefficients: Estimate      Std. Error t-value      Pr(>|t|) 

(Intercept) 16.7               6.28             2.65           0.00853 ** 
Trt01                      18.4              9.46              1.94           0.05319 
DBP0                      0.16              0.075           2.061 0.04048 * 
DBP0:Trt01          -0.23               0.11384 -1.997       0.04698 *



Modeling Interactions
(TROPHY Data)

Trt
Placebo

𝛼𝛼

Y ≈ 16.7 + 18.4𝑇𝑇𝑇𝑇𝑇𝑇 + 0.16𝑋𝑋 − 0.23 𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝑋𝑋



Summary Points

• Correlation is a measure of association between continuous X and Y
– Pearson Correlation (Linear association): 

ρ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)

𝑆𝑆𝑆𝑆 𝑋𝑋 ∗ 𝑆𝑆𝑆𝑆(𝑌𝑌)
=

∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦)
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝑥𝑥)2 ∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2

• |ρ| ≤ 1
• |ρ| = 1: Y is a linear function of X, Y=a+bX
• ρ = 0: No association between X and Y

– T-test for testing 𝐻𝐻0: ρ = 0 of no association between of X and Y

𝑡𝑡𝑛𝑛−2 =
𝑟𝑟

𝑠𝑠𝑠𝑠(𝑟𝑟) =
𝑟𝑟

1 − 𝑟𝑟
𝑛𝑛 − 2

– Spearman Correlation (Nonparametric):
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑆𝑆 𝑋𝑋,𝑌𝑌 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃 (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑋𝑋 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑌𝑌 )



Summary Points

• Simple Linear Regression (Model Y as a linear function of X)

𝑌𝑌𝑖𝑖=𝛽𝛽0+𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 where    𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎2)

– 𝛽𝛽0 is the intercept: Expected value of Y when X=0.
– 𝛽𝛽1 is the slope: How much Y changes if X changes by 1
– Least squares estimate of 𝛽𝛽0 and 𝛽𝛽1:

𝑏𝑏1 =
∑𝑖𝑖 𝑌𝑌𝑖𝑖(𝑋𝑋𝑖𝑖 −𝑋𝑋)
∑𝑖𝑖(𝑋𝑋𝑖𝑖 − 𝑋𝑋)2

= �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑌𝑌,𝑋𝑋 ∗
�𝑆𝑆𝑆𝑆(𝑌𝑌)
�𝑆𝑆𝑆𝑆(𝑋𝑋)

𝑏𝑏0 = 𝑌𝑌 − 𝑏𝑏1𝑋𝑋

– T-test for testing 𝐻𝐻0:𝛽𝛽1 = 0 of no association between of X and Y

𝑡𝑡𝑛𝑛−1 =
𝑏𝑏1

𝑠𝑠𝑠𝑠(𝑏𝑏1)



Summary Points
• Multiple Regression (Model Y as a linear function of several 𝑋𝑋𝑘𝑘′ 𝑠𝑠)

𝑌𝑌𝑖𝑖=𝛽𝛽0+𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝𝑖𝑖 + 𝜀𝜀𝑖𝑖 where    𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎2)

– 𝛽𝛽0 (Intercept): Expected value of Y when all 𝑋𝑋𝑘𝑘=0
– 𝛽𝛽𝑘𝑘 (Slope): How much Y changes if 𝑋𝑋𝑘𝑘 changes by 1 (adjusting for other X’s)
– T-test for testing 𝐻𝐻0:𝛽𝛽𝑘𝑘 = 0 of no partial association between of𝑋𝑋𝑘𝑘and Y

𝑡𝑡𝑛𝑛−1 =
𝑏𝑏𝑘𝑘

𝑠𝑠𝑠𝑠(𝑏𝑏𝑘𝑘)

– 𝛽𝛽3 (Interaction terms): Does the effect of X on Y varies by group (i.e. Trt)

𝑌𝑌𝑖𝑖=𝛽𝛽0+𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 where    𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎2)

– T-test of 𝐻𝐻0:𝛽𝛽3 = 0; The association between X and Y does not vary by group
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