#### Module 2: Introduction to Statistics

Niko Kaciroti, Ph.D. BIOINF 525 Module 2: W17 University of Michigan

## Topic

- Dependence/Association/Relationship
  - Visual Display
    - Scatterplot
  - Covariance and Correlation
    - Pearson and Spearman Correlation
- Regression Model
  - Simple Linear Regression
  - Multiple Regression
    - Nonlinear (Quadratic) Relationship
    - Testing for Interactions

## Dependence, Association, Relationship Between X and Y

- Let (x<sub>1</sub>,y<sub>1</sub>), (x<sub>2</sub>,y<sub>2</sub>),...., (x<sub>n</sub>,y<sub>n</sub>) be a sample of pairs of data of variables X (i.e. weight) and Y (i.e. height)
- Hypothesis: Is there a relationship between X and Y?
  - Can one variable predict variation in the second variable?
  - Do changes in X relate to changes in Y?

## Dependence, Association, Relationship Between X and Y

- Dependence between two variables X and Y roughly means that knowing the value of X provides some information about the value of Y
- Other terms used interchangeably for dependence are: Association between X and Y; Relationship between X and Y; X predicts Y
- Different measures of association are used depending if X or Y are discrete or continuous

#### Dependence, Association, Relationship (X is Binary, Y is Continuous)

- X is a group variable (Male/Female), Y is Continuous (HDL or LDL).
  - Group differences are a form of dependence



Does HDL depend on the gender of a subject? How about LDL?

#### Dependence, Association, Relationship (X is Binary, Y is Binary)

- X is a group variable (Male/Female), Y is binary (Yes/No).
  - OR is a measure of dependence for binary data:

$$OR = \frac{ODD_{Male}}{ODD_{Female}}$$

E.g. Does having HDL <= 40 depend on the gender of the patient? Or, equivalently, are the Odds different between males and females?</li>

 $ODD_{Male}(HDL \le 40) = 0.82$ 

 $ODD_{Female}(HDL \le 40) = 0.11$ 

$$OR = \frac{.82}{.11} = 7.5$$

#### Dependence, Association, Relationship (X and Y are Continuous)

- Association between two continuous variables X and Y implies that changes in X are related with changes in Y
- Scatterplot can be initially used to visually explore for possible associations
  - A scatterplot is a graphical display of the data by plotting pairs of x and y
  - The presence of any pattern indicates dependence

#### **Scatterplot Examples**



Which scatterplot indicate strongest dependence?

#### **Scatterplot Examples**



## How to Measure the Association For Continuous X and Y

- The scatterplot can help in identifying patterns and the direction of an association. However, it does not provide a numerical estimate of the association
- **Covariance** is used to capture the linear association and the direction of the association (positive or negative) between two variables X and Y

 Let (x<sub>1</sub>,y<sub>1</sub>), (x<sub>2</sub>,y<sub>2</sub>),...., (x<sub>n</sub>,y<sub>n</sub>) be a sample of pairs of data of variables X and Y. The covariance is defined as:

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{N}$$
$$\widehat{Cov}(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{N-1}$$
$$Var(X) = Cov(X,X) = \frac{\sum_{i=1}^{n} (x_i - \mu_x)^2}{N}$$

| Height | Weight |
|--------|--------|
| 60     | 84     |
| 62     | 95     |
| 64     | 140    |
| 66     | 155    |
| 68     | 119    |
| 70     | 175    |
| 72     | 145    |
| 74     | 197    |
| 76     | 150    |

#### Scatterplot: Plot of Height vs. Weight



#### Intuitive Interpretation of Covariance

$$\widehat{Cov}(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{N-1}$$

- The covariance can be viewed intuitively as a sum of "matches" (or "mismatches") in terms of a subject being on the same side of the mean for each variable X or Y
- A "match" is when  $x_i \overline{x}$  and  $y_i \overline{y}$  have the same sign.
  - For example, if  $x_i$  is greater than the mean  $(x_i \overline{x} > 0)$  then  $y_i$  is also greater than the mean  $(y_i \overline{y} > 0)$
- A "mismatch" is when  $x_i \overline{x}$  and  $y_i \overline{y}$  have the opposite sign.
  - If  $x_i$  is above the mean  $(x_i \overline{x} > 0)$  and  $y_i$  is below the mean  $(y_i \overline{y} < 0)$ , or vice versa

#### Intuitive Interpretation of Covariance

$$\widehat{Cov}(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{N-1}$$
(1)

For a particular subject *i*, a "match" leads to a positive product in Equation (1), whereas a "mismatch" leads to a negative product

- If Eq. (1) is dominated by "matches", then Cov(X,Y) > 0 and the association between X and Y is said to be positive
- If Eq. (1) is dominated by "mismatches", the Cov(X,Y) < 0 and the association is negative
- If there are more or less the same "matches" and "mismatches", then there is no relationship between X and Y

#### Scatterplot: Plot of Height vs. Weight



How many "mismatched" points are in the plot?

| Height | Weight |
|--------|--------|
| 60     | 84     |
| 62     | 95     |
| 64     | 140    |
| 66     | 155    |
| 68     | 119    |
| 70     | 175    |
| 72     | 145    |
| 74     | 197    |
| 76     | 150    |

| Height    | Weight     | Height – 68 | Weight - 140 |
|-----------|------------|-------------|--------------|
| 60        | 84         | -8          | -56          |
| 62        | 95         | -6          | -45          |
| 64        | 140        | -4          | 0            |
| 66        | 155        | -2          | 15           |
| 68        | 119        | 0           | -21          |
| 70        | 175        | 2           | 35           |
| 72        | 145        | 4           | 5            |
| 74        | 197        | 6           | 57           |
| <u>76</u> | <u>150</u> | 8           | 10           |
|           |            |             |              |

|      | Height    | Weight     | Height – 68 | Weight - 140 | Product       |
|------|-----------|------------|-------------|--------------|---------------|
|      | 60        | 84         | -8          | -56          | 448           |
|      | 62        | 95         | -6          | -45          | 270           |
|      | 64        | 140        | -4          | 0            | 0             |
|      | 66        | 155        | -2          | 15           | -30           |
|      | 68        | 119        | 0           | -21          | 0             |
|      | 70        | 175        | 2           | 35           | 70            |
|      | 72        | 145        | 4           | 5            | 20            |
|      | 74        | 197        | 6           | 57           | 342           |
|      | <u>76</u> | <u>150</u> | 8           | 10           | <u>80</u>     |
| Mean | 68        | 140        |             | Cov(H,\      | N)=1200/8=150 |

#### **Properties of Covariance**

• *Cov*(*X*+*a*,*Y*)=*Cov*(*X*,*Y*)

$$Cov(X+a,Y) = \frac{\sum_{i=1}^{n} (x_i + a - (\mu_x + a))(y_i - \mu_y)}{N}$$
$$= \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{N} = Cov(X,Y)$$

- If there is a systematic error when measuring X or Y the covariance (association) is not effected
  - Examples of systematic error are when the measurement instruments are not calibrated; Different labs may have different calibrations
- "Good" property: It allows replication of the results from different labs etc.

#### **Properties of Covariance**

Cov(aX,bY)=a\*b\*Cov(X,Y)

$$Cov(aX,bY) = \frac{\sum_{i=1}^{n} (ax_i - a\mu_x)(by_i - b\mu_y)}{N}$$
  
=  $\frac{a \cdot b \cdot \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{N} = a \cdot b \cdot Cov(X,Y)$ 

- The covariance will change if X or Y are multiplied by a scalar
- "Bad" property: The covariance will change if the units change (e.g. from inches to feet). However the associations should not change regardless of the unit of measure

#### Correlation of Two Variables (Pearson Correlation)

• Correlation is derived by standardizing the covariance, so its value <u>does not</u> depend on the unit of measurement

$$\rho = corr(x, y) = \frac{Cov(X, Y)}{SD(X) * SD(Y)} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

$$corr(ax, by) = \frac{\sum_{i}^{n} (ax_{i} - \overline{ax})(by_{i} - \overline{by})}{\sqrt{\sum_{i}^{n} (ax_{i} - \overline{ax})^{2} \sum_{i}^{n} (by_{i} - \overline{by})^{2}}} = \frac{ab \sum_{i}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{ab \sqrt{\sum_{i}^{n} (x_{i} - \overline{x})^{2} \sum_{i}^{n} (y_{i} - \overline{y})^{2}}} = corr(x, y)$$

• The correlation between x and y is the same regardless of what unit is used for x and y

#### Correlation of Two Variables (Pearson Correlation)

 $\rho = \frac{\text{Cov}(X, Y)}{\text{SD}(X)\text{SD}(Y)}$ 

- The correlation coefficient ρ, is referred to as the Pearson correlation. It is a measure of the <u>linear</u> relationship between X and Y
- Correlation can be positive or negative:  $-1 \le \rho \le 1$ 
  - $-\rho$  > 0: Increases on X are related with increases on Y
  - $-\rho$  < 0: Increases on X are related with decreases on Y
  - $-\rho = 0$ : No association between X and Y
  - $|\rho| = 1$ : Perfect correlation, Y is a linear transformation of X, Y=a+bX

If  $\rho = -1$ , is b > 0 or b < 0?

#### Correlation of Two Variables (Spearman Correlation)

- Spearman correlation is a <u>nonparametric</u> correlation that does not depend on the linearity between X and Y. It is also not affected by outliers
- For each pair, x and y, calculate their corresponding ranks, rank(x) and rank(y). The Spearman correlation is the same as the Pearson correlation, but applied on the ranks of X and Y:

 $corr_{S}(X,Y) = corr_{P}(rank(X),rank(Y))$ 

#### Pearson vs. Spearman Correlation



#### **Test for Correlation**



The estimate for correlation  $\rho$  is r = .76, with some margin of error. How do we test if  $\rho$  is different from 0?

#### **Test for Correlation**

- Testing the null hypothesis that X is not associated with Y:  $H_0: \rho = 0 \text{ vs. } H_A: \rho \neq 0$
- The following test is used for testing  $H_0$ :

$$t_{n-2} = \frac{r}{se(r)} = \frac{r}{\sqrt{\frac{1-r}{n-2}}}$$

• If data are normally distributed, then  $t_{n-2}$  follows a t-distribution with n-2 degrees of freedom. The usual p-value < 0.05 criteria is then used to reject  $H_0$ 

## Test for Correlation in R

cor.test(height,weight)

Pearson's product-moment correlation

t = 3.0805, df = 7, p-value = 0.0178

alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.1904203, 0.9460844 sample estimates: cor

0.7586069

#### Test for Difference on Correlation Coefficients By Group

- Another question of interest is for testing whether the relationship between X and Y is different by groups.
  - E.g. Correlation between weight and height is different for males ( $\rho_m$ ) vs. females ( $\rho_f$ ):

$$H_0: \rho_m = \rho_f \quad \text{vs. } H_A: \rho_m \neq \rho_f$$

• We will test this hypothesis later using the regression model approach with interaction terms

## Topic

- Dependence/Association/Relationship
  - Visual Display
    - Scatterplot
  - Covariance and Correlation
    - Pearson and Spearman Correlation

#### Regression Model

- Simple Linear Regression
- Multiple Regression
  - Nonlinear (Quadratic) Relationship
  - Testing for Interactions

### **Correlation vs. Regression Model**

- Correlation is a measure of association
  - It shows: if X and Y are related; the magnitude of the relationship; and its direction
  - However, correlation does not show how to predict Y from X (or X from Y)

- Regression is a modeling technique
  - It builds models for the variable Y as a function of one (or more) variable X
  - It measures the association between X and Y, <u>and</u> also can be used to predict Y from X

## **Simple Linear Regression**

• Simple linear regression model describes the value of variable Y as a linear function of another variable X plus some error terms

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- When X may explain changes in Y, then X is called an explanatory variable (or predictor variable, or independent variable, or covariate)
- The variable *Y* is called the **response** variable (or the **outcome** variable, or the **dependent** variable)
- $\varepsilon_i \sim N(0, \sigma^2)$  is the **error** term (or **residual**)

## What Line Best Describes the Relationship of Weight and Height?





## How Far is the Observed Weight from the Predicted Weight?



heiaht

# Estimating the Line That Best Describes the Relationship of Weight and Height?

• Find the line for which the predicted values  $(\hat{Y}_i)$  are closest to the actual values  $(Y_i)$ 

• First, for each subject *i* define the error between the predicted value and the actual value,  $(\hat{Y}_i - Y_i)$ , then minimize the sum of errors across all subjects

## Estimating the Line That Best Describes the Relationship of Weight and Height?



## Least Squares Estimate for Regression Parameters $\beta_0$ and $\beta_1$

Least squares is a technique used to estimate parameters in a regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

• Least squares minimizes the sum of squares for the residuals:

 $SSR = \sum_{i=1}^{n} \varepsilon_i^2 = (Y_1 - \beta_0 - \beta_1 X_1)^2 + (Y_2 - \beta_0 - \beta_1 X_2)^2 + \dots + (Y_n - \beta_0 - \beta_1 X_n)^2$ 

## Least Squares Estimate for Regression Parameters $\beta_0$ and $\beta_1$

 The "least squares estimate" are given by the values of b<sub>0</sub> and b<sub>1</sub> as follows:

$$b_1 = \frac{\sum_i Y_i(X_i - \overline{X})}{\sum_i (X_i - \overline{X})^2} = \widehat{corr}(Y, X) * \frac{\widehat{SD}(Y)}{\widehat{SD}(X)}$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

• After we have calculated the estimates,  $b_0$  and  $b_1$ , the "fitted values" (or predicted values) for Y are given by:

$$\widehat{Y}_i = b_0 + b_1 X_i$$

## Geometric Interpretation of the Regression Parameters Intercept ( $\beta_0$ ) and Slope ( $\beta_1$ )



Y=b0+b1X

Х

## Geometric Interpretation of the Regression Parameters Intercept ( $\beta_0$ ) and Slope ( $\beta_1$ )



Y=b0+b1X

### **Geometric Interpretation of the Regression Parameters** Intercept ( $\beta_0$ ) and Slope ( $\beta_1$ )



Y=b0+b1X

Х

### value of Y when X=0 **<u>Slope</u>**: $\beta_1$ measures changes

in Y for one unit increase in X

# Testing for Relationship Between X and Y Using Regression Model

• Test whether Y is related to X:  $H_0$ :  $\beta_1 = 0$  vs.  $H_A$ :  $\beta_1 \neq 0$ .

• The following test is used for testing  $H_0$ :

$$t_{n-1} = \frac{b_1}{se(b_1)}$$

• When  $\varepsilon_i \sim N(0, \sigma^2)$ , then  $t_{n-1}$  follows a t-distribution with n-1 degrees of freedom. The usual p-value < 0.05 criteria is then used to reject  $H_0$ 

## Simple Linear Regression in R

summary(lm(weight~height))

• Coefficients:

|             | Estimate | Std. Error | t-value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | -200.000 | 110.690    | -1.807  | 0.1137   |
| height      | 5.000    | 1.623      | 3.080   | 0.0178 * |

R-squared: 0.5755

## R-Square: Measure of Goodness of Fit of a Regression Model

• A regression model provides a "good" fit if the predicted values  $\hat{Y}$  are closely related to the actual values Y

•  $R^2$  measures the goodness of fit. It is equal to the squared correlation between Y and  $\hat{Y}$  (or Y and X):

$$R^2 = r_{y\hat{y}}^2 = r_{yx}^2$$

# **Assumptions for Linear Regression Model**

• There are several assumptions made in a linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- The observations are independent
- The relationship between x and y is linear
  - Scatterplot
- $\varepsilon_i \sim N(0, \sigma^2)$  are normally distributed with zero mean and constant variance
  - Q-Q Plot, Shapiro-Wilk's test

# Topic

- Dependence/Association/Relationship
  - Visual Display
    - Scatterplot
  - Covariance and Correlation
    - Pearson and Spearman Correlation
- Regression Model
  - Simple Linear Regression
  - Multiple Regression
    - Nonlinear (Quadratic) Relationship
    - Testing for Interactions

# **Multiple Regression**

- Multiple regression model is an extension of the simple linear regression. It permits any number of predictor variables. Multiple regression simply means "multiple predictors"
- The model is similar to the case with one predictor; it just has more X's and β's.

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{p}X_{pi} + \varepsilon_{i}$$
$$\varepsilon_{i} \sim N(0, \sigma^{2})$$

 $\beta_0$ : Intercept

- $\beta_k$ : Slope for  $X_k$ , for k=1,2,...,p
- $\varepsilon_i$ : Error term (residual)

### Least Square Estimate

• The least square estimates for multiple regression are defined in the same way, by minimizing the "residuals"  $\varepsilon_i = Y_i - \beta_0 - \beta_1 X_i - \beta_2 X_{2i} - \dots - \beta_p X_{pi}$ . Thus, the parameter estimates are chosen to minimize the "sum of squared residuals":

$$SSR = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i - \beta_2 X_{2i} - \dots - \beta_p X_{pi})^2$$

$$\varepsilon_i^2$$

# Features of Multiple Regression

- Multiple regression model improves the prediction of Y by using multiple variables
- It is used to estimate <u>partial</u> association of X and Y. That is, how much X contributes in predicting Y that is unique to X and does not overlap with other covariates

$$Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$$

-  $\beta_1$ , is unadjusted/overall association between  $X_1$  and Y

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi} + \varepsilon_i$$

-  $\beta_1$  is the adjusted association between  $X_1$  and Y, adjusted for  $X_2, ..., X_p$ 

•  $R^2$  is used to measure the overall association of  $X_1, X_2, ..., X_p$  with Y

# Testing for Relationship Between X<sub>k</sub> and Y Using Multiple Regression

- Test for  $H_0$ :  $\beta_k = 0$  vs.  $H_A$ :  $\beta_k \neq 0$ .
- The following test is used:

$$t_{n-1} = \frac{b_k}{se(b_k)}$$

• If  $\varepsilon_i \sim N(0, \sigma^2)$ , then  $t_{n-1}$  follows a t-distribution with n-1 degrees of freedom. The p-value < 0.05 criteria is then used to reject  $H_0$ 

## Multiple Regression Example in R (TROPHY Data)

- We want to test whether LDL, Insulin, Age, and DBP are related to or predict BMI24?
  - Then fit the following multiple regression

 $BMI24_{i} = \beta_{0} + \beta_{1}LDL_{i} + \beta_{2}Insulin_{i} + \beta_{3}Age_{1i} + \beta_{4}DBP_{i} + \varepsilon_{i}$ 

## Multiple Regression Example in R (TROPHY Data)

#### **R Output:**

| Coefficients: | Estimate | Std. Error | t-value | Pr(> t )     |
|---------------|----------|------------|---------|--------------|
| (Intercept)   | 22.1     | 7.24       | 3.0     | 0.00285 **   |
| LDL           | 0.03     | 0.014      | 2.33    | 0.02189 *    |
| Insulin       | 0.25     | 0.05       | 4.56    | 1.32e-05 *** |
| Age           | -0.05    | 0.059      | -0.86   | 0.39085      |
| DBPO          | 0.036    | 0.078      | 0.46    | 0.64564      |

Multiple R-squared: 0.2101

Adjusted R-squared: 0.1814

F-statistic: 7.314 on 4 and 110 DF, p-value: 2.92e-05.

## **Interpretation of R-Square**

• The total sum of squares for Y, which is a measure of variation, can be decomposed as follows:

$$\sum_{i}^{n} (y_{i} - \overline{y})^{2} = \sum_{i}^{n} (y_{i} - \hat{y}_{i})^{2} + \sum_{i}^{n} (\hat{y}_{i} - \overline{y})^{2}$$

$$SS_{Tot} = SS_{err} + SS_{Reg}$$

 $R^{2} = \frac{SS_{Reg}}{SS_{Tot}}$ : It is the proportion of the variance on Y explained by the model  $1-R^{2} = \frac{SS_{err}}{SS_{Tot}}$ : It is the proportion of the unexplained variance

•  $R^2$ =.21, means that 21% of the variation on BMI24 is explained by the model or by LDL, Insulin, Age, and DBP

### **Nonlinear Scatterplot**

What do you do if the scatterplot of the raw data suggests that the association between Y and X is not linear, (i.e.  $Y \approx X^2$ )?



### **Nonlinear Scatterplot**

What do you do if the scatterplot of the raw data suggests that the association between Y and X is not linear, (i.e.  $Y \approx X^2$ )?



Х

# Nonlinear (Quadratic) Regression Model

• Linear regression can be extended by including a quadratic term. Then, multiple regression can be used to fit a quadratic regression:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X^{2}_{1i} + \varepsilon_{i}$$
$$\varepsilon_{i} \sim N(0, \sigma^{2})$$

- Along similar lines, you could include  $X^3$  or log(X), etc., depending on the type of relationship between X and Y. Here  $\beta_2$  is the curvature coefficient
- $H_0: \beta_2 = 0$  vs.  $H_A: \beta_2 \neq 0$ . If  $H_0$  is rejected, the relationship between X and Y is not linear

## Testing if the Association Between X and Y Varies by Group

- Q: Is the association between DBP and BMI24 different between subjects in the Treatment group versus subjects in the Placebo group?
- First, fit separate models by group:
  - Treatment Group:  $BMI24_i = \beta_0^T + \beta_1^T DBP_i + \varepsilon_i$
  - Placebo Group:  $BMI24_i = \beta_0^P + \beta_1^P DBP_i + \varepsilon_i$

### Subgroup Analysis: Model the Relationship of X on Y for Each Treatment Group



How to test  $H_0$ :  $\beta_1^T = \beta_1^P$ ?

## Interactions

• Interaction term is defined as the product of two predictors (*i.e.* Trt x DBP). We will fit the following multiple regression:

$$BMI24_{i} = \beta_{0} + \beta_{1}Trt_{i} + \beta_{2}DBP_{i} + \beta_{3}Trt_{i} * DBP_{i} + \varepsilon_{i}$$

Placebo: $Trt_i = 0$ : $BMI24_i = \beta_0 + \beta_2 DBP_i + \varepsilon_i$ Treatment: $Trt_i = 1$ : $BMI24_i = (\beta_0 + \beta_1) + (\beta_2 + \beta_3) DBP_i + \varepsilon_i$ 

• If the relationship between X and Y is the same for each group, then  $\beta_2 = \beta_2 + \beta_3$ , which implies  $\beta_3$  must be 0

- Use multiple regression to test:  $H_0: \beta_3=0$ .

### Modeling Interactions (TROPHY Data)

Trt Placebo BMI at 24 Months 80.0 o  $\cap c$ Ô. Ċ ò ò 

**Modeling Interaction** 

DBP at Baseline

### Modeling Interactions (TROPHY Data)

R Output

| Coefficients: | Estimate | Std. Error | t-value | Pr(> t )   |
|---------------|----------|------------|---------|------------|
|               |          |            |         |            |
| (Intercept)   | 16.7     | 6.28       | 2.65    | 0.00853 ** |
| Trt01         | 18.4     | 9.46       | 1.94    | 0.05319    |
| DBPO          | 0.16     | 0.075      | 2.061   | 0.04048 *  |
| DBP0:Trt01    | -0.23    | 0.11384    | -1.997  | 0.04698 *  |

### Modeling Interactions (TROPHY Data)

Trt Placebo BMI at 24 Months <u> २० ० ०</u>८ ò C α ò Ö ò ò DBP at Baseline

**Modeling Interaction** 

 $Y \approx 16.7 + 18.4Trt + 0.16X - 0.23Trt * X$ 

### **Summary Points**

- Correlation is a measure of association between continuous X and Y
  - Pearson Correlation (Linear association):

$$\rho = corr(x, y) = \frac{Cov(X, Y)}{SD(X) * SD(Y)} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

- $|\rho| \leq 1$
- $|\rho| = 1$ : Y is a linear function of X, Y=a+bX
- ρ = 0: No association between X and Y
- T-test for testing  $H_0: \rho = 0$  of no association between of X and Y

$$t_{n-2} = \frac{r}{se(r)} = \frac{r}{\sqrt{\frac{1-r}{n-2}}}$$

- Spearman Correlation (Nonparametric):  $corr_{S}(X,Y) = corr_{P}(rank(X),rank(Y))$ 

### **Summary Points**

• Simple Linear Regression (Model Y as a linear function of X)

 $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$  where  $\varepsilon_i \sim N(0, \sigma^2)$ 

- $-\beta_0$  is the intercept: Expected value of Y when X=0.
- $-\beta_1$  is the slope: How much Y changes if X changes by 1
- Least squares estimate of  $\beta_0$  and  $\beta_1$ :

$$b_{1} = \frac{\sum_{i} Y_{i}(X_{i} - \overline{X})}{\sum_{i} (X_{i} - \overline{X})^{2}} = \widehat{corr}(Y, X) * \frac{\widehat{SD}(Y)}{\widehat{SD}(X)}$$
$$b_{0} = \overline{Y} - b_{1}\overline{X}$$

- T-test for testing  $H_0: \beta_1 = 0$  of no association between of X and Y

$$t_{n-1} = \frac{b_1}{se(b_1)}$$

### **Summary Points**

• Multiple Regression (Model Y as a linear function of several  $X'_k s$ )

 $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi} + \varepsilon_i \text{ where } \varepsilon_i \sim N(0, \sigma^2)$ 

- $\beta_0$  (Intercept): Expected value of Y when all  $X_k=0$
- $\beta_k$  (Slope): How much Y changes if  $X_k$  changes by 1 (adjusting for other X's)
- T-test for testing  $H_0: \beta_k = 0$  of no partial association between of  $X_k$  and Y

$$t_{n-1} = \frac{b_k}{se(b_k)}$$

 $-\beta_3$  (Interaction terms): Does the effect of X on Y varies by group (i.e. Trt)

$$Y_i = \beta_0 + \beta_1 Trt_i + \beta_2 X_{2i} + \beta_3 Trt_i X_i + \varepsilon_i \text{ where } \varepsilon_i \sim N(0, \sigma^2)$$

- T-test of  $H_0: \beta_3 = 0$ ; The association between X and Y does not vary by group