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Topic

 Dependence/Association/Relationship
— Visual Display
e Scatterplot
— Covariance and Correlation

e Pearson and Spearman Correlation

 Regression Model
— Simple Linear Regression

— Multiple Regression
e Nonlinear (Quadratic) Relationship
e Testing for Interactions



Dependence, Association, Relationship
Between X and Y

e Let (Xy,Y4), (X5,Y5),----, (X,,Y,) be @ sample of pairs of data of
variables X (i.e. weight) and Y (i.e. height)

e Hypothesis: Is there a relationship between X and Y?
— Can one variable predict variation in the second variable?
— Do changes in X relate to changes in Y?



Dependence, Association, Relationship
Between X and Y

Dependence between two variables X and Y roughly means that
knowing the value of X provides some information about the
value of Y

Other terms used interchangeably for dependence are:
Association between X and Y; Relationship between X and Y; X
predicts Y

Different measures of association are used depending if X or Y
are discrete or continuous



Dependence, Association, Relationship
(X is Binary, Y is Continuous)

e Xis agroup variable (Male/Female), Y is Continuous (HDL or LDL).
— Group differences are a form of dependence
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Does HDL depend on the gender of a subject? How about LDL?



Dependence, Association, Relationship
(X is Binary, Y is Binary)

e Xis agroup variable (Male/Female), Y is binary (Yes/No).

— ORis a measure of dependence for binary data:

ODD
OR — Male
ODDFemale

— E.g. Does having HDL <= 40 depend on the gender of the patient? Or,
equivalently, are the Odds different between males and females?

ODDj;q1.(HDL < 40) = 0.82

ODDpomaie (HDL < 40) = 0.11

OR=22=175
A1



Dependence, Association, Relationship
(X and Y are Continuous)

Association between two continuous variables X and Y implies
that changes in X are related with changes inY

Scatterplot can be initially used to visually explore for possible
associations

— A scatterplot is a graphical display of the data by plotting pairs of xand y
— The presence of any pattern indicates dependence



Scatterplot Examples
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Which scatterplot indicate strongest dependence?
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Scatterplot Examples
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How to Measure the Association For
Continuous X and Y

 The scatterplot can help in identifying patterns and the
direction of an association. However, it does not provide a
numerical estimate of the association

e Covariance is used to capture the linear association and the
direction of the association (positive or negative) between
two variables X and Y



Covariance Between Two Variables

e Let (Xy,Y4), (X5,Y5),---, (X,,Y,) be @ sample of pairs of data of
variables X and Y. The covariance is defined as:

Yic 1 (Xi—px) Vi—Hy)

Cov(X,)Y)= ~

n )2
Var(X)=Cov(X,X )= Zl=1(9j\l, Hx)




Covariance Between Two Variables

e Example data on height and weight for 9 people. Are they
related?

Height Weight

60 384
62 95
64 140
66 155
68 119
70 175
72 145
74 197

76 150



Scatterplot: Plot of Height vs. Weight
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Intuitive Interpretation of Covariance

2iz1(xXi—X) (¥i=Y)
N-1

Cov(XY)=

e The covariance can be viewed intuitively as a sum of “matches”
(or “mismatches”) in terms of a subject being on the same side of
the mean for each variable X or Y

e A “match” is when x; — x and y; — y have the same sign.

— For example, if x; is greater than the mean (x; — x > 0) then y; is also
greater than the mean (y; —y > 0)

 A“mismatch” is when x; — x and y; — y have the opposite sign.

— If x; is above the mean (x; — x > 0) and y; is below the mean (y; — y <0),
or vice versa



Intuitive Interpretation of Covariance

Z?:l(xi_y)(yi_y) (1)

Cov(XY)= —

For a particular subject i, a “match” leads to a positive product in
Equation (1), whereas a “mismatch” leads to a negative product

— If Eq. (1) is dominated by “matches”, then Cov(X,Y) > 0 and the association
between X and Y is said to be positive

— If Eq. (1) is dominated by “mismatches”, the Cov(X,Y) < 0 and the association
is negative

— If there are more or less the same “matches” and “mismatches”, then there
is no relationship between X and Y



Scatterplot: Plot of Height vs. Weight
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How many “mismatched” points are in the plot?



Covariance Between Two Variables

e Example data on height and weight for 9 people. Are they
related?

Height Weight

60 84
62 95
64 140
66 155
68 119
70 175
72 145
74 197

76 150



Covariance Between Two Variables

e Example data on height and weight for 9 people. Are they
related?

Height Weight Height —68 Weight - 140
60 84 -8 -56
62 95 -6 -45
64 140 -4 0
66 155 -2 15
68 119 0 -21
70 175 2 35
72 145 4 5
74 197 6 57
76 150 8 10

Mean 68 140



Covariance Between Two Variables

e Example data on height and weight for 9 people. Are they

related?

Height
60
62
64
66
68
70
72
74
76

Mean 68

Weight

84
95
140
155
119
175
145
197

150

140

Height —68 Weight - 140

-56
-45
0
15
-21
35
5
57
10

Product
448
270

0
-30
0
70
20
342
80

Cov(H,W)=1200/8=150



Properties of Covariance

Cov(X+a,Y)=Cov(X,Y)

i (xita—(ux+a)) (Vi—ty)
N
e (=) Vi— )

= ~ = Cov(X)Y)

Cov(X+a,Y) =

If there is a systematic error when measuring X or Y the
covariance (association) is not effected
— Examples of systematic error are when the measurement instruments
are not calibrated; Different labs may have different calibrations

“Good” property: It allows replication of the results from
different labs etc.



Properties of Covariance

e Cov(aX,bY)=a*b*Cov(X)Y)

Yici(axi—auy)(byi—bpuy)
N
_axbXis (i~ ) (Vi—Hy)

= > =a*b*Cov(X)Y)

Cov(aX,bY) =

e The covariance will change if X or Y are multiplied by a scalar

e “Bad” property: The covariance will change if the units change
(e.g. from inches to feet). However the associations should not
change regardless of the unit of measure



Correlation of Two Variables
(Pearson Correlation)

Correlation is derived by standardizing the covariance, so its
value does not depend on the unit of measurement

= o = 2D BnecDcn
J2?=1<xi—x>2 ST (yi=9)?
Siax, — @by —by)  abXiy-Di—7)

corr(ax, by) = = corr(x,y)

A e IR Tha )

The correlation between x and y is the same regardless of what
unit is used for x and y



Correlation of Two Variables
(Pearson Correlation)

_ Cov(X)Y)
P = SDXOSD(Y)

 The correlation coefficient p, is referred to as the Pearson
correlation. It is a measure of the linear relationship between X and Y

e Correlation can be positive or negative: -1 <p<1
— p > 0:Increases on X are related with increases on Y
— p < 0:Increases on X are related with decreases on'Y
— p =0: No association between X and Y
— |p| = 1: Perfect correlation, Y is a linear transformation of X, Y=a+bX

fp=-1, isb>00rb<0?



Correlation of Two Variables
(Spearman Correlation)

e Spearman correlation is a nonparametric correlation that

does not depend on the linearity between X and Y. It is also
not affected by outliers

e For each pair, x and y, calculate their corresponding ranks,
rank(x) and rank(y). The Spearman correlation is the same as
the Pearson correlation, but applied on the ranks of X and Y:

corrs(X,Y) = corrp (rank(X), rank(Y))
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Test for Correlation
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The estimate for correlation p is r = .76, with some margin of error.
How do we test if p is different from 0?



Test for Correlation

Testing the null hypothesis that X is not associated with Y:
HO: p=0 VS.HA: p=/:0

The following test is used for testing Hy:

r r

t. o = =
"E Use(r) [1—r

n—2

If data are normally distributed, then t,,_, follows a t-distribution
with n-2 degrees of freedom. The usual p-value < 0.05 criteria is
then used to reject H



Test for Correlation in R
e cor.test(height,weight)
Pearson's product-moment correlation

t = 3.0805, df =7, p-value =0.0178
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval: 0.1904203, 0.9460844
sample estimates: cor

0.7586069



Test for Difference on Correlation Coefficients
By Group

Another question of interest is for testing whether the relationship
between X and Y is different by groups.

— E.g. Correlation between weight and height is different for males (p,;,) vs.
females (py):

Ho:pm = pr vs. Hyi pm # Py

We will test this hypothesis later using the regression model
approach with interaction terms



Topic

 Dependence/Association/Relationship
— Visual Display
e Scatterplot
— Covariance and Correlation

e Pearson and Spearman Correlation

 Regression Model
— Simple Linear Regression
— Multiple Regression

e Nonlinear (Quadratic) Relationship
e Testing for Interactions



Correlation vs. Regression Model

* Correlation is a measure of association

— It shows: if X and Y are related; the magnitude of the relationship; and its
direction

— However, correlation does not show how to predict Y from X (or X from Y)

e Regression is a modeling technique
— It builds models for the variable Y as a function of one (or more) variable X

— It measures the association between X and Y, and also can be used to
predict Y from X



Simple Linear Regression

Simple linear regression model describes the value of variable Y
as a linear function of another variable X plus some error terms

Yi=Po + p1X; + &

When X may explain changes in Y, then X is called an explanatory
variable (or predictor variable, or independent variable, or
covariate)

The variable Y is called the response variable (or the outcome
variable, or the dependent variable)

g; ~ N(0,0%) is the error term (or residual)



What Line Best Describes the Relationship of
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How Far is the Observed Weight from the
Predicted Weight?




Estimating the Line That Best Describes the
Relationship of Weight and Height?

e Find the line for which the predicted values (17l-) are closest to
the actual values (Y;)

e First, for each subject i define the error between the
predicted value and the actual value, (¥; — Y;), then minimize
the sum of errors across all subjects



Estimating the Line That Best Describes the
Relationship of Weight and Height?

Goal: make a line that
minimizes 250
Sum of squares emor
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Least Squares Estimate for Regression
Parameters 5, and ;4

e Least squares is a technique used to estimate parameters in a
regression model:

Yi=Po+P1X; + &

e Least squares minimizes the sum of squares for the residuals:

SSR= Y1, &% = (Y1 — Bo — B1X1)*+(Yo — Bo — B1X2)*+..+(Yy, — Bo — B1Xn)?



Least Squares Estimate for Regression
Parameters 5, and ;4

The “least squares estimate” are given by the values of by and
by as follows:

_NiviXiX) SD(Y)
by =S~ o X) x5
bo = ? - bly

After we have calculated the estimates, by and b4, the “fitted
values” (or predicted values) for Y are given by:

V; = bo + b1 X;



Geometric Interpretation of the Regression Parameters
Intercept (f,) and Slope (5;)

Y=b0+b1X




Geometric Interpretation of the Regression Parameters
Intercept (f,) and Slope (5;)

Y=b0+b1X

Intercept: B,is the expected o
value of Y when X=0 = ° 5




Geometric Interpretation of the Regression Parameters
Intercept (f,) and Slope (5;)

Y=b0+b1X

Intercept: B,is the expected
value of Y when X=0

B1= tan(a) 0
%

Slope: f;measures changes
In Y for one unit increase in X




Testing for Relationship Between X and Y
Using Regression Model

Test whether Y is related to X: Hy: ;=0 vs. Hy: 1 # 0.

The following test is used for testing Hy:

bq

-1 = se(bq)

When g; ~ N(0,5?), then t,,_, follows a t-distribution with n-1
degrees of freedom. The usual p-value < 0.05 criteria is then used
to reject H



Simple Linear Regression in R

e summary(lm(weight~height))

e Coefficients:
Estimate Std. Error  t-value Pr(>|t])
(Intercept) -200.000 110.690 -1.807 0.1137
height 5.000 1.623 3.080 0.0178 *

R-squared: 0.5755



R-Square: Measure of Goodness of Fit of a
Regression Model

 Aregression model provides a “good” fit if the predicted values
Y are closely related to the actual values Y

e R? measures the goodness of fit. It is equal to the squared
correlation between Y and Y (or Y and X):



Assumptions for Linear Regression Model

e There are several assumptions made in a linear regression model:
Yi=Bo+B1Xi + &

— The observations are independent

— The relationship between x and y is linear
e Scatterplot
— £~N(0,0%) are normally distributed with zero mean and
constant variance
* Q-Q Plot, Shapiro-Wilk’s test



Topic

 Dependence/Association/Relationship
— Visual Display
e Scatterplot
— Covariance and Correlation

e Pearson and Spearman Correlation

 Regression Model
— Simple Linear Regression

— Multiple Regression
* Nonlinear (Quadratic) Relationship
e Testing for Interactions



Multiple Regression

 Multiple regression model is an extension of the simple linear
regression. It permits any number of predictor variables.
Multiple regression simply means “multiple predictors”

e The model is similar to the case with one predictor; it just has
more X’s and f’s.

Yi = Bo + B1X1i + BaXoi + -+ BpXpi + &
E ~ N(O,O'Z)
fo: Intercept

P Slope for X, for k=1,2,...,p
g;: Error term (residual)



Least Square Estimate

e The least square estimates for multiple regression are defined
in the same way, by minimizing the “residuals” ¢; = Y; — By —
p1X; — B2X5; — -+ — BpXpi. Thus, the parameter estimates
are chosen to minimize the “sum of squared residuals”:

SSR= YiL (Y — Bo — B1Xi —BoXpi — = — ,Bpoi)Z
/]




Features of Multiple Regression

 Multiple regression model improves the prediction of Y by using
multiple variables

e |tis used to estimate partial association of X and Y. That is, how much
X contributes in predicting Y that is unique to X and does not overlap

with other covariates

Yi =PBo + b1 X1+ &
— f4, is unadjusted/overall association between X; and Y

Y = Bo + B1X1i + BaXoi + o+ BpXpi + &
— p1 is the adjusted association between X; and Y, adjusted for X;,..., X,

e R?is used to measure the overall association of X1,X2,00, Xp With Y



Testing for Relationship Between X}, and Y
Using Multiple Regression

Test for Hy: [5=0 vs. Hy: By # 0.

The following test is used:

ty , = —k
n-1 _se(bk)

If &, ~ N(0, 0%), then t,,_; follows a t-distribution with n-1 degrees
of freedom. The p-value < 0.05 criteria is then used to reject H,



Multiple Regression Example in R
(TROPHY Data)

 We want to test whether LDL, Insulin, Age, and DBP are
related to or predict BMI24?

— Then fit the following multiple regression

BMI24; = By + B1LDL; + B,Insulin; + f3Age,; + B4DBP; + ¢;



Multiple Regression Example in R
(TROPHY Data)

R Output:

Coefficients: Estimate  Std. Error t-value  Pr(>|t])
(Intercept) 22.1 7.24 3.0 0.00285 **
LDL 0.03 0.014 2.33 0.02189 *
Insulin 0.25 0.05 4.56 1.32e-05 ***
Age -0.05 0.059 -0.86 0.39085
DBPO 0.036 0.078 0.46 0.64564

Multiple R-squared: 0.2101
Adjusted R-squared: 0.1814
F-statistic: 7.314 on 4 and 110 DF, p-value: 2.92e-05.



Interpretation of R-Square

e The total sum of squares for Y, which is a measure of variation,
can be decomposed as follows:

i =) =X — 90 + X @i —y)°
~—— N~ — ~—-—

SSTot — SSerr + SSReg
SS
R? = ssR 2. It is the proportion of the variance on Y explained by the model
Tot
1-R? = . It is the proportion of the unexplained variance

SSTot

e R?=.21, means that 21% of the variation on BMI24 is explained by
the model or by LDL, Insulin, Age, and DBP



Nonlinear Scatterplot

What do you do if the scatterplot of the raw data suggests that
the association between Y and X is not linear, (i.e. Y~ X?)?
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Nonlinear Scatterplot

What do you do if the scatterplot of the raw data suggests that
the association between Y and X is not linear, (i.e. Y~ X?)?

100
|

80

Y=~36.7+0*X




Nonlinear (Quadratic) Regression Model

Linear regression can be extended by including a quadratic term.
Then, multiple regression can be used to fit a quadratic regression:

Y; = Bo + B X1 + X1 + &
g ~N(0,0%)
Along similar lines, you could include X° or log(X), etc., depending

on the type of relationship between X and Y. Here 5, is the curvature

coefficient

Hy: 5,=0 vs. Hy: 5, # 0.1f Hy is rejected, the relationship between
X and Y is not linear



Testing if the Association Between X and Y
Varies by Group

e Q:lIsthe association between DBP and BMI24 different between
subjects in the Treatment group versus subjects in the Placebo
group?

e First, fit separate models by group:

— Treatment Group: BMI24; = ¢ + BIDBP; + ¢;

— Placebo Group:  BMI24;= S + BYDBP; + ¢;



Subgroup Analysis: Model the Relationship of X
on Y for Each Treatment Group

Bhdl at 24 Months
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Interactions

* Interaction term is defined as the product of two predictors

(i.e. Trt x DBP). We will fit the following multiple regression:

BMI24; = By + B,Trt; + B,DBP; + B:Trt; x DBP; +¢;

Placebo: Trt; = 0: BMI24; = By + P, DBP; + ¢;
Treatment: Trt; = 1: BMI24; = (Bo + B1) + (B2+B3)DBP; + ¢;

e If the relationship between X and Y is the same for each
group, then f, = f, + [3, which implies 53 must be O

— Use multiple regression to test: Hy: 53=0.



BMI at 24 Months

50
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Modeling Interactions
(TROPHY Data)

Modeling Interaction
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R Output

Coefficients:

(Intercept)
Trt01

DBPO
DBPO:Trt01

Modeling Interactions
(TROPHY Data)

Estimate  Std. Error t-value Pr(>|t]|)

16.7 6.28 2.65 0.00853 **
18.4 9.46 1.94 0.05319
0.16 0.075 2.061 0.04048 *

-0.23 0.11384 -1.997 0.04698 *



BMI at 24 Months

50
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Modeling Interaction

— Trt
—— Placebo

DBP at Baseline

Y~ 16.7+184Trt + 0.16X — 0.23Trt * X




Summary Points

e Correlation is a measure of association between continuous X and Y
— Pearson Correlation (Linear association):

— COTT'(X ) _ COU(X’ Y) . ?=1(xi - E)(yl - y)
T TS0 SDW) T N G- 07 2 0= )7

* |pl =1
 |p| =1:Yisalinear function of X, Y=a+bX
e p=0:No association between Xand Y

— T-test for testing Hy: p = 0 of no association between of X and Y

r r

Tse() [I-r¢
n—2

th—2

— Spearman Correlation (Nonparametric):
corrs(X,Y) = corrp (rank(X),rank(Y))



Summary Points

e Simple Linear Regression (Model Y as a linear function of X)
Y;=Bo+P1X; + & where &~N(0,0?)

— [, is the intercept: Expected value of Y when X=0.
— [ is the slope: How much Y changes if X changes by 1
— Least squares estimate of 5, and f;:

LN D) o D)
ZL(XL _X)z SD(X)
bo =Y — b, X

— T-test for testing Hy: f; = 0 of no association between of X and Y
b,

)




Summary Points

e Multiple Regression (Model Y as a linear function of several X},s)
Yi=Bo+B1X1i + BoXoi + -+ BpXpi + & where g~N(0,0%)

— B, (Intercept): Expected value of Y when all X;,=0
— P (Slope): How much Y changes if X, changes by 1 (adjusting for other X’s)

— T-test for testing Hy: B, = 0 of no partial association between ofX,and Y
by
th-1 =
se(by)

— [3 (Interaction terms): Does the effect of X on Y varies by group (i.e. Trt)

Yi=Bo+P1Trt; + B2 Xy; + B3Trt; X; + & where &~N(0,0%)

— T-test of Hy: f3 = 0; The association between X and Y does not vary by group
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