Module 2: Introduction to Statistics

Niko Kaciroti, Ph.D. BIOINF 525 Module 2: W17

University of Michigan

Topic

- Dependence/Association/Relationship
- Visual Display
- Scatterplot
- Covariance and Correlation
- Pearson and Spearman Correlation
- Regression Model
- Simple Linear Regression
- Multiple Regression
- Nonlinear (Quadratic) Relationship
- Testing for Interactions

Dependence, Association, Relationship Between X and Y

- Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots .,\left(x_{n}, y_{n}\right)$ be a sample of pairs of data of variables X (i.e. weight) and Y (i.e. height)
- Hypothesis: Is there a relationship between X and Y ?
- Can one variable predict variation in the second variable?
- Do changes in X relate to changes in Y ?

Dependence, Association, Relationship Between X and Y

- Dependence between two variables X and Y roughly means that knowing the value of X provides some information about the value of Y
- Other terms used interchangeably for dependence are: Association between X and Y; Relationship between X and $Y ; X$ predicts Y
- Different measures of association are used depending if X or Y are discrete or continuous

Dependence, Association, Relationship (X is Binary, Y is Continuous)

- X is a group variable (Male/Female), Y is Continuous (HDL or LDL).
- Group differences are a form of dependence

Does HDL depend on the gender of a subject? How about LDL?

Dependence, Association, Relationship (X is Binary, Y is Binary)

- X is a group variable (Male/Female), Y is binary (Yes/No).
- OR is a measure of dependence for binary data:

$$
\mathrm{OR}=\frac{O D D_{\text {Male }}}{O D D_{\text {Female }}}
$$

- E.g. Does having $\mathrm{HDL}<=40$ depend on the gender of the patient? Or, equivalently, are the Odds different between males and females?

$$
\begin{aligned}
& O D D_{\text {Male }}(\mathrm{HDL} \leq 40)=0.82 \\
& O D D_{\text {Female }}(\mathrm{HDL} \leq 40)=0.11 \\
& \mathrm{OR}=\frac{.82}{.11}=7.5
\end{aligned}
$$

Dependence, Association, Relationship (X and Y are Continuous)

- Association between two continuous variables X and Y implies that changes in X are related with changes in Y
- Scatterplot can be initially used to visually explore for possible associations
- A scatterplot is a graphical display of the data by plotting pairs of x and y
- The presence of any pattern indicates dependence

Scatterplot Examples

Which scatterplot indicate strongest dependence?

Scatterplot Examples

How to Measure the Association For Continuous X and Y

- The scatterplot can help in identifying patterns and the direction of an association. However, it does not provide a numerical estimate of the association
- Covariance is used to capture the linear association and the direction of the association (positive or negative) between two variables X and Y

Covariance Between Two Variables

- Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,,\left(x_{n}, y_{n}\right)$ be a sample of pairs of data of variables X and Y. The covariance is defined as:

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{y}\right)}{N} \\
& \widehat{\operatorname{Cov}}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N-1} \\
& \operatorname{Var}(X)=\operatorname{Cov}(X, X)=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{X}\right)^{2}}{N}
\end{aligned}
$$

Covariance Between Two Variables

- Example data on height and weight for 9 people. Are they related?

Height	Weight
60	84
62	95
64	140
66	155
68	119
70	175
72	145
74	197
76	150

Scatterplot: Plot of Height vs. Weight

Intuitive Interpretation of Covariance

$$
\widehat{\operatorname{Cov}}(\mathrm{X}, \mathrm{Y})=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N-1}
$$

- The covariance can be viewed intuitively as a sum of "matches" (or "mismatches") in terms of a subject being on the same side of the mean for each variable X or Y
- A "match" is when $x_{i}-\bar{x}$ and $y_{i}-\bar{y}$ have the same sign.
- For example, if x_{i} is greater than the mean $\left(x_{i}-\bar{x}>0\right)$ then y_{i} is also greater than the mean $\left(y_{i}-\bar{y}>0\right)$
- A "mismatch" is when $x_{i}-\bar{x}$ and $y_{i}-\bar{y}$ have the opposite sign.
- If x_{i} is above the mean $\left(x_{i}-\bar{x}>0\right)$ and y_{i} is below the mean $\left(y_{i}-\bar{y}<0\right)$, or vice versa

Intuitive Interpretation of Covariance

$$
\begin{equation*}
\widehat{\operatorname{Cov}}(\mathrm{X}, \mathrm{Y})=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N-1} \tag{1}
\end{equation*}
$$

For a particular subject i, a "match" leads to a positive product in Equation (1), whereas a "mismatch" leads to a negative product

- If Eq. (1) is dominated by "matches", then $\operatorname{Cov}(X, Y)>0$ and the association between X and Y is said to be positive
- If Eq. (1) is dominated by "mismatches", the $\operatorname{Cov}(X, Y)<0$ and the association is negative
- If there are more or less the same "matches" and "mismatches", then there is no relationship between X and Y

Scatterplot: Plot of Height vs. Weight

How many "mismatched" points are in the plot?

Covariance Between Two Variables

- Example data on height and weight for 9 people. Are they related?

Height	Weight
60	84
62	95
64	140
66	155
68	119
70	175
72	145
74	197
76	150

Covariance Between Two Variables

- Example data on height and weight for 9 people. Are they related?

Height	Weight	Height -68	Weight -140
60	84	-8	-56
62	95	-6	-45
64	140	-4	0
66	155	-2	15
68	119	0	-21
70	175	2	35
72	145	4	5
74	197	6	57
76	$\underline{150}$	8	10

Mean 68140

Covariance Between Two Variables

- Example data on height and weight for 9 people. Are they related?

Height	Weight	Height -68	Weight -140	Product
60	84	-8	-56	448
62	95	-6	-45	270
64	140	-4	0	0
66	155	-2	15	-30
68	119	0	-21	0
70	175	2	35	70
72	145	4	5	20
74	197	6	57	342
76	$\underline{150}$			
Mean				8
68	140			

Properties of Covariance

- $\operatorname{Cov}(X+a, Y)=\operatorname{Cov}(X, Y)$

$$
\begin{aligned}
\operatorname{Cov}(X+a, Y)= & \frac{\sum_{i=1}^{n}\left(x_{i}+a-\left(\mu_{x}+a\right)\right)\left(y_{i}-\mu_{y}\right)}{N} \\
& =\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{N}=\operatorname{Cov}(X, Y)
\end{aligned}
$$

- If there is a systematic error when measuring X or Y the covariance (association) is not effected
- Examples of systematic error are when the measurement instruments are not calibrated; Different labs may have different calibrations
- "Good" property: It allows replication of the results from different labs etc.

Properties of Covariance

- $\operatorname{Cov}(a X, b Y)=a^{*} b^{*} \operatorname{Cov}(X, Y)$

$$
\begin{aligned}
\operatorname{Cov}(a X, b Y) & =\frac{\sum_{i=1}^{n}\left(a x_{i}-a \mu_{x}\right)\left(b y_{i}-b \mu_{y}\right)}{N} \\
& =\frac{a * b * \sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{N}=a^{*} b^{*} \operatorname{Cov}(X, Y)
\end{aligned}
$$

- The covariance will change if X or Y are multiplied by a scalar
- "Bad" property: The covariance will change if the units change (e.g. from inches to feet). However the associations should not change regardless of the unit of measure

Correlation of Two Variables (Pearson Correlation)

- Correlation is derived by standardizing the covariance, so its value does not depend on the unit of measurement

$$
\begin{gathered}
\rho=\operatorname{corr}(x, y)=\frac{\operatorname{Cov}(X, Y)}{\operatorname{SD(X)*SD(Y)}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} \\
\operatorname{corr}(a x, b y)=\frac{\sum_{i}^{n}\left(a x_{i}-\overline{a x}\right)\left(b y_{i}-\overline{b y}\right)}{\sqrt{\sum_{i}^{n}\left(a x_{i}-\overline{a x}\right)^{2} \sum_{i}^{n}\left(b y_{i}-\overline{b y}\right)^{2}}}=\frac{a b \sum_{i}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{a b \sqrt{\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i}^{n}\left(y_{i}-\bar{y}\right)^{2}}}=\operatorname{corr}(x, y)
\end{gathered}
$$

- The correlation between x and y is the same regardless of what unit is used for x and y

Correlation of Two Variables (Pearson Correlation)

$$
\rho=\frac{\operatorname{Cov}(\mathrm{X}, \mathrm{Y})}{\operatorname{SD}(\mathrm{X}) \mathrm{SD}(\mathrm{Y})}
$$

- The correlation coefficient ρ, is referred to as the Pearson correlation. It is a measure of the linear relationship between X and Y
- Correlation can be positive or negative: $-1 \leq \rho \leq 1$
- $\rho>0$: Increases on X are related with increases on Y
$-\rho<0$: Increases on X are related with decreases on Y
- $\rho=0$: No association between X and Y
- $|\rho|=1$: Perfect correlation, Y is a linear transformation of $X, Y=a+b X$

$$
\text { If } \rho=-1 \text {, is } b>0 \text { or } b<0 \text { ? }
$$

Correlation of Two Variables (Spearman Correlation)

- Spearman correlation is a nonparametric correlation that does not depend on the linearity between X and Y . It is also not affected by outliers
- For each pair, x and y, calculate their corresponding ranks, rank(x) and $\operatorname{rank}(y)$. The Spearman correlation is the same as the Pearson correlation, but applied on the ranks of X and Y :

$$
\operatorname{corr}_{S}(X, Y)=\operatorname{corr}_{P}(\operatorname{rank}(X), \operatorname{rank}(Y))
$$

Pearson vs. Spearman Correlation

Pearson Correlation

Pearson $\mathrm{r}=.92$

Spearman Correlation

Spearman r=1

Test for Correlation

The estimate for correlation ρ is $\mathrm{r}=.76$, with some margin of error. How do we test if ρ is different from 0 ?

Test for Correlation

- Testing the null hypothesis that X is not associated with Y :

$$
H_{0}: \rho=0 \text { vs. } H_{A}: \rho \neq 0
$$

- The following test is used for testing H_{0} :

$$
t_{n-2}=\frac{r}{s e(r)}=\frac{r}{\sqrt{\frac{1-r}{n-2}}}
$$

- If data are normally distributed, then t_{n-2} follows a t-distribution with n-2 degrees of freedom. The usual p-value <0.05 criteria is then used to reject H_{0}

Test for Correlation in R

- cor.test(height,weight)

Pearson's product-moment correlation

$\mathrm{t}=3.0805, \mathrm{df}=7, \mathrm{p}$-value $=0.0178$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval: $0.1904203,0.9460844$
sample estimates: cor
0.7586069

Test for Difference on Correlation Coefficients By Group

- Another question of interest is for testing whether the relationship between X and Y is different by groups.
- E.g. Correlation between weight and height is different for males $\left(\rho_{m}\right)$ vs. females (ρ_{f}):

$$
H_{0}: \rho_{m}=\rho_{f} \text { vs. } H_{A}: \rho_{m} \neq \rho_{f}
$$

- We will test this hypothesis later using the regression model approach with interaction terms

Topic

- Dependence/Association/Relationship
- Visual Display
- Scatterplot
- Covariance and Correlation
- Pearson and Spearman Correlation
- Regression Model
- Simple Linear Regression
- Multiple Regression
- Nonlinear (Quadratic) Relationship
- Testing for Interactions

Correlation vs. Regression Model

- Correlation is a measure of association
- It shows: if X and Y are related; the magnitude of the relationship; and its direction
- However, correlation does not show how to predict Y from X (or X from Y)
- Regression is a modeling technique
- It builds models for the variable Y as a function of one (or more) variable X
- It measures the association between X and Y, and also can be used to predict Y from X

Simple Linear Regression

- Simple linear regression model describes the value of variable Y as a linear function of another variable X plus some error terms

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- When X may explain changes in Y, then X is called an explanatory variable (or predictor variable, or independent variable, or covariate)
- The variable Y is called the response variable (or the outcome variable, or the dependent variable)
- $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$ is the error term (or residual)

What Line Best Describes the Relationship of Weight and Height?

How Far is the Observed Weight from the Predicted Weight?

Estimating the Line That Best Describes the Relationship of Weight and Height?

- Find the line for which the predicted values $\left(\hat{Y}_{i}\right)$ are closest to the actual values $\left(Y_{i}\right)$
- First, for each subject i define the error between the predicted value and the actual value, $\left(\widehat{Y}_{i}-Y_{i}\right)$, then minimize the sum of errors across all subjects

Estimating the Line That Best Describes the Relationship of Weight and Height?

Least Squares Estimate for Regression Parameters β_{0} and β_{1}

- Least squares is a technique used to estimate parameters in a regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Least squares minimizes the sum of squares for the residuals:

$$
\mathrm{SSR}=\sum_{i=1}^{n} \varepsilon_{i}^{2}=\left(Y_{1}-\beta_{0}-\beta_{1} X_{1}\right)^{2}+\left(Y_{2}-\beta_{0}-\beta_{1} X_{2}\right)^{2}+\ldots+\left(Y_{n}-\beta_{0}-\beta_{1} X_{n}\right)^{2}
$$

Least Squares Estimate for Regression Parameters β_{0} and β_{1}

- The "least squares estimate" are given by the values of b_{0} and b_{1} as follows:

$$
\begin{gathered}
b_{1}=\frac{\sum_{i} Y_{i}\left(X_{i}-\bar{X}\right)}{\left.\sum_{i} X_{i}-\bar{X}\right)^{2}}=\widehat{\operatorname{corr}}(Y, X) * \frac{\widehat{S D}(Y)}{\widehat{S D}(X)} \\
b_{0}=\bar{Y}-b_{1} \bar{X}
\end{gathered}
$$

- After we have calculated the estimates, b_{0} and b_{1}, the "fitted values" (or predicted values) for Y are given by:

$$
\widehat{Y}_{i}=b_{0}+b_{1} X_{i}
$$

Geometric Interpretation of the Regression Parameters Intercept (β_{0}) and Slope (β_{1})

$Y=b 0+b 1 X$

Geometric Interpretation of the Regression Parameters Intercept (β_{0}) and Slope (β_{1})

$Y=b 0+b 1 X$
Intercept: β_{0} is the expected value of Y when $X=0$

Geometric Interpretation of the Regression Parameters Intercept (β_{0}) and Slope (β_{1})

$Y=b 0+b 1 X$
Intercept: β_{0} is the expected value of Y when $X=0$

Slope: β_{1} measures changes in Y for one unit increase in X

Testing for Relationship Between X and Y Using Regression Model

- Test whether Y is related to $\mathrm{X}: H_{0}: \beta_{1}=0$ vs. $H_{A}: \beta_{1} \neq 0$.
- The following test is used for testing H_{0} :

$$
t_{n-1}=\frac{b_{1}}{\operatorname{se}\left(b_{1}\right)}
$$

- When $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$, then t_{n-1} follows a t-distribution with $n-1$ degrees of freedom. The usual p-value <0.05 criteria is then used to reject H_{0}

Simple Linear Regression in R

- summary(lm(weight~height))
- Coefficients:

	Estimate	Std. Error	t-value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	-200.000	110.690	-1.807	0.1137
height	5.000	1.623	3.080	$0.0178 *$

R-squared: 0.5755

R-Square: Measure of Goodness of Fit of a Regression Model

- A regression model provides a "good" fit if the predicted values \widehat{Y} are closely related to the actual values Y
- R^{2} measures the goodness of fit. It is equal to the squared correlation between Y and \hat{Y} (or Y and X):

$$
R^{2}=r_{y \hat{y}}{ }^{2}=r_{y x}{ }^{2}
$$

Assumptions for Linear Regression Model

- There are several assumptions made in a linear regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- The observations are independent
- The relationship between x and y is linear
- Scatterplot
$-\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$ are normally distributed with zero mean and constant variance
- Q-Q Plot, Shapiro-Wilk's test

Topic

- Dependence/Association/Relationship
- Visual Display
- Scatterplot
- Covariance and Correlation
- Pearson and Spearman Correlation
- Regression Model
- Simple Linear Regression
- Multiple Regression
- Nonlinear (Quadratic) Relationship
- Testing for Interactions

Multiple Regression

- Multiple regression model is an extension of the simple linear regression. It permits any number of predictor variables. Multiple regression simply means "multiple predictors"
- The model is similar to the case with one predictor; it just has more X's and β^{\prime} 's.

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{p} X_{p i}+\varepsilon_{i} \\
\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
\end{gathered}
$$

β_{0} : Intercept
β_{k} : Slope for X_{k}, for $\mathrm{k}=1,2, \ldots, \mathrm{p}$
ε_{i} : Error term (residual)

Least Square Estimate

- The least square estimates for multiple regression are defined in the same way, by minimizing the "residuals" $\varepsilon_{i}=Y_{i}-\beta_{0}-$ $\beta_{1} X_{i}-\beta_{2} X_{2 i}-\cdots-\beta_{p} X_{p i}$. Thus, the parameter estimates are chosen to minimize the "sum of squared residuals":

$$
\mathrm{SSR}=\sum_{i=1}^{n}(\underbrace{Y_{i}-\beta_{0}-\beta_{1} X_{i}-\beta_{2} X_{2 i}-\cdots-\beta_{p} X_{p i}}_{\varepsilon_{i}^{2}})^{2}
$$

Features of Multiple Regression

- Multiple regression model improves the prediction of Y by using multiple variables
- It is used to estimate partial association of X and Y. That is, how much X contributes in predicting Y that is unique to X and does not overlap with other covariates

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\varepsilon_{i}
$$

- β_{1}, is unadjusted/overall association between X_{1} and Y

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{p} X_{p i}+\varepsilon_{i}
$$

- β_{1} is the adjusted association between X_{1} and Y , adjusted for X_{2}, \ldots, X_{p}
- R^{2} is used to measure the overall association of $X_{1}, X_{2}, \ldots, X_{p}$ with Y

Testing for Relationship Between X_{k} and Y Using Multiple Regression

- Test for $H_{0}: \beta_{k}=0$ vs. $H_{A}: \beta_{k} \neq 0$.
- The following test is used:

$$
t_{n-1}=\frac{b_{k}}{\operatorname{se}\left(b_{k}\right)}
$$

- If $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$, then t_{n-1} follows a t-distribution with $n-1$ degrees of freedom. The p -value <0.05 criteria is then used to reject H_{0}

Multiple Regression Example in R (TROPHY Data)

- We want to test whether LDL, Insulin, Age, and DBP are related to or predict BMI24?
- Then fit the following multiple regression

$$
\text { BMI } 24_{i}=\beta_{0}+\beta_{1} L D L_{i}+\beta_{2} \text { Insulin }_{i}+\beta_{3} \text { Age }_{1 i}+\beta_{4} D B P_{i}+\varepsilon_{i}
$$

Multiple Regression Example in R (TROPHY Data)

R Output:

Coefficients:	Estimate	Std. Error	t-value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	22.1	7.24	3.0	$0.00285^{* *}$
LDL	0.03	0.014	2.33	0.02189^{*}
Insulin	0.25	0.05	4.56	$1.32 \mathrm{e}-05^{* * *}$
Age	-0.05	0.059	-0.86	0.39085
DBPO	0.036	0.078	0.46	0.64564

Multiple R-squared: 0.2101
Adjusted R-squared: 0.1814
F-statistic: 7.314 on 4 and 110 DF, p-value: 2.92e-05.

Interpretation of R-Square

- The total sum of squares for Y , which is a measure of variation, can be decomposed as follows:

$$
\begin{aligned}
\underbrace{\sum_{i}^{n}\left(y_{i}-\bar{y}\right.})^{2} & =\underbrace{\sum_{i}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}+\underbrace{\sum_{i}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}} \\
S S_{\text {Tot }} & =S S_{\text {err }}+\quad S S_{\text {Reg }}
\end{aligned}
$$

$$
\begin{aligned}
& R^{2}=\frac{S S_{\text {Reg }}}{S S_{\text {Tot }}}: \text { It is the proportion of the variance on } \mathrm{Y} \text { explained by the model } \\
& 1-R^{2}=\frac{S S_{\text {err }}}{S S_{\text {Tot }}}: \text { It is the proportion of the unexplained variance }
\end{aligned}
$$

- $R^{2}=.21$, means that 21% of the variation on BMI 24 is explained by the model or by LDL, Insulin, Age, and DBP

Nonlinear Scatterplot

What do you do if the scatterplot of the raw data suggests that the association between Y and X is not linear, (i.e. $\mathrm{Y} \approx X^{2}$)?

Nonlinear Scatterplot

What do you do if the scatterplot of the raw data suggests that the association between Y and X is not linear, (i.e. $\mathrm{Y} \approx X^{2}$)?

Nonlinear (Quadratic) Regression Model

- Linear regression can be extended by including a quadratic term. Then, multiple regression can be used to fit a quadratic regression:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{1 i}^{2}+\varepsilon_{i} \\
& \quad \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

- Along similar lines, you could include X^{3} or $\log (X)$, etc., depending on the type of relationship between X and Y . Here β_{2} is the curvature coefficient
- $H_{0}: \beta_{2}=0$ vs. $H_{A}: \beta_{2} \neq 0$. If H_{0} is rejected, the relationship between X and Y is not linear

Testing if the Association Between X and Y Varies by Group

- Q : Is the association between DBP and BMI24 different between subjects in the Treatment group versus subjects in the Placebo group?
- First, fit separate models by group:
- Treatment Group: $B M I 24_{i}=\beta_{0}^{T}+\beta_{1}^{T} D B P_{i}+\varepsilon_{i}$
- Placebo Group: $\quad B M I 24_{i}=\beta_{0}^{P}+\beta_{1}^{P} D B P_{i}+\varepsilon_{i}$

Subgroup Analysis: Model the Relationship of X on Y for Each Treatment Group

Treatment

How to test $H_{0}: \beta_{1}^{T}=\beta_{1}^{\text {P }}$?

Interactions

- Interaction term is defined as the product of two predictors (i.e. Trt x DBP). We will fit the following multiple regression:

$$
\text { BMI }^{2} 4_{i}=\beta_{0}+\beta_{1} \operatorname{Tr}_{i}+\beta_{2} D B P_{i}+\beta_{3} \operatorname{Tr}_{i} * D B P_{i}+\varepsilon_{i}
$$

Placebo:	$\operatorname{Trt}_{i}=0:$	$B M I 24_{i}=\beta_{0}+\beta_{2} D B P_{i}+\varepsilon_{i}$
Treatment:	$\operatorname{Trt}_{i}=1:$	BMI $_{2} 4_{i}=\left(\beta_{0}+\beta_{1}\right)+\left(\beta_{2}+\beta_{3}\right) D B P_{i}+\varepsilon_{i}$

- If the relationship between X and Y is the same for each group, then $\beta_{2}=\beta_{2}+\beta_{3}$, which implies β_{3} must be 0
- Use multiple regression to test: $H_{0}: \beta_{3}=0$.

Modeling Interactions
 (TROPHY Data)

Modeling Interactions (TROPHY Data)

R Output

Coefficients: Estimate Std. Error t-value $\operatorname{Pr}(>|\mathrm{t}|)$

(Intercept)	16.7	6.28	2.65	$0.00853^{* *}$
Trt01	18.4	9.46	1.94	0.05319
DBPO	0.16	0.075	2.061	0.04048^{*}
DBPO:Trt01	-0.23	0.11384	-1.997	0.04698^{*}

Modeling Interactions (TROPHY Data)

Summary Points

- Correlation is a measure of association between continuous X and Y
- Pearson Correlation (Linear association):

$$
\rho=\operatorname{corr}(x, y)=\frac{\operatorname{Cov}(X, Y)}{S D(X) * S D(Y)}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

- $|\rho| \leq 1$
- $|\rho|=1: Y$ is a linear function of $X, Y=a+b X$
- $\rho=0$: No association between X and Y
- T-test for testing $H_{0}: \rho=0$ of no association between of X and Y

$$
t_{n-2}=\frac{r}{\operatorname{se}(r)}=\frac{r}{\sqrt{\frac{1-r}{n-2}}}
$$

- Spearman Correlation (Nonparametric):

$$
\operatorname{corr}_{S}(X, Y)=\operatorname{corr}_{P}(\operatorname{rank}(X), \operatorname{rank}(Y))
$$

Summary Points

- Simple Linear Regression (Model Y as a linear function of X)

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \text { where } \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- β_{0} is the intercept: Expected value of Y when $\mathrm{X}=0$.
- β_{1} is the slope: How much Y changes if X changes by 1
- Least squares estimate of β_{0} and β_{1} :

$$
\begin{gathered}
b_{1}=\frac{\sum_{i} Y_{i}\left(X_{i}-\bar{X}\right)}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}=\widehat{\operatorname{corr}}(Y, X) * \frac{\widehat{S D}(Y)}{\widehat{S D}(X)} \\
b_{0}=\bar{Y}-b_{1} \bar{X}
\end{gathered}
$$

- T-test for testing $H_{0}: \beta_{1}=0$ of no association between of X and Y

$$
t_{n-1}=\frac{b_{1}}{\operatorname{se}\left(b_{1}\right)}
$$

Summary Points

- Multiple Regression (Model Y as a linear function of several $X_{k}^{\prime} S$)

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{p} X_{p i}+\varepsilon_{i} \text { where } \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- β_{0} (Intercept): Expected value of Y when all $X_{k}=0$
- β_{k} (Slope): How much Y changes if X_{k} changes by 1 (adjusting for other X 's)
- T-test for testing $H_{0}: \beta_{k}=0$ of no partial association between of X_{k} and Y

$$
t_{n-1}=\frac{b_{k}}{s e\left(b_{k}\right)}
$$

- β_{3} (Interaction terms): Does the effect of X on Y varies by group (i.e. Trt)

$$
Y_{i}=\beta_{0}+\beta_{1} \operatorname{Tr}_{i}+\beta_{2} X_{2 i}+\beta_{3} \operatorname{Tr}_{i} X_{i}+\varepsilon_{i} \text { where } \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- T-test of $H_{0}: \beta_{3}=0$; The association between X and Y does not vary by group

