Introduction to Systems Biology (and why you should care)

BIOINF 524/525 3/21/2017

Module logistics

- Network analysis in systems biology (Lecture 3/21, Lab 3/23)
- High-throughput sequencing data (Lecture 3/28, Lab 3/30)
- Network inference and modeling (Lecture 4/4, Lab 4/6)
- Machine learning in systems biology (Lecture 4/11, Lab 4/13)

Module logistics

Lectures will focus on conceptual overview of goals and methods

Labs will include didactic material interspersed with exercises

Weekly homework will involve extension of lab exercises (due the day of the following lab session)

Grading is pass/fail and based on attendance and homework completion

Introduction to Systems Biology

BIOINF 524/525 3/21/2017

What is systems biology?

(and what can it do for me?)

"[A]sk five biomedical researchers to define systems biology, and you'll get 10 different answers . . . or maybe more" --Christopher Wanjek "[A]sk five biomedical researchers to define systems biology, and you'll get 10 different answers . . . or maybe more" --Christopher Wanjek

"[A] scientific approach that combines the principles of engineering, mathematics, physics, and computer science with extensive experimental data to develop a quantitative as well as a deep conceptual understanding of biological phenomena, permitting prediction and accurate simulation of complex (emergent) biological behaviors."

--Dr. Ron Germain

Can a Biologist Fix a Radio?

"The first thing a biochemist would do with a radio would be to stick it in a Waring blender" -Prof. Phil Andrews

Lazebnik, Y. Cancer Cell 2002 (slides via Michael Wolfe)

Guiding principles of systems biology

- Draw from physics and engineering to obtain quantitative descriptions
- Aim to describe and predict biological behavior
- Identify organizing principles and minimal functional examples of common biological motifs
- Emphasis on connections of components as well as their individual behavior

Example in action: discovery of microRNA targets High-throughput Experimental Approach + miRNA over expression + miRNA inhibition **Control cells** Sample cells **High-throughput analysis Computational Approach** Transcriptome Proteome IP-based approach Data normalization Statistical analysis **Preliminary gene list** miRNA target predicton Functional analysis (e.g., GO, pathway analysis) Further validation analysis Database construction Watanabe and Kanai, Data registration **Biological findings** Front. Genet., 23 June 2011

Example in action: discovery of microRNA targets **High-throughput Experimental Approach** + miRNA over expression + miRNA inhibition **Control cells** Sample cells **High-throughput analysis Computational Approach** Transcriptome Proteome IP-based approach Data normalization Statistical analysis **Preliminary gene list** miRNA target predicton Functional analysis (e.g., GO, pathway analysis) Further validation analysis Database construction Data registration **Biological findings**

Watanabe and Kanai, Front. Genet., 23 June 2011

Example in action: discovery of microRNA targets High-throughput Experimental Approach + miRNA over expression + miRNA inhibition **Control cells** Sample cells **High-throughput analysis Computational Approach** Transcriptome Proteome IP-based approach Data normalization Statistical analysis **Preliminary gene list** miRNA target predicton Functional analysis (e.g., GO, pathway analysis) Further validation analysis Database construction Watanabe and Kanai, · Data registration **Biological findings**

Front. Genet., 23 June 2011

Organizing principles of biological networks

Microbiology

Genetics

(Image from Khan Academy)

Graph theory

Graph theory

Graph theory

Feed-forward loop

3-node feedback loop (cycle)

How do we find over-represented network motifs?

How do we find over-represented network motifs?

Example: Comparison of two 3-node network motifs

z v

Feed-forward loop

3-node feedback loop (cycle)

Example: Comparison of two 3-node network motifs

Feed-forward loop	3-node feedback loop (cycle)	
	Feed-forward loop	3-node Feedback loop
E. Coli	42	0
Random network	1.7 +/- 1.3	0.6 +/- 0.8
Degree-preserving random network	7 +/- 5	0.2 +/- 0.6

Different feed-forward loops implement distinct functions

Different feed-forward loops implement distinct functions

(Mangan et al., JMB 356:1073-1081, 2006)

Different feed-forward loops implement distinct functions

(Mangan et al., JMB 356:1073-1081, 2006)

Type 1 coherent FFLs implement delays

(Mangan and Alon, PNAS 2003)

Type 1 coherent FFLs implement delays

(Mangan and Alon, PNAS 2003)

(Shen-Orr et al., Nat. Gen. 2002)

An aside: Numerical models in systems biology

$$\frac{dY}{dt} = F(X, T_y) - \alpha Y$$

(Shen-Orr et al., Nat. Gen. 2002)

An aside: Numerical models in systems biology

An aside: Numerical models in systems biology

 $\frac{dt}{dt} = F(X, T_y)F(Y, T_z) - \alpha Z$

(Shen-Orr et al., Nat. Gen. 2002)

Type 1 coherent FFLs in a real regulatory network

Type 1 coherent FFLs in a real regulatory network

Type 1 coherent FFLs in a real regulatory network

FFLs in regulation of glycogen synthesis

Changing the logic at the promoter alters behavior

(Mangan and Alon, PNAS 2003)

Changing the logic at the promoter alters behavior

(Kalir *et al.,* Mol. Sys. Bio. 2005)

Incoherent FFLs allow rapid response or transient bursts Incoherent Type 1 AND Incoherent Type 4 AND Type 1 Х Input Sx Input Sx 0 0 1 Sy=1 Sy=1 Ζ Ζ 0 0 Type 4 Sy=0 Ζ Sy=0 0 FFL Time [Life Time] Time [Life Time] 7 Simple (Mangan and Alon, PNAS 2003)

Incoherent FFLs allow rapid response or transient bursts

FFL-accelerated response in biological context

Single-input modules (SIMs) allow coordination of large regulons

Nature Reviews | Genetics

Single-input modules (SIMs) allow coordination of large regulons

Nature Reviews | Genetics

Single-input modules (SIMs) allow coordination of large regulons

Dense overlapping regulons enable combinatorial control

Dense overlapping regulons enable combinatorial control

Bifan Two-output Feed-forward loop

Dense overlapping regulons enable combinatorial control

Circuit diagram of the *E. coli* transcriptional regulatory network

Standard display of the same network

(Martinez-Antonio and Collado-Vides, 2003)

Sensory transcriptional regulatory networks:

- Coherent and incoherent FFLs
- Single-input module
- Dense overlapping regulons

Sensory transcriptional regulatory networks:

- Coherent and incoherent FFLs
- Single-input module
- Dense overlapping regulons

Additional motifs in other network types:

- Feedback loops
- Long signaling cascades
- Multi-input FFLs

Feedback loops

Feedback loops

Network	Nodes	Edges	Nreal	$N_{\rm rand} \pm SD$	Z score	Nreal	$N_{\rm rand} \pm SD$	Z score	Nreal	$N_{rand} \pm SD$	Zscore
Gene regulation (transcription)			X W Y	Feed- forward loop	X	4	Bi-fan				
E. colt S. cerevisiae*	424 685	519 1.052	40 70	¥ Z 7±3 11±4	10 14	203 1812	W 47±12 300±40	13 41			
Neurons			_	X ♥ Ÿ ♥	Feed- forward loop	\sum_{z}^{x}	Ś,	Bi-fan	¥ ^X ^Y ¥ V	[™] ¥ ₩ ^Z	Bi- parallel
C. elegans†	252	509	125	20 90±10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X ♥ Y ▼	Three chain	א ^ע אי	× ×	Bi- parallel			
Little Rock Ythan St. Martin Chesapeake Coachella Skipwith P. Provek	92 83 42 31 29 25 25	984 391 205 67 243 189 104	3219 1182 469 80 279 184	3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 235 ± 12 150 ± 7 120 ± 7	2.1 7.2 NS 3.6 5.5 7.4	7295 1357 382 26 181 397 267	$\begin{array}{c} 2220\pm 210\\ 230\pm 50\\ 130\pm 20\\ 5\pm 2\\ 80\pm 20\\ 80\pm 25\\ 30\pm 7\end{array}$	25 23 12 8 5 13 32			
Electronic circuits (forward logic chips)			X V Y V Z	Feed- forward loop	X X Z	Y W	Bi-fan	У У У У У	Z V	Bi- parallel	
s15850 s38584 s38417 s9234 s13207	10,383 20,717 23,843 5,844 8,651	14,240 34,204 33,661 8,197 11,831	424 413 612 211 403	2 ± 2 10 ± 3 3 ± 2 2 ± 1 2 ± 1	285 120 400 140 225	1040 1739 2404 754 4445	1 ± 1 6 ± 2 1 ± 1 1 ± 1 1 ± 1 1 ± 1	1200 800 2550 1050 4950	480 711 531 209 264	2 ± 1 9 ± 2 2 ± 2 1 ± 1 2 ± 1	335 320 340 200 200
Electronic circuits (digital fractional multipliers)			/ × ×←	- z	Three- node feedback loop	x Z	₹ ₩	Bi-fan	x− ↑ z≤	$\rightarrow Y$ \downarrow W	Four- node feedback loop
s208 s420 s838‡	122 252 512	189 399 819	10 20 40	1 ± 1 1 ± 1 1 ± 1	9 18 38	4 10 22	1 ± 1 1 ± 1 1 ± 1	3.8 10 20	5 11 23	1 ± 1 1 ± 1 1 ± 1	5 11 25
World Wide V	Web		 	Č V Ž	Feedback with two mutual dyads	x Y←	×z	Fully connected triad	≯ ⊻<	× z	Uplinked nutual dyad
nd.edu§	325,729	1.46e6	1.1e5	$2\text{e}3\pm1\text{e}2$	800	6.8e6	5e4±4e2	15,000	1.2ø6	$1\text{e}4\pm2\text{e}2$	5000

C. elegans somatic nervous system

C. elegans somatic nervous system

(Qian et al., PLoS One 2011)

Sensory neuron Interneuron Motor neuron

C. elegans somatic nervous system

(Qian et al., PLoS One 2011)

Mitochondrial metabolic networks from various eukaryotes

Many biological networks show scale-free organization

(a) Random network

(b) Scale-free network

(Image from Carlos Castillo)

Many biological networks show scale-free organization

Random Network Randomly chosen node: $k = \langle k \rangle \pm \langle k \rangle^{1/2}$ Scale: $\langle k \rangle$

Scale-Free Network Randomly chosen node: $k = \langle k \rangle \pm \infty$ Scale: none (Albert Barabasi, Network Science)

Many biological networks show scale-free organization

Biological networks are often **modular**

(Resendes-Antonio et al., Trend. Genet. 2005)

TRENDS in Genetics

Biological networks are often **modular**

(Stuart et al., Science 2003)

Biological networks are **robust**

"A biological system is robust if it continues to function in the face of perturbation" --Andreas Wagner, *Robustness and Evolvability in Living Systems*
Biological networks are **robust**

	U		С		A		G			
	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys	Acidic Amide	
0	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys		
	UUA	Leu	UCA	Ser	UAA	TER	UGA	TER	Alkyl Aromatic	
	UUG	Leu	UCG	Ser	UAG	TER	UCG	Trp		
<u> </u>	CUU	Leu	CCU	Pro	CAU	His	CGŲ	Arg	Alkyl Basic	
Ŭ	CUC	Leu	ccc	Pro	CAC	His	CGC	Arg	Hydroxyl containing	
	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg		
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	Sulfur containing	
•	AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser		
	AUC	lle	ACC	Thr	AAC	Asn	AGC	Ser	STOP	
	AUA	lle	ACA	Thr	AAA	Lsy	AGA	Arg		
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg		
G	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly		
<u> </u>	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly	(A. Wagner, Robustness and	
	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly	Evolvability in Living Systems)	
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly		

Example: Central carbon metabolism of *E. coli*

Of 48 reactions, only 7 essential; 2/3 give less than 5% growth defect

(A. Wagner, Robustness and Evolvability in Living Systems)

Example: Central carbon metabolism of *E. coli*

Of 48 reactions, only 7 essential; 2/3 give less than 5% growth defect

(A. Wagner, Robustness and Evolvability in Living Systems)

Example: Central carbon metabolism of *E. coli*

Evolvability in Living Systems)

Robustness enables evolutionary capacitance

(Von Dassow et al., Nature, 2000)

Robustness enables evolutionary capacitance

(True and Lindquist, Nature, 2000)

Robustness facilitates rapid evolution

Data drawn from 144 nonredundant conditions across 7 studies

Average of 19 beneficial null mutations and 42 deleterious null mutations per condition

> (Hottes et al., PLoS Genetics 2013)

Biological networks...

- Show enriched functional motifs
- Are highly modular
- Often have scale-free organization
- Are robust to internal and external perturbation

... and we can use our understanding of the behavior of network components to understand the behavior of the whole

Additional reading

- An Introduction to Systems Biology Uri Alon
- Robustness and Evolvability in Living Systems

 Andreas Wagner
- *Physical Biology of the Cell* -- Jane Kondev, Julie Theriot, and Rob Phillips