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Module	logis)cs	

•  Network	analysis	in	systems	biology	(Lecture	
3/21,	Lab	3/23)	

•  High-throughput	sequencing	data	(Lecture	
3/28,	Lab	3/30)	

•  Network	inference	and	modeling	(Lecture	4/4,	
Lab	4/6)	

•  Machine	learning	in	systems	biology	(Lecture		
4/11,	Lab	4/13)	



Module	logis)cs	
Lectures	will	focus	on	conceptual	overview	of	goals	and	
methods	
	
Labs	will	include	didac)c	material	interspersed	with	
exercises	
	
Weekly	homework	will	involve	extension	of	lab	exercises	
(due	the	day	of	the	following	lab	session)	
	
Grading	is	pass/fail	and	based	on	aTendance	and	
homework	comple)on	
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What	is	systems	biology?	
	
(and	what	can	it	do	for	me?)	



“[A]sk	five	biomedical	researchers	to	define	
systems	biology,	and	you’ll	get	10	different	
answers	.	.	.	or	maybe	more”	
--Christopher	Wanjek	



“[A]sk	five	biomedical	researchers	to	define	
systems	biology,	and	you’ll	get	10	different	
answers	.	.	.	or	maybe	more”	
--Christopher	Wanjek	
	
“[A]	scien)fic	approach	that	combines	the	
principles	of	engineering,	mathema)cs,	physics,	
and	computer	science	with	extensive	experimental	
data	to	develop	a	quan)ta)ve	as	well	as	a	deep	
conceptual	understanding	of	biological	
phenomena,	permiang	predic)on	and	accurate	
simula)on	of	complex	(emergent)	biological	
behaviors.”	
--Dr.	Ron	Germain	



Can	a	Biologist	Fix	a	Radio?	

Lazebnik,	Y.	Cancer	Cell	2002															
(slides	via	Michael	Wolfe)	
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“The	first	thing	a	biochemist	would	do	with	a	radio	would	be	to	s)ck	it	in	a	Waring	blender”	
-Prof.	Phil	Andrews	



Lazebnik,	Y.	Cancer	Cell	2002															
(slides	via	Michael	Wolfe)	
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Guiding	principles	of	systems	biology	

•  Draw	from	physics	and	engineering	to	obtain	
quan)ta)ve	descrip)ons	

•  Aim	to	describe	and	predict	biological	
behavior	

•  Iden)fy	organizing	principles	and	minimal	
func)onal	examples	of	common	biological	
mo)fs	

•  Emphasis	on	connec)ons	of	components	as	
well	as	their	individual	behavior	



Example	in	ac)on:	discovery	of	
microRNA	targets	

Watanabe	and	Kanai,	
Front.	Genet.,	23	June	2011	
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Example	in	ac)on:	discovery	of	
microRNA	targets	

Watanabe	and	Kanai,	
Front.	Genet.,	23	June	2011	

Follow-up		
experiments	



Organizing	principles	of		
biological	networks	



The	lac	operon,	viewed	four	ways	
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The	lac	operon,	viewed	four	ways	

Gene)cs	



The	lac	operon,	viewed	four	ways	

Molecular	biology	

(Image	from	Khan	Academy)	



The	lac	operon,	viewed	four	ways	

Graph	theory	



The	lac	operon,	viewed	four	ways	

Graph	theory	



The	lac	operon,	viewed	four	ways	

Graph	theory	



Network	mo1fs	yield	specific	
biological	func)ons	

(U.	Alon,	An	Introduc+on	to	Systems	Biology)	
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(U.	Alon,	An	Introduc+on	to	Systems	Biology)	



Network	mo)fs	yield	specific	
biological	func)ons	

How	do	we	find	over-represented	network	mo)fs?	
	
	



Network	mo)fs	yield	specific	
biological	func)ons	

How	do	we	find	over-represented	network	mo)fs?	
	
	

‘Real’ Network Randomized network 
(Erdos – Renyi model) 

N=10 nodes 
E= 14 edges 
Es=4 self-edges 

N=10 nodes 
E= 14 edges 
Es=1 self-edge 

(U.	Alon,	An	Introduc+on	to	Systems	Biology)	



Example:	Comparison	of	two	3-node	
network	mo)fs	
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(U.	Alon,	An	Introduc+on	to	Systems	Biology)	



Example:	Comparison	of	two	3-node	
network	mo)fs	

Feed-forward	loop	 3-node	Feedback	loop	

E.	Coli		 42	 0	

Random	network	 1.7	+/-	1.3	 0.6	+/-	0.8	

Degree-preserving	
random	network	

7	+/-	5	 0.2	+/-	0.6	
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3-node	feedback	loop		
(cycle)	
	

(U.	Alon,	An	Introduc+on	to	Systems	Biology)	



Different	feed-forward	loops	
implement	dis)nct	func)ons	

(Mangan	et	al.,	JMB	356:1073-1081,	2006)	
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Different	feed-forward	loops	
implement	dis)nct	func)ons	

(Mangan	et	al.,	JMB	356:1073-1081,	2006)	



Type	1	coherent	FFLs		
implement	delays	

(Mangan	and	Alon,	PNAS	2003)	



Type	1	coherent	FFLs		
implement	delays	

(Mangan	and	Alon,	PNAS	2003)	

Simple	

FFL	



An	aside:	Numerical	models	
in	systems	biology	

(Shen-Orr	et	al.,	Nat.	Gen.	2002)	

Cascade	



An	aside:	Numerical	models	
in	systems	biology	

(Shen-Orr	et	al.,	Nat.	Gen.	2002)	



An	aside:	Numerical	models	
in	systems	biology	

(Shen-Orr	et	al.,	Nat.	Gen.	2002)	
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An	aside:	Numerical	models	
in	systems	biology	

(Shen-Orr	et	al.,	Nat.	Gen.	2002)	



Type	1	coherent	FFLs	
in	a	real	regulatory	network	

(Mangan	et	al.,	JMB	2006)	



Type	1	coherent	FFLs	
in	a	real	regulatory	network	

(Mangan	et	al.,	JMB	2006)	

Ac)va)on	



Type	1	coherent	FFLs	
in	a	real	regulatory	network	

(Mangan	et	al.,	JMB	2006)	

De-ac)va)on	



FFLs	in	regula)on	of		
glycogen	synthesis	

		:	phosphorylates	
		:	dephosphorylates	
Ac)vates	
Represses	
		:	ac)vates	
		:	represses	



Changing	the	logic	at	the	promoter	
alters	behavior	

(Mangan	and	Alon,	PNAS	2003)	

Simple	

FFL	



Changing	the	logic	at	the	promoter	
alters	behavior	

(Mangan	and	Alon,	PNAS	2003)	
(Kalir	et	al.,	
Mol.	Sys.	Bio.	2005)	



Incoherent	FFLs	allow	rapid	response	
or	transient	bursts	

Type	1	

Type	4	

(Mangan	and	Alon,	PNAS	2003)	Simple	

FFL	



Incoherent	FFLs	allow	rapid	response	
or	transient	bursts	

Type	1	

Type	4	

(Mangan	and	Alon,	PNAS	2003)	Simple	
FFL	



FFL-accelerated	response	in	
biological	context	

(Mangan	et	al.,	JMB	2006)	



Single-input	modules	(SIMs)	allow	
coordina)on	of	large	regulons	

(Alon,	Nat.	Rev.	Genet.	2007)	
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(Alon,	Nat.	Rev.	Genet.	2007)	



Single-input	modules	(SIMs)	allow	
coordina)on	of	large	regulons	

(Zaslaver	et	al.,	Nat.	Genet.	2004)	



Dense	overlapping	regulons	
enable	combinatorial	control	

(Alon,	Nat.	Rev.	Gene)cs	2007)	



Dense	overlapping	regulons	
enable	combinatorial	control	
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(U.	Alon,	An	Introduc+on	to	Systems	Biology)	



Dense	overlapping	regulons	
enable	combinatorial	control	

(Alon,	Nat.	Rev.	Gene)cs	2007)	



Circuit	diagram	of	the	E.	coli	
transcrip)onal	regulatory	network	

(U.	Alon,	An	Introduc+on	to	Systems	Biology)	



Standard	display	of	the	same	network	

(Mar)nez-Antonio	and	Collado-Vides,	2003)	



Network	mo)fs	in	other	biological	
networks	

Sensory	transcrip)onal	regulatory	networks:	
•  Coherent	and	incoherent	FFLs	
•  Single-input	module	
•  Dense	overlapping	regulons	



Network	mo)fs	in	other	biological	
networks	

Sensory	transcrip)onal	regulatory	networks:	
•  Coherent	and	incoherent	FFLs	
•  Single-input	module	
•  Dense	overlapping	regulons	
Addi)onal	mo)fs	in	other	network	types:	
•  Feedback	loops	
•  Long	signaling	cascades	
•  Mul)-input	FFLs	



Network	mo)fs	in	other	biological	
networks	

Feedback	loops	
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(U.	Alon,	An	Introduc+on	to	Systems	Biology)	



Network	mo)fs	in	other	biological	
networks	

Feedback	loops	
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(U.	Alon,	An	Introduc+on	to	Systems	Biology)	

Transcrip)on	PPI	



Network	mo)fs	
in	other	
biological	
networks	

(U.	Alon,	An	Introduc+on	
	to	Systems	Biology)	



Network	mo)fs	in	other	biological	
networks	

(Fang-Yen	et	al.,	Phil.	Trans.	Royal	Soc.	B	2015)	

C.	elegans	soma)c	nervous	system	



Network	mo)fs	in	other	biological	
networks	

C.	elegans	soma)c	nervous	system	

(Qian	et	al.,	PLoS	One	2011)	
Sensory	neuron	
Interneuron	
Motor	neuron	



Network	mo)fs	in	other	biological	
networks	

C.	elegans	soma)c	nervous	system	

(Qian	et	al.,	PLoS	One	2011)	



Network	mo)fs	in	other	biological	
networks	

Mitochondrial	metabolic	networks	from	various	eukaryotes	

(Qian	et	al.,	PLoS	One	2011)	
Shellman	et	al.,	
Mol.	Biosyst.	2013	



Many	biological	networks	show	
scale-free	organiza1on	

(Image	from	Carlos	Cas)llo)	



Many	biological	networks	show	
scale-free	organiza)on	

P(k)	~	k-γ	

(Albert	Barabasi,		
Network	Science)	



Many	biological	networks	show	
scale-free	organiza)on	

In-degree	

S.	cerevisiae	

Random	

Out-degree	

(Lee	et	al.,	Science	2002)	



Biological	
networks	are	
oten	modular	

(Resendes-Antonio	et	al.,	
Trend.	Genet.	2005)	



Biological	
networks	are	
oten	modular	

(Stuart	et	al.,	
Science	2003)	



Biological	networks	are	robust	

“A	biological	system	is	robust	if	it	con)nues	to	
	func)on	in	the	face	of	perturba)on”	
--Andreas	Wagner,	Robustness	and	Evolvability	in	Living	Systems	



Biological	networks	are	robust	

(A.	Wagner,	Robustness	and	
Evolvability	in	Living	Systems)	



Example:	
Central	
carbon	

metabolism	
of	E.	coli	

Of	48	reac)ons,	only	7	
essen)al;	
2/3	give	less	than	5%	
growth	defect	

(A.	Wagner,	Robustness	and	
Evolvability	in	Living	Systems)	
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Example:	Central	carbon	metabolism	
of	E.	coli	

(A.	Wagner,	Robustness	and	
Evolvability	in	Living	Systems)	



Robustness	enables		
evolu)onary	capacitance	

(Von	Dassow	et	al.,	Nature,	2000)	



Robustness	enables		
evolu)onary	capacitance	

(True	and	Lindquist,	Nature,	2000)	



Robustness	facilitates	rapid	evolu)on	

Data	drawn	from	144	non-
redundant	condi)ons	across	7	
studies	
	
Average	of	19	beneficial	null	
muta)ons	and	42	deleterious	null	
muta)ons	per	condi)on	

(HoTes	et	al.,		
PLoS	Gene)cs	2013)	



Biological	networks…	

•  Show	enriched	func)onal	mo)fs	
•  Are	highly	modular	
•  Oten	have	scale-free	organiza)on	
•  Are	robust	to	internal	and	external	
perturba)on	

…	and	we	can	use	our	understanding	of	the	
behavior	of	network	components	to	understand	
the	behavior	of	the	whole	



Addi)onal	reading	

•  An	Introduc+on	to	Systems	Biology	–	Uri	Alon	
•  Robustness	and	Evolvability	in	Living	Systems	
–	Andreas	Wagner	

•  Physical	Biology	of	the	Cell		--	Jane	Kondev,	
Julie	Theriot,	and	Rob	Phillips	


