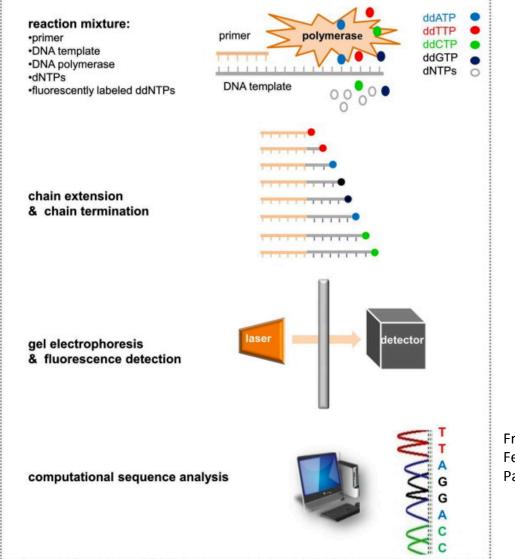
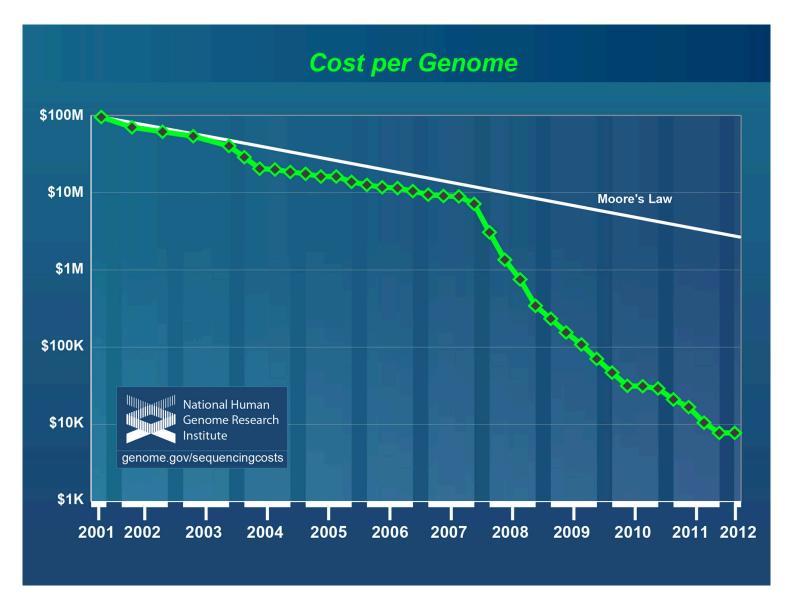

High throughput sequencing methods in systems biology


Bioinformatics 524/525 Module 3, Lecture 2 3/28/2017

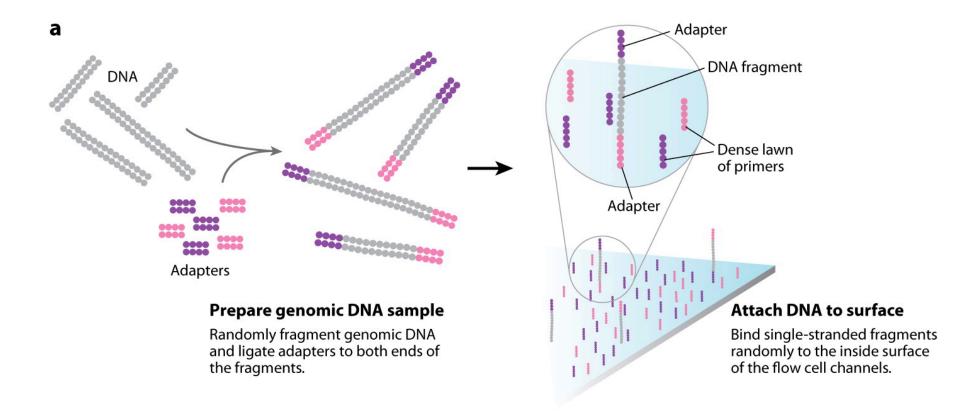
In the beginning, there were sequencing gels...


(via Victoria Schulman)

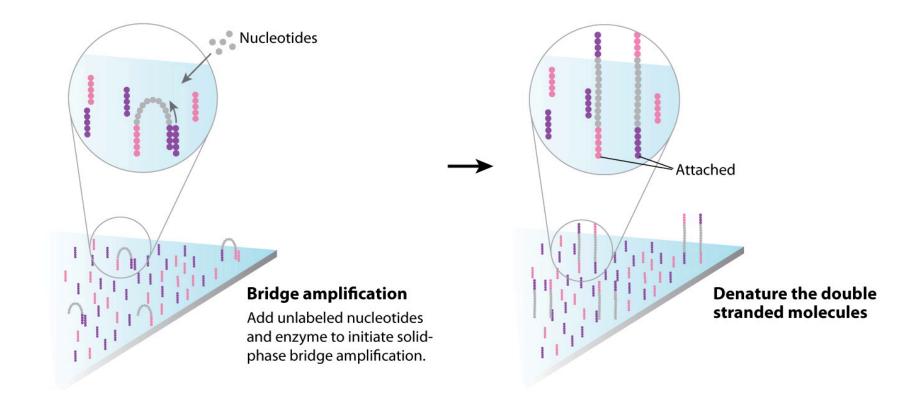
Then there was Sanger sequencing...

From P. Zhang, A. Seth, and H. Fernandes, Pathobiology of Human Disease

... and then there was **Next Gen**



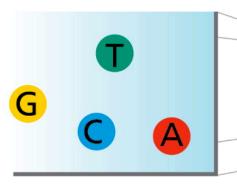
Outline


- Summary of NGS technologies (sequencing and applications)
- Introduction to NGS data analysis
- Commonly available databases
- Workflow integration and making use of existing NGS data

Outline

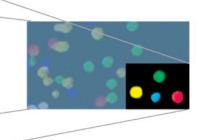
- Summary of NGS technologies (sequencing and applications)
- Introduction to NGS data analysis
- Commonly available databases
- Workflow integration and making use of existing NGS data

(Mardis, Ann. Rev. Genomics Hum. Genet., 2008)

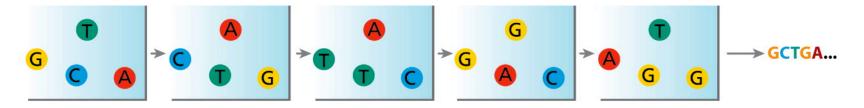

(Mardis, Ann. Rev. Genomics Hum. Genet., 2008)

First chemistry cycle: determine first base

b


To initiate the first sequencing cycle, add all four labeled reversible terminators, primers, and DNA polymerase enzyme to the flow cell.

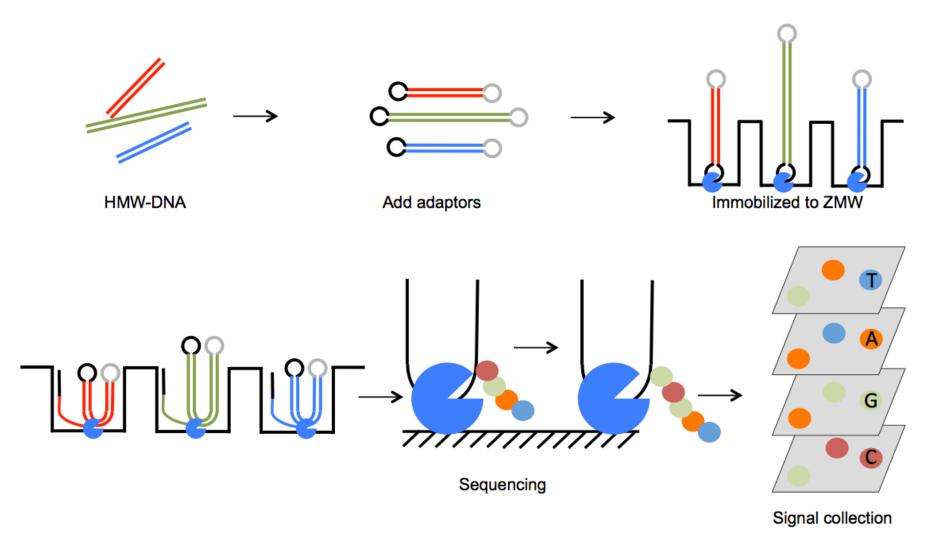
Laser


Image of first chemistry cycle

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

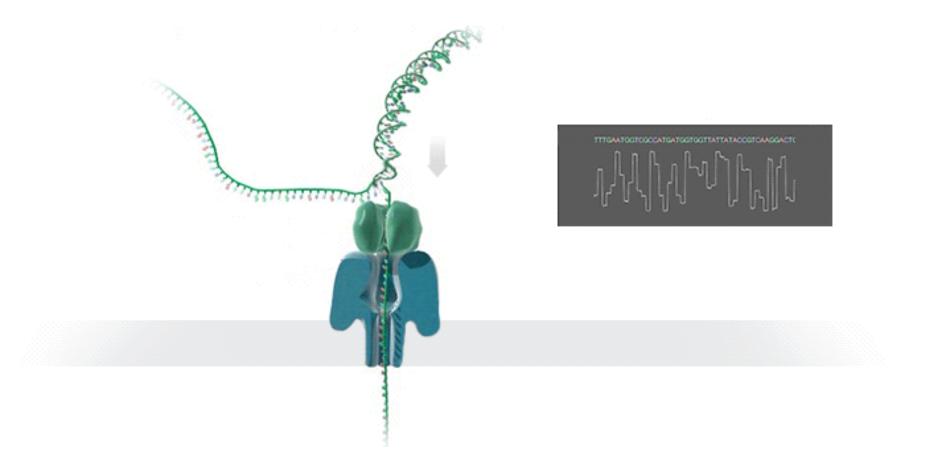
Before initiating the next chemistry cycle

The blocked 3' terminus and the fluorophore from each incorporated base are removed.



Sequence read over multiple chemistry cycles

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.


(Mardis, Ann. Rev. Genomics Hum. Genet., 2008)

PacBio SMRT Sequencing

(Image from 3402 Bioinformatics)

Nanopore sequencing

(Image via Oxford Nanopore)

Key considerations for NGS technologies

- Number of reads
- Quality of reads
- Length of reads
- Library preparation
- Cost

Key considerations for NGS technologies

	Illumina	РасВіо	Nanopore
Number of reads	* * *	**	*
Quality of reads	**	*/***	***
Length of reads	*	**	***
Library preparation	Versatile, complex	Moderate	Simple

TruSeq Universal Adapter: 5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 3

TruSeq Indexed Adapter 5 GATCGGAAGAGCACACGTCTGAACTCCAGTCAC-NNNNN-ATCTCGTATGCCGTCTTCTGCTTG 3

TruSeq Universal Adapter: 5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 3

TruSeq Indexed Adapter 5 GATCGGAAGAGCACACGTCTGAACTCCAGTCAC-NNNNN-ATCTCGTATGCCGTCTTCTGCTTG 3

Anneal:

5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC--GCTCTTCCGATC*T 3 3 GTTCGTCTTCTGCCGTATGCTCTA(INDEX)CACTGACCTCAAGTCTGCACA--CGAGAAGGCTAG*P 5

After ligation:

LEFT OF INSERT AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC--GCTCTTCCGATC*T 3 GTTCGTCTTCTGCCGTATGCTCTA(INDEX)CACTGACCTCAAGTCTGCACA--CGAGAAGGCTAG*P 5

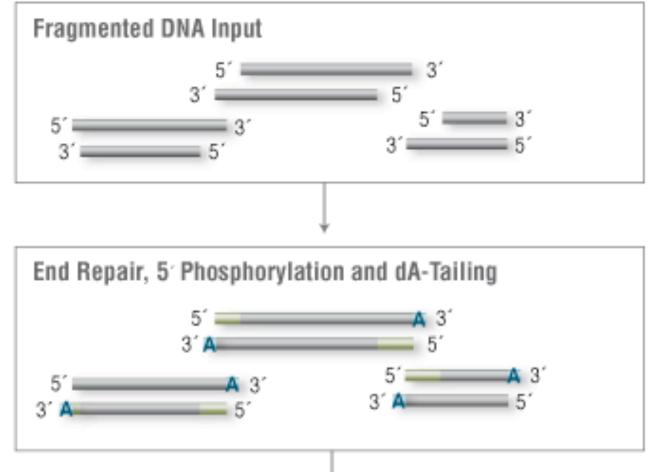
RIGHT OF INSERT

5 P*GATCGGAAGAGC--ACACGTCTGAACTCCAGTCAC(INDEX)ATCTCGTATGCCGTCTTCTGCTTG 3

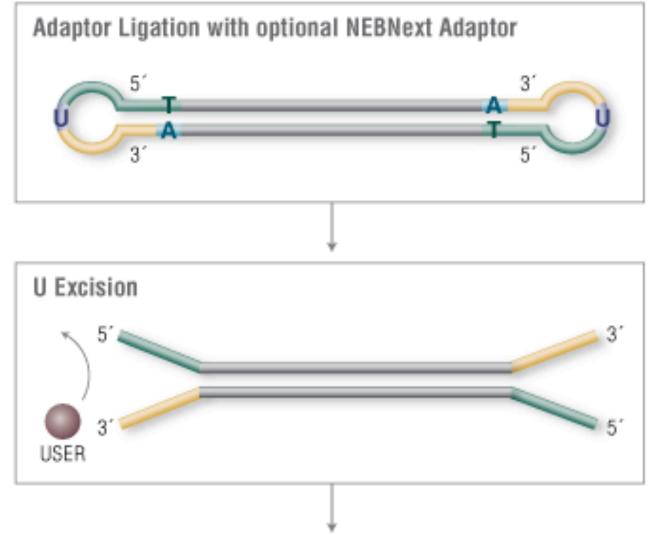
PCR Primer 1.0 5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA 3

PCR Primer 2.0 5 CAAGCAGAAGACGGCATACGAGAT 3

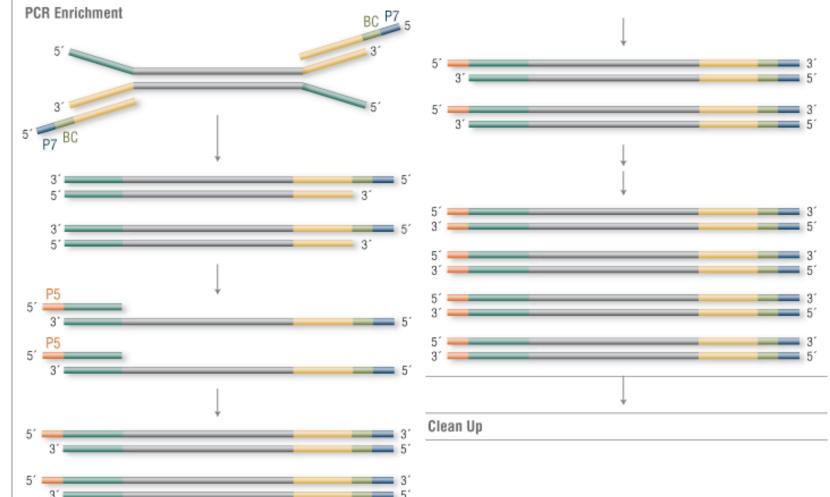
Universal Adapter:


5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 3

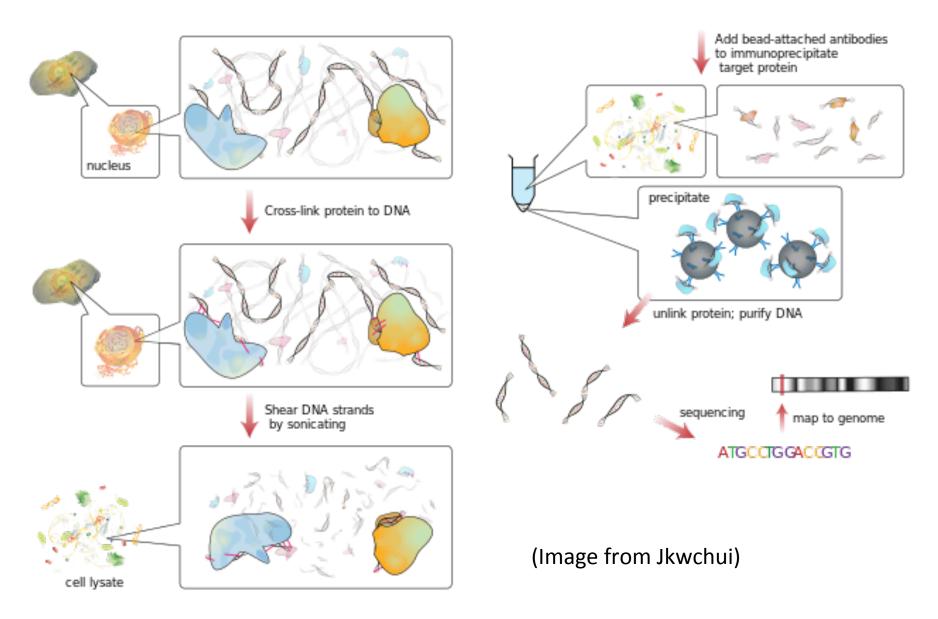
Indexing Adapter: 5 GATCGGAAGAGCACACGTCTGAACTCCAGTCAC-NNNNNN-<u>ATCTCGTATGCCGTCTTCTGCTTG</u> 3


- Universal Adapter
- DNA Fragment of Interest
- Indexed Adapter
- 6 Base Index Region

Example of a full sequencing prep workflow

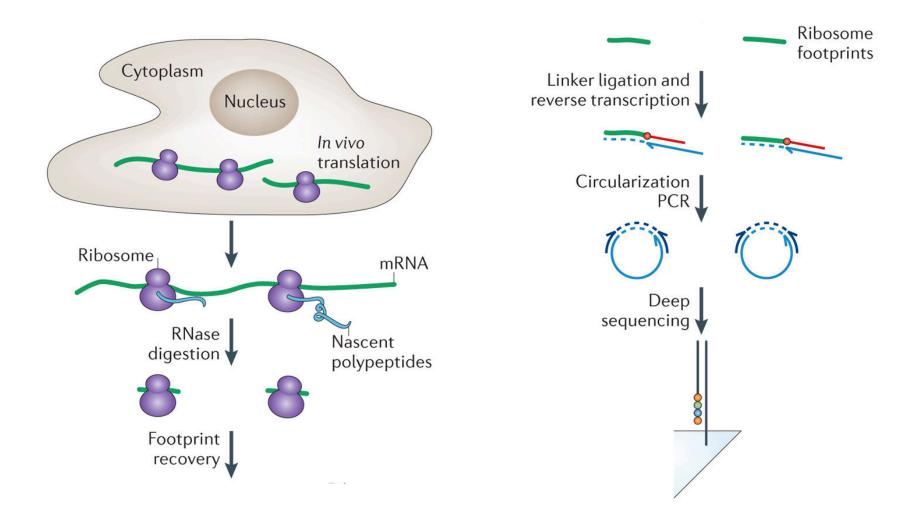

(Image from NEB)

Example of a full sequencing prep workflow

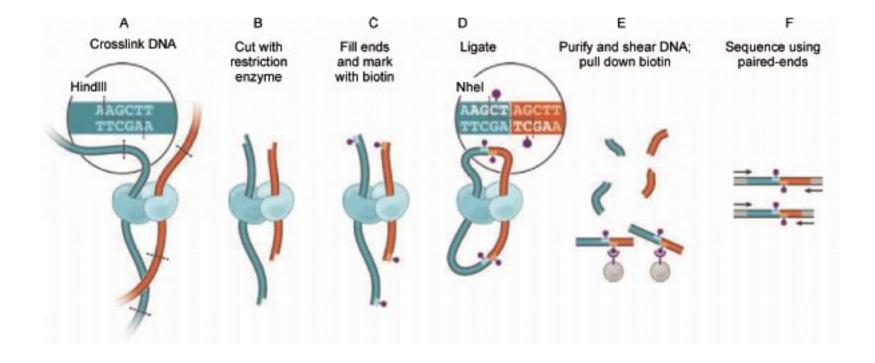

(Image from NEB)

Example of a full sequencing prep workflow

(Image from NEB)


- Genome sequencing (whole genome, mutations)
- RNA sequencing (transcript quantitation, transcriptome mapping)
- Finding protein-nucleic acid interaction (ChIPseq, PAR-CLIP)
- Identifying methylation sites (bisulfite sequencing)

- Protein translation rates (ribosome profiling)
- Chromosomal conformations (Hi-C)
- Transcript stability (Bru-chase seq)
- Finding DNA-RNA hybrids (Drip-seq)
- Profiling chromatin accessibility (ATAC-seq, Mnase-seq)

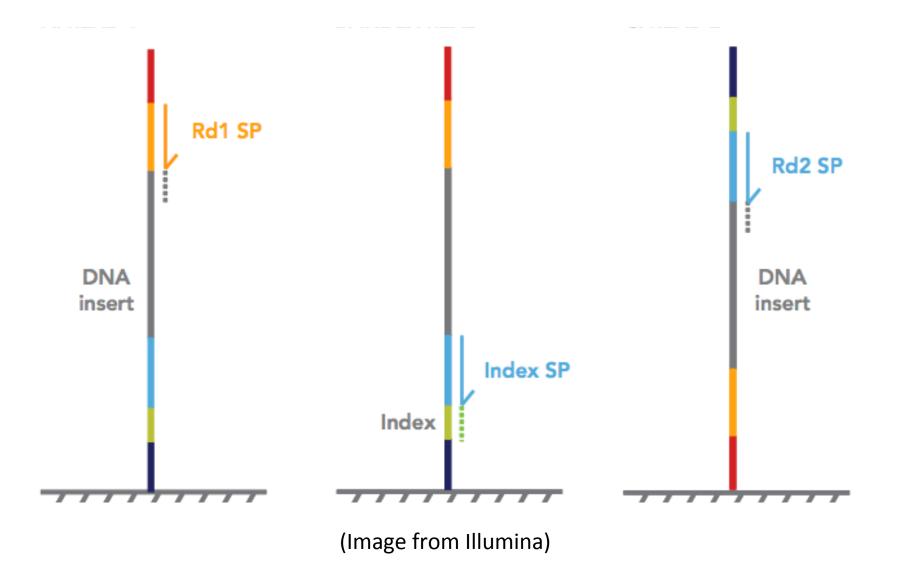

And on and on...

Ribosome profiling

- Protein translation rates (ribosome profiling)
- Chromosomal conformations (Hi-C)
- Transcript stability (Bru-chase seq)
- Finding DNA-RNA hybrids (Drip-seq)
- Profiling chromatin accessibility (ATAC-seq, Mnase-seq)

And on and on...

(Lieberman-Aiden et al., Science, 2009)


- Protein translation rates (ribosome profiling)
- Chromosomal conformations (Hi-C)
- Transcript stability (Bru-chase seq)
- Finding DNA-RNA hybrids (Drip-seq)
- Profiling chromatin accessibility (ATAC-seq, Mnase-seq)

And on and on...

A few crucial concepts

- Single end vs. paired end reads
- "Coverage"
- Indexing
- FPKM, RPKM, TPM

A few crucial concepts

A few crucial concepts

- Single end vs. paired end reads
- "Coverage"
- Indexing
- FPKM, RPKM, TPM

Outline

- Summary of NGS technologies (sequencing and applications)
- Introduction to NGS data analysis
- Commonly available databases
- Workflow integration and making use of existing NGS data

Raw data: Fastq files

```
@K00135:141:HHJ3TBBXX:1:2228:1661:47383
CTCCTGTTCTTGTGGTTGCTGGGGCTCCAATAG
+
AAA-AAJFF-AFAAF7FFA-AA-77AJ<7A<-7
@K00135:141:HHJ3TBBXX:1:2228:5467:17685
GTATTTTTAGTTCCATACACGCAAGAAGGAG
+
-A-<AF<<FFF<FJFA--<-77<<JF7-7<</pre>
```

Raw data: Fastq files

Read name Sequence Optional information Quality scores

Read name Sequence Optional information Quality scores

@K00135:141:HHJ3TBBXX:1:2228:1661:47383 CTCCTGTTCTTGTGGTTGCTGGGGCTCCAATAG

AAA-AAJFF-AFAAF7FFA-AA-77AJ<7A<-7 @K00135:141:HHJ3TBBXX:1:2228:5467:17685 GTATTTTTAGTTCCATACACGCAAGAAGGAG

-A-<AF<<FFF<FJFA--<-77<<JF7-7<

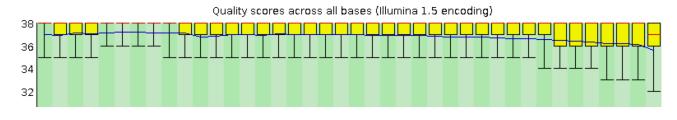
Typical steps in analysis workflow

- Quality control
- Adapter clipping
- Quality trimming
- Alignment
- Analysis

Quality control

(Example: FastQC)

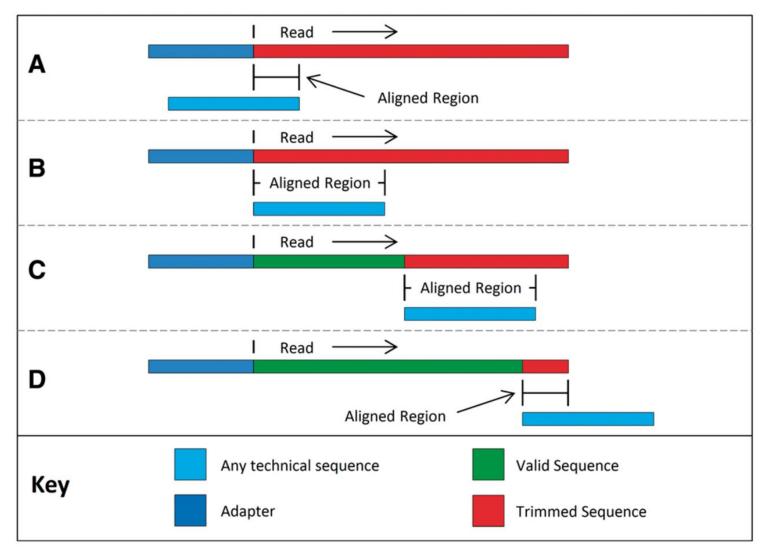
FastQC Report


Summary

Basic Statistics
Per base sequence quality
Per tile sequence quality
Per sequence quality scores
Per base sequence content
Per sequence GC content
Per base N content
Sequence Length Distribution
Sequence Duplication Levels
Overrepresented sequences
Adapter Content
Kmer Content

Basic Statistics

Measure	Value
Filename	<pre>good_sequence_short.txt</pre>
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	250000
Sequences flagged as poor quality	0
Sequence length	40
%GC	45


Ver base sequence quality

(fastqc webpage)

Trimming/clipping

(fastxtools, cutadapt, trimmomatic)

Anthony M. Bolger et al. Bioinformatics 2014;30:2114-2120

Alignment

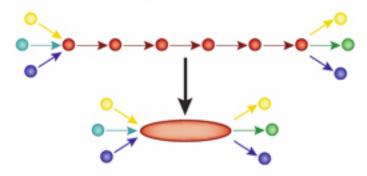
40421551 40421561 40421571	40421581 40421591 40421601 4042	1611 40421621 40421631 40421641 404	421651 40421661 4042167	1 40421681 40421691 40421701 40421711 404
				gtgaaaccccatctctactaaagatacaaaaattatccaggtgtgg
		tgggaggctgagtcaagtggagcacctgagatcatga		GTGAAACCCCATCTCTACTAAA ATACAAAAATTATCCAGGTGTGG
		t GGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATGA		gtgaaaccccatctctactaaaga ACAAAAATTA CCAGGTGTGG
				G AACCCCATCTCTACTAAAGATACAAAAATTATCCAGGTGT
		Loggagg GAGGCAAG GGAGCACC GAGA CATGA		GTGAAACCCCATCTCTACTAAAGATACAAAA ATCCAGGTGTGG
	TTCACACAGTGGCTCATGCCTGT_ATCCCAGCACT			GTGAAACCCCA CTCTACTAAAGATACAAAAATTA aggtgtgg
	ttcacacagtggctcatgcctgtg TCCCAGCACT			GIGAAACCCCA TA TACTAAAGA THCAAAAA TTA TCCAGG G GG
	ttcacacagtagctcatgcctgtgat AGCACT			GTGAAACCCCATC CTACTAAAGATACAAAAATTA CCAGGIGIGG
				GTGAAACCCCATATCTACTAAAGAT caaaaattatccaggtgtgg
		ttoggatgctgaggcaagtggagcacctgagatcat		GTGAAACCCCATCTCTAC AGAAATACAAAAATTATCCATGTGTGG
ATTTG ACCTATATAAGATGGTTATGAAGA				GTC AACCCCATCTCTACTAAAGATACAAAAATTACCCAGGTGT
ATTTGAACAGACCTATATAAGA GGTTACGAAGA	TTCACACAGTGGCTCATGCCTGTGATCCC caca	ttgggaggctgaggcaagtggagcacctgagatcat	AAGACCAGCCTGGCCAACATG	GTGAAACCCCATCTCTACT AAGATACAAAAATTATCCAGGTGTGG
		TTGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATGA		gtgaaaccccatctctactaaagat AAAATTATCCAGGTGTGG
attigaacagacctatataagatggtt aaga	ttcacacagtggctcatgccagtgatcccagcact	t GGGAGGCTGAGGCAAGTGGAGCACCTGAGATAATGA	GTTC GCCTGGCCAACATG	GTGAAA CCCATCTCTACTAAAGATACAAAAATTATCCAGGTGTGG
	ttcacacagaggctcatgcctgtgatcccagcact	tt AGGCTGAGGCAAGTGGAGCACCTGAGATCATGA		GTGAAACCCCATCTCTACTAAAGATAC TTATCCAGGTGTGG
	T CACACAG GGC CA GCC IG GA CCCAGCACC	TTGGG GCTGAGGCAAGTGGAGCACCTGAGATCATGA	GTTCAAGAC CCAACATG	GTGAAACCCCATCTCTACTAAAGATACAAAAA atccaggtgtgg
TTTGAACAGACCTATATAAGATGGTTAT	CAGTGGCTCATGCCTGTGAT ACT	TTGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATG	CAACATG	GTGAAACCCCATCTCTACTAAAGATACAAAAAT TCCAGGTGTGG
TTTGAACAGACCTATATAAGATGGTTATGAAG	CAGTGGCTCATGCCTGTGATC ACT	TCGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATG	AACATG	GTGAAACCCCATCTCTACTAAAGATACAGAAATT aggtgtgg
TTTGAACAGACCTATATAAGATGGTTATGAAGA	T CAGTGGCTCATGCCTGTGATCC CCT	CTGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATG	ACATG	GTGAAACCCCATCTCTACTAAAGATACAAAAATTA GTGTGG
ATTTGAACAGACCTATCTAAGATGGTTATGAAGA	TT GCGGCTCATGCCTGTTATC CT	TTGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATGA	ACATG	GTGAAACCCCATCTATACTAAAGATACAAAAATTA TGTGG
TTTGAACAGACCTATATAAGATGGTTATGAAGA	CTCTTGCCTGTGATCCCAGCACT	TTGGGAGGCTGACGCAA TGGAGCACCTGAGATCATGA	GTTCAAGACCAGCCTGGCCA TG	GTGAAACCCCATCTCTACTAAAGATACAAAAATTATCC gg
TTTGAACAGACC TATATAAGA TGGTTA TGAAGA	TC CTCATGCCTGTGATCCCAGCACT	TIGGGAGGCTGAGGCAA TGGAGCACCTGAGATCATGA		GTGAAACCCCATCGCTACTAAAGATACAAAAATTATCCA
TTTGAACAGACC TATATAAGA TGGTTATGAAGA	TCA GTGATCCCAGCACT	TTGGGAGGCTGAGGCAAGTGGAGCAC GATCATGA	GTTCAAGACCCGCCTGGCCAACATG	GTGAAAC ccatctctactaaagatacaaaaattatccaggtgtgg
AGATGGTTATGAAGA	TTCACACAGTGGCTCATGCCTGTGA CCAGCACT	TTGGGAGGCTGAGGCAAGTGGAGTACCTGAGA GA	GTTCAAGACCAGCCTGGCCAACATG	GTGAAACCCCATC TACTAAAGATACAAAAATTATCCAGGTGTGG
ACATGGTTATGAAGA	TTCACACAGTGGCTCATGCCTGTGA CT	TTGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATGA	CATG	GTGTAACCCCATCTCTACTAAAGATACAAAAATTAT
GGTTATGAAGA	TTCACACAGTGGCTCATGCCTGTGATCCC CT			tgaaaccccatctctactaaagatacaaaaattatccagg
				gtgaaaccccatct TACTAAAGATACAAAAATTATCCAGGTGTGG
ATGAAGA	TTCACACAGTGGCTCATGCCTGTGATCCCAGCA T	CTGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATGA		GTGAAACCCCATCTCTACTAAAGATACAAAAATTAT
		ttgggaggctgaggaaagtggagcacct		GTGAAACCCCATCTCT CTAAAGATACAAAAATTATCCAGGTGTG
		ttgggaggctgaggcaagtggagcacctg		GTGAAACCCCATCTCTACTAAAGATACAAAAATGAT
		CTGAGAGGCTGAGGCAAGTGGAGCACCTGAGATCATGA		GTGAAACCCCATCTCTACTAAAGATACAAAAATTATCCAG
		GGGATGCTTAGTCAATTGTAGCACCTGAGATCATGA		GTGAAACCCCATCTCTACTAAAGATACAAAAATTATCCAG
		aggcigaggcaagiggagcaccigagaicaiga		gtgaaaccccatctctactaaagatacaaaaattatccag
		ggggcaag ggagcacc gaga ca ga		gtgaaaccgtgtctctac aaagatactaaaattatccaggtgtg
		tgaggcaagtggagcacctgagatcatga		GAAATCCCATCTCTACTAAAGATACAAAAATTATCCAGGT
		GAGGCAAGTGGAGCACCTGAGATCATGA		GAAACCCCATCTCTACTAAAGATACAAAAATTATCCAGGT
		AGGCAAG GGAGCACC GAGA CATGA		GAAACCCCATCTCTACTAAATAAACA atccaggigig
		aggcaatttgagctcctgagatcatga	cicaagaccagc	gaaaccccatctctgctgaagatgcaaaaatta
		GCAAGTGGAGCACCTGAGATCA		AACCCCATCTCTACTAAAGATACAAAAATTATCCAGGTGT
		CAAG GGAGCACC GAGA CA IGA		AA ICCCATCTCTACTAAATATACAAAAATTA ICCAGGTGT
		<u>caagtggagcacctgagatcatga</u> AAGTGGAGCACCTGAGATCATGA		aaccccatctctactaaagatccaaaattatccaggggt AACCCCATCTCTACTAAAGATACAAAATTATCCAGGTGT
		AAG I GGAGCACC I GAGA I CA I GA AG I GGAGCACC I GAGA I CA I GA		ACCCCGTTCTACTAAAGATACAAAAATTATCCAGGTGTG
		AG GCAGCACC GAGA CA GA		acccatctctactaaagatacaaaaattatccaggtgtg
		GTGGAGCACCTGAGATCATGA		CCCCATCTCTACTAAAGATAC atccaggigig
			GTTCAAGACCAGCCTGGCCAA	CCCCATCTCTACTAAAGATAC atccaggtgtg CATCTCTAATAAAGATACAAAAATTATCCAGGTGTG
				CATCTCTACTAAAGATACAAAAATTA TCCAGGTGTG
			gttcaagaccagggtggccaa	CGTCTCTACTAAAGATACAAAAATTATCCAGGTGTGG
			GTTCAAGACCAGCCTGGCCAAC	CATC C ACTAAAGA ACAAAAA TA CCAGG G GG
		GAGCACC TGAGA ICA IGA	CANGACCAGEC TOOCCAAC	CATCTCTACTA040ATACA040ATTATCCA0616100

Examples: Bowtie, BWA, SOAP, STAR, HiSat, ...

(image from labtimes.org)

(or assembly...)

1. Fragment DNA and sequence


2. Find overlaps between reads

Examples: ABySS, MIRA, SSAKE (genome)

...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...

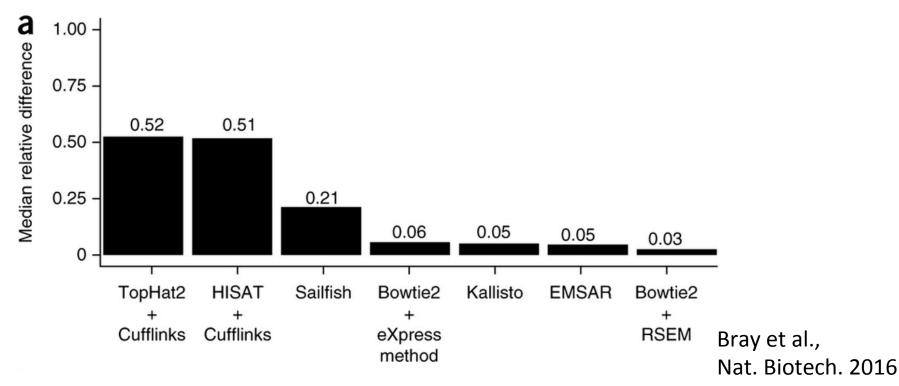
3. Assemble overlaps into contigs

Cufflinks, Stringtie, Trinity (transcriptome)

4. Assemble contigs into scaffolds

(image from Michael Schatz)

Analysis


(IGB screenshot by Ann Loraine)

Common tasks

- Transcript quantitation
- Isoform calling
- Peak calling
- Gene set enrichment analysis
- Motif analysis
- Clustering/network inference

Pseudoalignment and fast RNA-seq workflows

- Don't get exact alignments, just find transcripts compatible with each read
- Examples: kallisto, sailfish, salmon

Pseudoalignment and fast RNA-seq workflows

- Don't get exact alignments, just find transcripts compatible with each read
- Examples: kallisto, sailfish, salmon

A unified graphical interface for NGS analysis

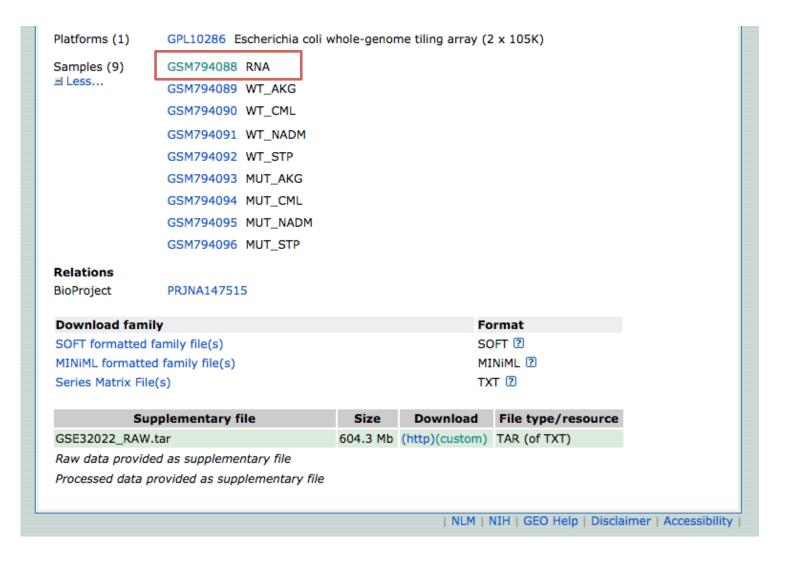
Galaxy - UC Davis Bioint	×				-	
🔙 🌸 🔁 🗋 ec2-50-3	18-90-173.us-w	vest-1.com	pute.amazonaw	s.com:8080/wor	kflow/editor?id=	a799d38679e985db# ☆ 🗧
🗧 Galaxy 👘	Analyze Data	Workflow	Shared Data 🕶	Visualization 🔻	Admin Help v	User - Using 1.6 GB
Tools	Wo	orkflow Car	nvas QAI wor	kflow with all F	astQC 🌻	Details
search tools						Input dataset
<u>Get Data</u> Send Data				/	FastQC:Read	
Text Manipulation Filter and Sort		Input dat	aset 👷		Short read da history	adapters
Join, Subtract and Group		output	0	$\ll /$	Ontaminant	Edit Step Attributes
<u>Convert Formats</u> Extract Features	=				html_file (hti	Annotation / Notes:
Fetch Sequences		outpu	t dataset 🛛 💥		Scythe	
Operate on Genomic Inter Statistics	<u>vals</u>	outpe			> FastQ Reads	Add an annotation or notes to this step; annotations are available
<u>Wavelet Analysis</u> Graph/Display Data			dataset 🛛 💥		Adapter/Cont	
Multiple regression		outpu			output_trimr	
<u>Multivariate Analysis</u> <u>Motif Tools</u>					fastqillumina output_mato	
<u>Multiple Alignments</u>						
<u>Metagenomic analyses</u> FASTA manipulation						
NCBI BLAST+ NGS: QC and manipulation	,					
NGS: Picard (beta)						
						III 3

Galaxy: usegalaxy.org; image from UC Davis Bioinformatics Core

Outline

- Summary of NGS technologies (sequencing and applications)
- Introduction to NGS data analysis
- Commonly available databases
- Workflow integration and making use of existing NGS data

GEO – the gene expression omnibus

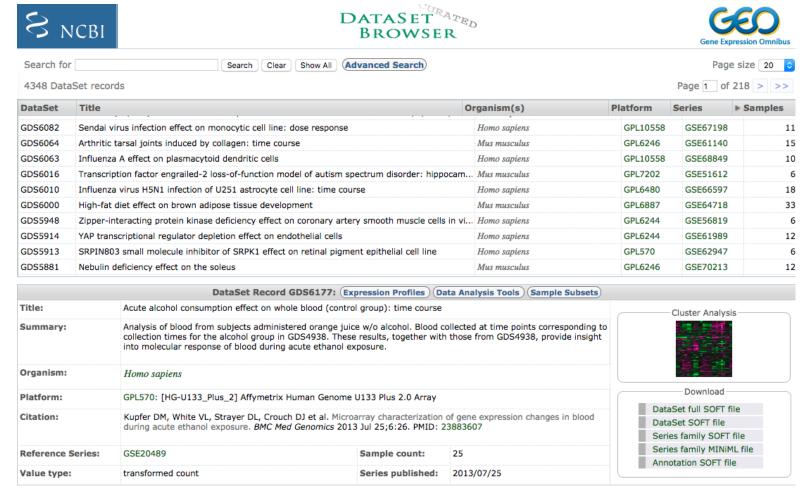

www.ncbi.nlm.nih.gov/geo

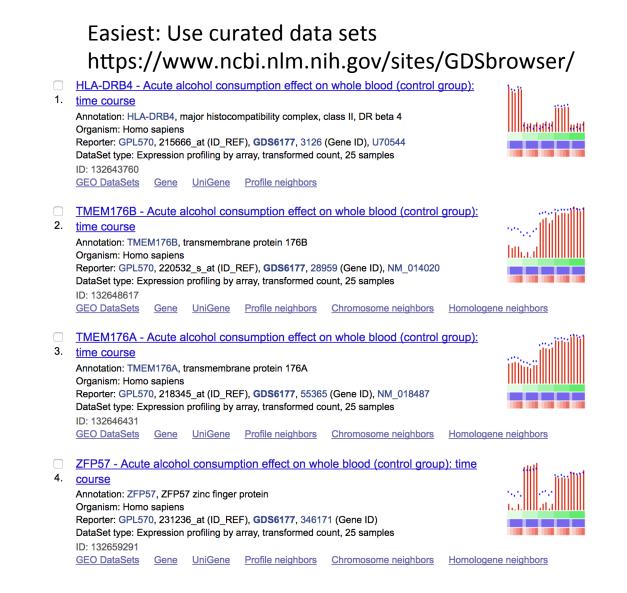
S NCBI Resources 🖸 How To 🖸			petefred My NCBI Sign Out
GEO Home Documentation Query & Browse	Email GEO		My GEO Submissions
GEO is a public functional genomics data repository supporting I sequence-based data are accepted. Tools are provided to help u gene expression profiles.		[1	Gene Expression Omnibus
Getting Started	Tools	Browse Content	
Overview	Search for Studies at GEO DataSets	Repository Browser	
FAQ	Search for Gene Expression at GEO Profiles	DataSets:	4348
About GEO DataSets	Search GEO Documentation	Series: 🔝	82875
About GEO Profiles	Analyze a Study with GEO2R	Platforms:	17052
About GEO2R Analysis	GEO BLAST	Samples:	2018686
How to Construct a Query	Programmatic Access		
How to Download Data	FTP Site		
Information for Submitters			
My GEO Submissions	Submission Guidelines	MIAME Standards	
My GEO Profile	Update Guidelines	Citing and Linking to G	EO
		Guidelines for Reviewe	ers

GEO Publications

MCBI > GEO > Acces					
Scope: Self \$	Format: (HTML +) Amount: Quick +) GEO accession: GSE32022				
Series GSE32022					
Status Title	Public on Jun 01, 2012 Characterization of transcriptional and fitness effects of a loss of function mutation in rho				
Platform organism	Escherichia coli				
Sample organism	Escherichia coli str. K-12 substr. MG1655				
Experiment type	Expression profiling by genome tiling array Senome variation profiling by genome tiling array				
Summary	order to study the effects of a mutation to the transcriptional termination gulator Rho (referred to as rho*), we made use of expression microarrays to oserve the direct and indirect effects of rho* on gene expression. In addition, e used arrays to map the fitness of strains from transposon mutagenized oraries under four conditions, showing that in each case the majority of genes ith significant fitness effects were dependent on the genotype at rho.				
Overall design	For expression arrays, we performed two-color microarrays comparing transcript levels in rho* and wild type cells during exponential growth in glucose minimal media. For selection experiments, transposon insertions were mapped through selective amplification of genomic regions adjacent to them. We then measured the fitness effects of insertions throughout the genome using two-color microarrays, comparing amplified DNA from a population grown under a selective condition of interest to an isogenic control population grown under a reference condition (glucose minimal media). All arrays were performed in duplicate, and the source material for the duplicates came from separate biological replicates.				
Contributor(s) Citation(s)	Freddolino PL, Goodarzi H Freddolino PL, Goodarzi H, Tavazoie S. Fitness landscape transformation through a single amino acid change in the rho terminator. <i>PLoS Genet</i> 2012 May;8(5):e1002744. PMID: 22693458				

Platforms (1)	GPL10286 Escherichia coli	whole-genor	ne uning array (2	(X 105K)	
Samples (9)	GSM794088 RNA				
⊟ Less	GSM794089 WT_AKG				
	GSM794090 WT_CML				
	GSM794091 WT_NADM				
	GSM794092 WT_STP				
	GSM794093 MUT_AKG				
	GSM794094 MUT_CML				
	GSM794095 MUT_NADM				
	GSM794096 MUT_STP				
Relations					
BioProject	PRJNA147515				
Download fa	mily		Fo	ormat	
SOFT formatte	d family file(s)		SC)FT 🛛	
MINIML format	ted family file(s)		MI	NIML 🕐	
Series Matrix I	File(s)		тх	Т 🛛	
5	Supplementary file	Size	Download	File type/resource	
GSE32022_RA	W.tar	604.3 Mb	(http)(custom)	TAR (of TXT)	
Raw data prov	ided as supplementary file				
Processed data	a provided as supplementary file				
			NLM N	NIH GEO Help Discla	imer Accessibil

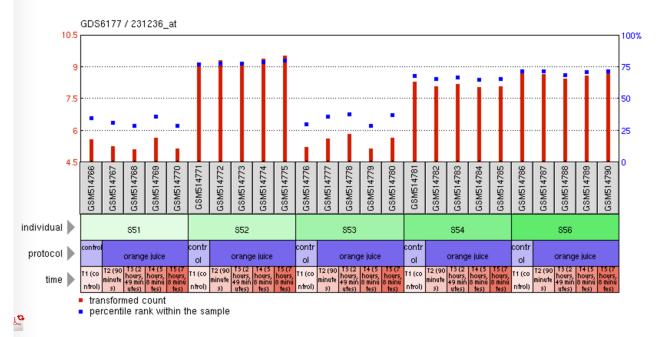

S NCBI	<u>CEO</u>
	Gene Expression Omnibus
HOME SEARCH SITE MAP	GEO Publications FAQ MIAME Email GEO
NCBI > GEO > Accessi	on Display 2 Contact: petefred 2 My submissions 2 Logout 2
	Format: (HTML +) Amount: (Quick +) GEO accession: (GSM794088 GO
Sample GSM79408	
Status	Public on Jun 01, 2012
Title	RNA
Sample type	RNA
Channel 1	
Source name	WT cells_mid-log-phase_M9t/glucose
Organism	Escherichia coli str. K-12 substr. MG1655
Characteristics	genotype/variation: WT growth media: M9t/glucose growth phase: mid-log
Growth protocol	For RNA samples, WT or rho* cells were grown to mid-log phase in M9t/glucose. WT or rho* transposon mutagenized libraries were grown overnight in the media indicated.
Extracted molecule	total RNA
Extraction protocol	Total RNA was extracted using total RNA purification kit (Norgen Biotek, Cat 17200).
Label	Cy5
Label protocol	A poly-A tail was added to the RNA samples using E. coli Poly(A) polymerase (NEB, M0276) for 15 minutes. Using an Agilent low input quick amp labeling kit, the rho* and WT samples were then labeled with Cy3 and Cy5, respectively.
Channel 2	
Source name	rho* cells_mid-log-phase_M9t/glucose
Organism	Escherichia coli str. K-12 substr. MG1655
Characteristics	genotype/variation: rho* growth media: M9t/glucose growth phase: mid-log
Growth protocol	For RNA samples, WT or rho* cells were grown to mid-log phase in M9t/glucose. WT or rho* transposon mutagenized libraries were grown overnight in the media indicated.
Extracted molecule	total RNA
Extraction protocol	Total RNA was extracted using total RNA purification kit (Norgen Biotek, Cat 17200).


Supplementary file	Size	Download	File type/resource			
GSM794088_TAHG20110218_252456810085_S01_GE2- v5_95_Feb07_1_1.txt.gz	32.9 Mb	(ftp)(http)	тхт	Raw		
GSM794088_TAHG20110218_252456810085_S01_GE2- v5_95_Feb07_1_2.txt.gz	32.8 Mb	(ftp)(http)	тхт	Raw		
GSM794088_rna_lograt_zscore.txt.gz	1.3 Mb	(ftp)(http)	тхт	Processed		
Raw data provided as supplementary file						
Processed data provided as supplementary file						
NLM NIH GEO Help Disclaimer Accessibility						

Navigating GEO datasets

- GPLXXXXX Platform identifier
- GSEXXXXX series of data sets (e.g., one paper)
- GSMXXXXX One sample (may be one or more replicates, but should be same condition)
- GDSXXXXX Curated data set with additional options available

Easiest: Use curated data sets https://www.ncbi.nlm.nih.gov/sites/GDSbrowser/



Easiest: Use curated data sets https://www.ncbi.nlm.nih.gov/sites/GDSbrowser/

Profile GDS6177 / 231236_at

TitleAcute alcohol consumption effect on whole blood (control group): time courseOrganismHomo sapiens

Graph caption help

Sample	Title	Value	Rank
<u>GSM514766</u>	Blood_OJcontrol_T1_S51	5.61881	35
<u>GSM514767</u>	Blood_OJcontrol_T2_S51	5.28791	31
GSM514768	Blood_OJcontrol_T3_S51	5.13084	29

Otherwise: Get processed data from GSM pages...

(ftp)(http) (ftp)(http)		Raw
(ftp)(http)	тхт	David
		Raw
(ftp)(http)	тхт	Processed

GEO isn't JUST about gene expression...

Platforms (1)	GPL17021 Illumina HiSeq 2500 (Mus musculus)							
Samples (39)	GSM2143252 114_FCX_120m_Control_input							
≝ More	GSM2143253 115_FCX_120m_Treatment_input							
	GSM2143254 117_	GSM2143254 117_FCX_120m_Control_H3K27ac						
This SubSeries is	part of SuperSeries:							
	criptional regulatory d al response to social th	lynamics set the stage for a ireat in mice	coordina	ated metabo	lic and			
Relations								
BioProject	PRJNA320640							
SRA	SRP074385							
Download fami	ly		Fe	ormat				
SOFT formatted	family file(s)		S	OFT 🕐				
MINiML formatte	d family file(s)		М	INiML 😰				
Series Matrix File	e(s)	Series Matrix File(s) TXT 😨						
	Supplementar	y file	Size	Download				
GSE81122_114_		y file t-117+118.ucsc.bigWig		Download (ftp)(http)	type/resource			
	FCX_120min_CK_inpu		133.5 Mb		type/resource			
GSE81122_115_	FCX_120min_CK_inpu	t-117+118.ucsc.bigWig	133.5 Mb 163.6 Mb	(ftp)(http)	type/resource BIGWIG			
GSE81122_115_ GSE81122_117+	FCX_120min_CK_inpu FCX_120min_EX_inpu 118_FCX_120min_CK	t-117+118.ucsc.bigWig t-119+120.ucsc.bigWig	133.5 Mb 163.6 Mb 317.5 Mb	(ftp)(http) (ftp)(http)	type/resource BIGWIG BIGWIG			
GSE81122_115_ GSE81122_117+ GSE81122_119+	FCX_120min_CK_inpu FCX_120min_EX_inpu 118_FCX_120min_CK 120_FCX_120min_EX	t-117+118.ucsc.bigWig t-119+120.ucsc.bigWig _1M_H3K27ac.ucsc.bigWig	133.5 Mb 163.6 Mb 317.5 Mb 242.3 Mb	(ftp)(http) (ftp)(http) (ftp)(http)	type/resource BIGWIG BIGWIG BIGWIG			
GSE81122_115_ GSE81122_117+ GSE81122_119+ GSE81122_121+	FCX_120min_CK_inpu FCX_120min_EX_inpu 118_FCX_120min_CK 120_FCX_120min_EX	t-117+118.ucsc.bigWig t-119+120.ucsc.bigWig _1M_H3K27ac.ucsc.bigWig _1M_H3K27ac.ucsc.bigWig n_1M_H3K27ac.ucsc.bigWig	133.5 Mb 163.6 Mb 317.5 Mb 242.3 Mb 351.1 Mb	(ftp)(http) (ftp)(http) (ftp)(http) (ftp)(http)	type/resource BIGWIG BIGWIG BIGWIG BIGWIG			

Mb

Raw data available via the SRA

https://www.ncbi.nlm.nih.gov/sra/

S NCBI Resources 🖸	How To 💌			petefred My NCBI Sign Out
SRA	SRA	Advanced		Search Help
G AT	ATTA	ATAC	SRA	
TTC	CONTRACT	CGTA GCAG TAG CGCCT	Sequence Read Archive (SRA) makes biological sequence dat and allow for new discoveries by comparing data sets. The SRJ high-throughput sequencing platforms, including Roche 454 GS SOLiD System®, Helicos Heliscope®, Complete Genomics®, a	System®, Illumina Genome Analyzer®, Applied Biosystems
Getting Started			Tools and Software	Related Resources
How to Submit			Download SRA Toolkit	Submission Portal
Login to SRA			SRA Toolkit Documentation	Trace Archive
Login to Submission Porta	<u>l</u>		<u>SRA-BLAST</u>	dbGaP Home
SRA Handbook			SRA Run Browser	BioProject
Download Guide			SRA Run Selector	BioSample
SRA Fact Sheet (.pdf)				

Raw data available via the SRA

(III) Sequence Read Archive

Main Browse Search Download Submit Documentation Software Trace Archive Trace Assembly Trace BLAST

Studies Samples Analyses Run Browser Run Selector Provisional SRA

Massive transcriptional start site mapping of human fetal brain cells.

Identifiers:	SRA: DRP000023 BioProject: PRJDA34559 UT-MGS: DRP000023
Study Type:	Transcriptome Analysis
Submission:	DRA000023
Abstract:	Comprehensive identification and characterization of the transcriptional start sites of human genes were carried out. For this purpose, we used our TSS-Seq method, in which next gene sequencing technology and our full-length cDNA library technology, oligo-capping were combined.
Description:	Although recent studies have revealed that the majority of human genes are subjected to regulation of alternative promoters (APs), the biological relevance of this phenomenon remains unclear. To enable more comprehensive TSS analysis in the respective cell types, we recently developed a method, combining oligo-capping with the massively paralleled sequencing technology, Illumina GA. In this method, which we named TSS Seq, sequence adaptor which is necessary for Illumina GA sequencing is directly introduced to the cap site of the mRNA. By sequencing 36-48 sequence immediately downstream of the TSSs (TSS tags), it is possible to obtain precise positional information of transcriptional start sites (TSSs). In this paper, we used the TSS tag data accumulated from twelve different cell types and normal tissues in humans for the identification and characterization of the APs in human genes.
Center Project:	Integrateve Transcriptome Analysis
External Link:	DBTSS

Related SRA data

Experiments: <u>1</u> Runs: <u>4</u> (880.5Mbp; 2.5Gb)

Raw data available via the SRA

Processed data often available through GEO link

(III) Sequence Read Archive

Main Browse Search Download Submit Documentation Software Trace Archive Trace Assembly Trace BLAST

Studies Samples Analyses Run Browser Run Selector Provisional SRA

Histone modification (H3K4me3 and H3K27me3) during vascular endothelial cell differentiation from mouse embryonic stem cells

Identifiers:	SRA: SRP099437 BioProject: PRJNA374539 GEO: GSE94828
Study Type:	Other
Submission:	SRA537391
Abstract:	Although studies of the differentiation from mouse embryonic stem (ES) cells to vascular endothelial cells (ECs) provide an excellent model for investigating the molecular mechanisms underlying vascular development, temporal dynamics of gene expression and chromatin modifications have not been well studied. Herein, using transcriptomic and epigenomic analyses based on the H3K4me3 and H3K27me3 modifications at a genome-wide scale, we analyzed the EC differentiation steps from ES cells and crucial epigenetic modifications unique to ECs. We determined that Gata2, Fli1, Sox7, and Sox18 are master regulators of EC induced following expression of the hemangioblast commitment pioneer factor, Etv2. These master regulator gene loci were repressed by H3K27me3 under the mesoderm period, but rapidly transitioned to the histone modification switching from H3K27me3 to H3K4me3 after treatment with vascular

Related SRA data

Experiments: <u>20</u> Runs: <u>20</u> (22.1Gbp; 12.6Gb)

Outline

- Summary of NGS technologies (sequencing and applications)
- Introduction to NGS data analysis
- Commonly available databases
- Workflow integration and making use of existing NGS data

Simplest: Download processed data and view in spreadsheet

Simplest: Download processed data and view in spreadsheet

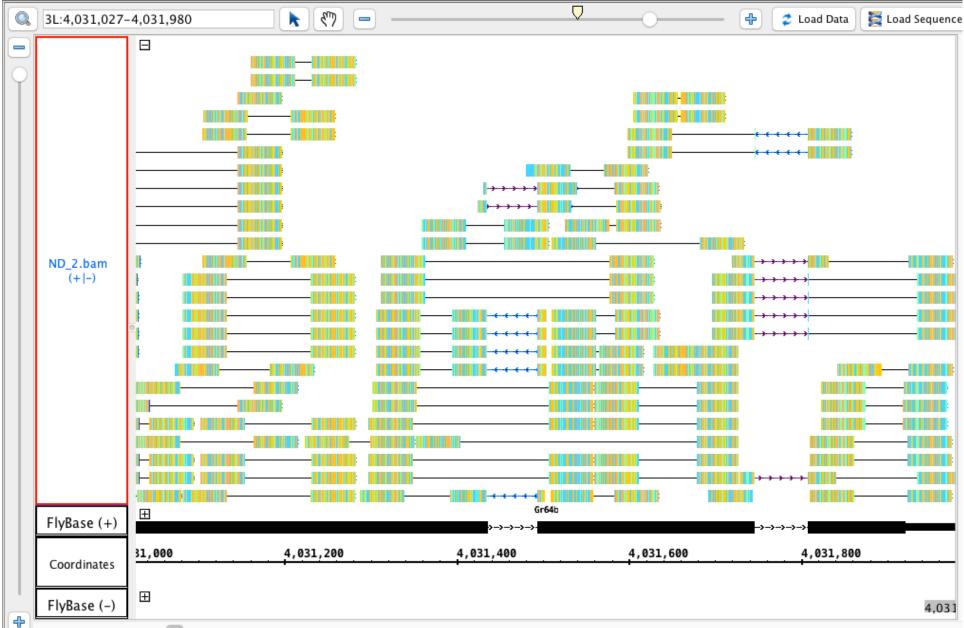
Example: gene_exp.diff from cufflinks

test id	gono id	gono	locus	comple 1	sample 2	status	value 1		log2(fold	test stat	n valuo	a valua	cia
iesi_iu	gene_id	gene	locus 2L:	sample_1	sample_2	รเสเนร	value_1	value_2		iesi_siai	p_value	<u>q_value</u>	SIE
XLOC_00 0001	XLOC_00 0001	CG11023	7528-948			ОК	5.49313	0.206789	-4.7314	-1.90088	0.42235	0.593877	no
XLOC_00 0002	XLOC_00 0002	lr21a	2L: 21918-25 163	cupcake_ sated		ОК	2106.08	2913.7	0.468291	2.53576	0.85965	0.903137	no
XLOC_00 0031	XLOC_00 0031	dbr	2L: 67043-71 390		cupcake_	ОК	14.9389	16.8551	0.174119	0.230548	0.67695	0.781675	no
XLOC_00 0032	XLOC_00 0032	galectin	2L: 72387-76 211	cupcake_ sated	cupcake_	ОК	112.48	85.6742	-0.39273	-0.67515	0.24695	0.423915	no
XLOC_00 0033	XLOC_00 0033	CG11374	2L: 76445-77 639	cupcake_ sated		ОК	6.13796	14.0256	1.19223	0.705069	0.22855	0.416548	no
XLOC_00 0034	XLOC_00 0034	_	2L: 80193-80 263	cupcake_ sated		ОК	0	402.552	inf	#NAME?	0.01965	0.158954	no

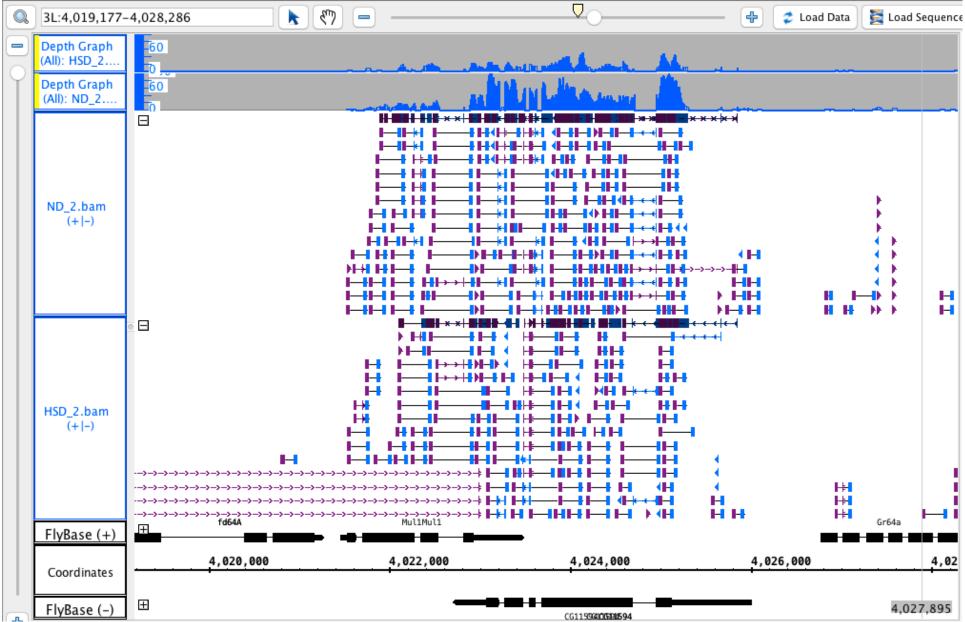
Simplest: Download processed data and view in spreadsheet

Example: gene_exp.diff from cufflinks

test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1		log2(fold _change)	test_stat	p_value	q_value	sig
XLOC_00 2456	XLOC_00 2456	TeplV	2L: 19549792 -1955645 5	cupcake_	cupcake_ hungry	ОК	27.2788	0.762464	-5.16097	-3.36415	5.00E-05	0.004022	yes
XLOC_00 4017	XLOC_00 4017		2L: 4479470- 4591963	cupcake_		ОК					0.00045		
XLOC_00 8185	XLOC_00 8185	Cam	2R: 8146912- 8166208	· —	cupcake_ hungry	ОК	2811.67	2026.02	-0.47278	-1.67712	0.0034	0.034841	yes


🞽 🗘 🔕 📧 🧃	♦ 🔶 🗄 🎞 🔳				Selection Info:	/for_ali/zt-23Hvs3	H-locations-nothreshold
NC_000913:0-4,639,	575 📐 🕅	• •	\bigtriangledown	4	🕨 🥏 Load Data	🦉 Load Sequence	Species
minus250kb-genes-noth gr inus250kb-locations-not gr tvs3H-locations-nothresh gr vs3H-genes-nothreshold gr t-23Hvs3H-locations-not gr -23Hvs3H-genes-nothre gr	reshold \sim $100 - 0.2 - 0.2$ hreshold \sim $0.2 - 0.2$ old -med \sim $0.2 - 0.2$ igb -med \sim 0.2 hreshold \sim 0.2 \sim 0.3 \sim 0.2 \sim 0.3 \sim 0.2 \sim 0.2 0.2 \sim 0.2 \sim 0.2	egeneration de algébre piper de région de la comparation de la comparation de la comparation de la comparation de la comparation de la comparation de la comparation de la comp de la comparation de la comparat	a second second second				Escherichia Cenome Version E_coli_K12 (1) Sequ Length NC_0009 4639675
Genbank Comple Record (+) Coordinates Genbank Comple Record (-)	الا عند المالية المالية دو						• · · · · · · · · · · · · · · · · · · ·
Track Label Font:	Data Access Ann raph Save Graph	notation Graph Advanced Searc Delete Graph Restore Default Options Label Y-axis Float Line Bar StairStep Filled Bar Min/Max/Mean ODt	h Selection Info Sliced Thresholding Operations Single-Graph: Add O Go Multi-Graph: O Go	View External View Plu	g-ins		

Allow loading and comparisons of various data sets with genomic features


Main candidates: IGB, IGV, UCSC Genome Browser

	3L:4,031,498-	-4,031,550	(7)) 🗖 🗕						🥏 Load Data	🚆 Load Sequence
		Ξ									
\bigcirc										т <mark>с</mark> тст	A T <mark>G</mark> T C A
										T <mark>G</mark> TCTT	A T <mark>G</mark> T C A
			A C T A T G	C G G A	T G A O	G T T A T A	ттт <mark>с</mark>	т <mark>бб</mark> тт	тт <mark>сс</mark> т	T <mark>G</mark> TCTT	A T <mark>G</mark> T C A
			ACTATG	C G G A	T G A O	G T T A T A	ттт <mark>с</mark>	т <mark>бб</mark> тт	тт <mark>сс</mark> т	т <mark>с</mark> тст	A T <mark>G</mark> T C A
		C	A A <mark>C T</mark> A T <mark>G</mark>	C G G A	T G A C	G T T A T A	T T T C	т <mark>бб</mark> тт	тт <mark>сс</mark> т	T <mark>G</mark> T <mark>C</mark> T T	A T G T C A
		A A G G G C	A A <mark>C T</mark> A T <mark>G</mark>	CGGA	T G A O	G T T A T A	ттт <mark>с</mark>	т <mark>бб</mark> тт	тт <mark>сс</mark> т	T	
	HSD_2.bam (+ -)	A A G G G C	A A <mark>C T</mark> A T <mark>G</mark>	CGGA	T G A C	G T T A T A					
		A A G G G C	A A <mark>C T</mark> A T <mark>G</mark>	CGGA	T G A C	G A T A T A					
		A A G G G C	A A <mark>C T</mark> A T <mark>G</mark>	CGGA	T <mark>G</mark> —						
		A A G G									
		A A G G									
		_									
		A A G G G	A C T A T G	C G G A	T G A C	G T T A T A	тттс	т <mark>сс</mark> тт	тт <mark>сс</mark> т	T G T C T T	A T <mark>G</mark> T C A
		Œ				Gr	-64b				
	FlyBase (+)										
	Coordinates	4,031,500	4,	31,510		4,031,520)	4,031,5	30	4,031,540	· · · · · · · · · · · · · · · · · · ·
		- 									
	FlyBase (-)	31,498									
		11,450									

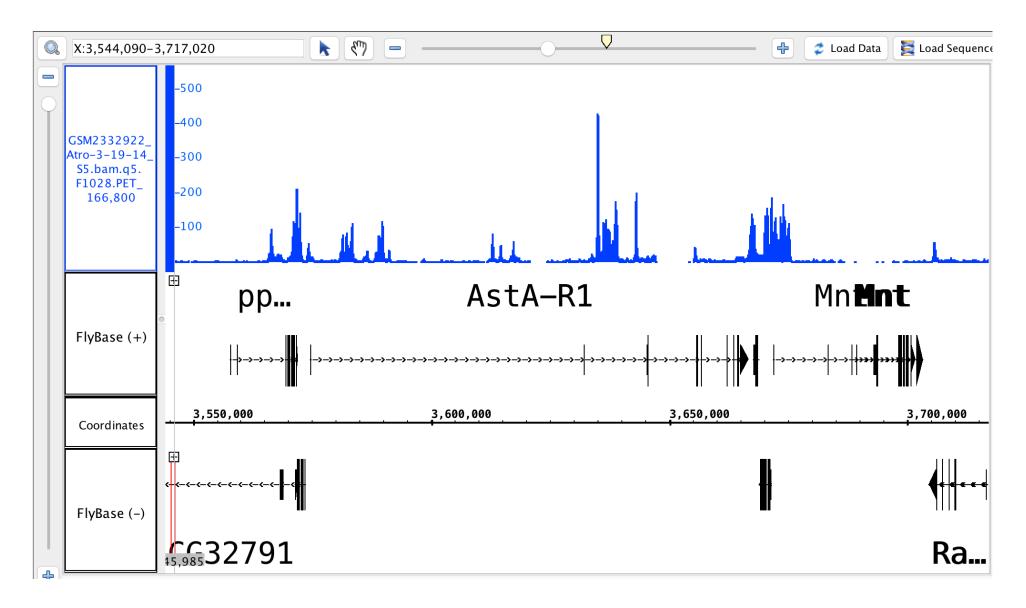
Analysis can scale from raw reads to highly processed functions of multiple data sets

Analysis can scale from raw reads to highly processed functions of multiple data sets

Analysis can scale from raw reads to highly processed functions of multiple data sets

S NCBI	Gene Expression Omnibus
HOME SEARCH SITE MA	
NCBI > GEO > Acces	sion Display 2 Contact: petefred 2 My submissions 2 Logout 6
Scope: Self 🛟	Format: (HTML +) Amount: Quick +) GEO accession: GSE87509 GO
Series GSE8750	9 Query DataSets for GSE87509
Status	Public on Mar 16, 2017
Title	ChIP-seq of Atrophin in Drosophila S2 cells
Organism	Drosophila melanogaster
Experiment type	Genome binding/occupancy profiling by high throughput sequencing
Summary	Drosophila Atro mutants have a large range of phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Although Atro mutants have diverse phenotypes, little is known about Atro's binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro. These data sets will serve as a valuable resource for future studies on Atro.
Overall design	We performed three independent biological replicates of Atro ChIP-seq experiments in untreated S2 cells. A corresponding non-specific IgG control ChIP was performed with each Atro ChIP-seq and was used as a control.

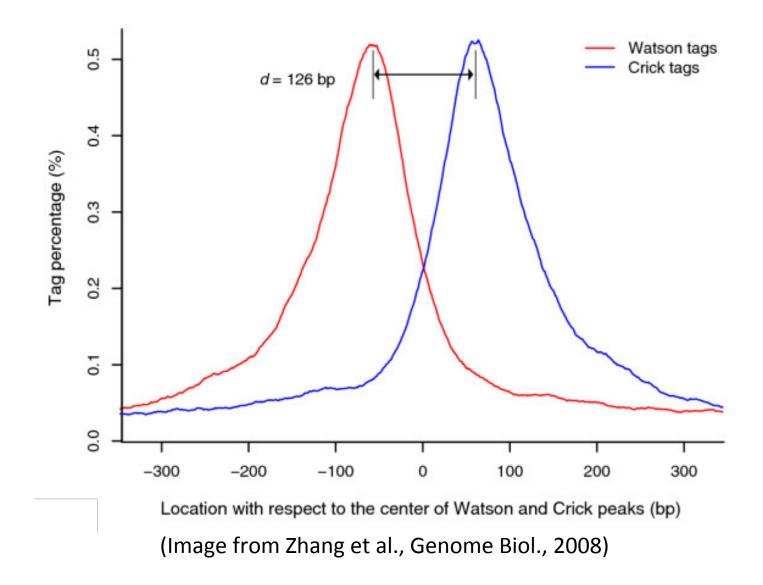
Many GEO files are directly loadable

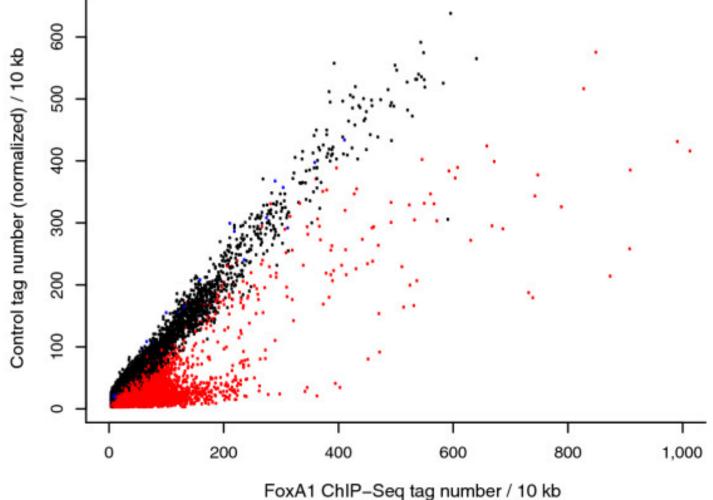

Download family	Format
SOFT formatted family file(s)	SOFT 😰
MINiML formatted family file(s)	MINIML 😰
Series Matrix File(s)	TXT 😰

Supplementary file	Size	Download	File type/resource
SRP/SRP090/SRP090681		(ftp)	SRA Study
GSE87509_RAW.tar	34.5 Mb	(http)(custom)	TAR (of WIG)
Raw data provided as supplementary file		\rightarrow	
Processed data provided as supplementary file			

Many GEO files are directly loadable

. . .


Genome Browsers


Many GEO files are directly loadable

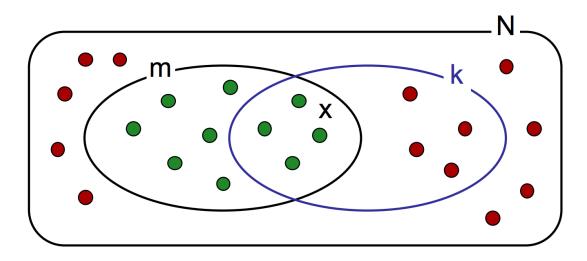
Peak calling or differential calling are common tasks

Peak calling or differential calling are common tasks

Peak calling or differential calling are common tasks

(Image from Zhang et al., Genome Biol., 2008)

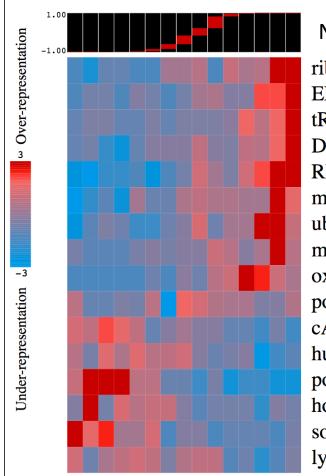
So what do you do once you have peaks/expression calls/etc.?


- Direct inspection of known biological targets
- Literature-driven inference and hypothesis generation
- Gene set enrichment analysis
- Motif analysis
- Network inference

Identification of gene categories (e.g., GO terms) that are correlated with another data set

Common Tools: GSEA, DAVID, iPAGE

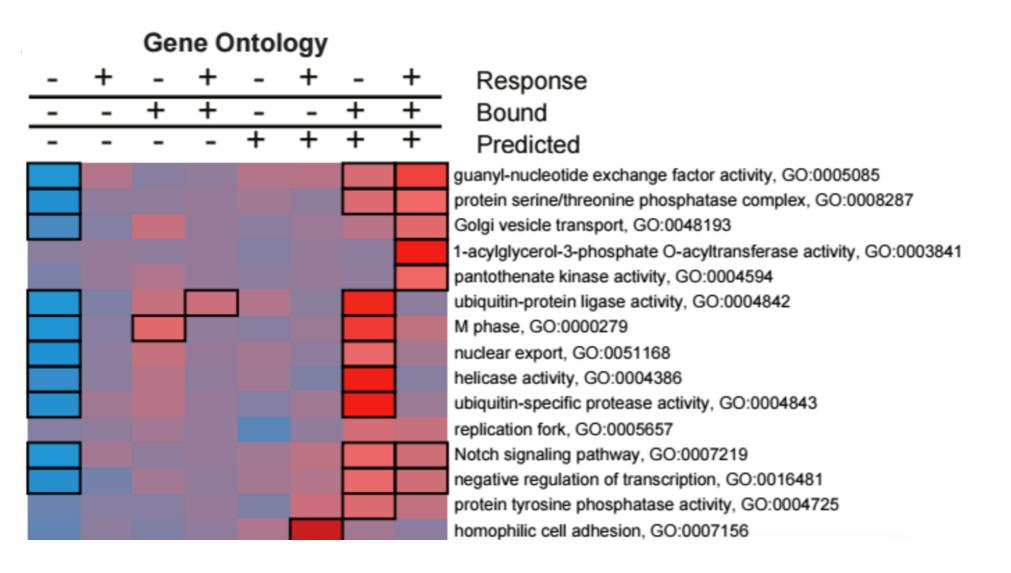
Identification of gene categories (e.g., GO terms) that are correlated with another data set


Common Tools: GSEA, DAVID, iPAGE

- N = total number of elements
- m = number of marked elements
- k = number of sampled elements
- x = number of marked sampled elements

Identification of gene categories (e.g., GO terms) that are correlated with another data set

Example: Gene expression


Normalized expression change

ribosome biogenesis and assembly, GO:0042254 ER to Golgi vesicle-mediated transport, GO:0006888 tRNA aminoacylation, GO:0043039 DNA replication, GO:0006260 RNA splicing, GO:0008380 mitotic cell cycle, GO:0000278 ubiquitin-dependent protein catabolic process, GO:0006511 microtubule biogenesis, GO:0000226 oxidative phosphorylation, GO:0006119 positive regulation of apoptosis, GO:0043065 cAMP-mediated signaling, GO:0019933 humoral immune response, GO:0006959 potassium ion transport, GO:0006813 homophilic cell adhesion, GO:0007156 sodium ion transport, GO:0006814 lymphocyte activation, GO:0046649

(From Goodarzi et al., Mol. Cell, 2009)

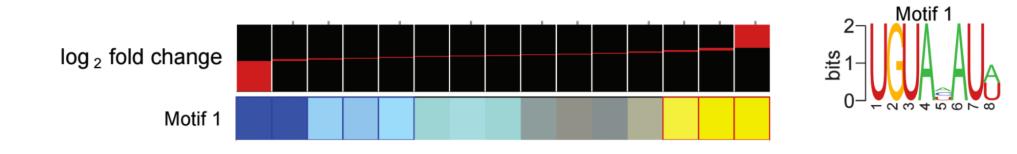
Identification of gene categories (e.g., GO terms) that are correlated with another data set

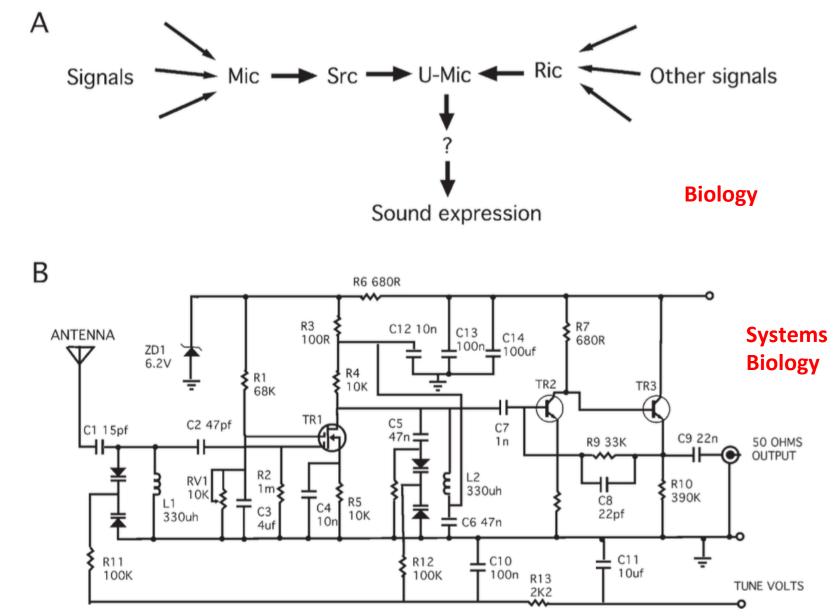
Example: Integration of data sets


Motif analysis

Identify motifs (typically nucleic acid sequences) correlated with a data set of interest

Used in a variety of applications (RNA-seq, ChIPseq, ribosome profiling, etc.)


Example tools: MEME suite, FIRE/TEISER, kmersvm


Motif analysis

(Image from Elemento et al., Mol. Cell 2007)

Motif analysis

Lazebnik, Y. Cancer Cell 2002 (slides via Michael Wolfe)