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So	what	do	you	do	once	you	have	
peaks/expression	calls/etc.?	

•  Direct	inspecFon	of	known	biological	targets	
•  Literature-driven	inference	and	hypothesis	
generaFon	

•  Gene	set	enrichment	analysis	
•  MoFf	analysis	
•  Network	inference	



Gene	set	enrichment	analysis	
IdenFficaFon	of	gene	categories	(e.g.,	GO	terms)		
that	are	correlated	with	another	data	set	
	
Common	Tools:	GSEA,	DAVID,	iPAGE	
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Gene	set	enrichment	analysis	
IdenFficaFon	of	gene	categories	(e.g.,	GO	terms)	that	are	correlated	with	another	data	set	
	
Example:	IntegraFon	of	data	sets	



MoFf	analysis	

IdenFfy	moFfs	(typically	nucleic	acid	sequences)	
correlated	with	a	data	set	of	interest	
	
Used	in	a	variety	of	applicaFons	(RNA-seq,	ChIP-
seq,	ribosome	profiling,	etc.)	
	
Example	tools:	MEME	suite,	FIRE/TEISER,	kmersvm	



MoFf	analysis	

(Image	from	Elemento	et	al.,	Mol.	Cell	2007)	



MoFf	analysis	

Inferred	from	knockdown:	

From	PAR-CLIP:	

(Bobom	adapted	from	Hafner,	Cell	2010)		



InterpretaFon	of	GO	term/moFf	
analysis	

•  Where	possible	find	consensus	from	mulFple	
programs	

•  Use	as	a	starFng	point	for	more	experiments	
(hypothesis	genera#ng	tool)	

•  Keep	in	mind	oden	high	false	discovery	rates	
•  Look	in	detail	at	consFtuents	giving	rise	to	
observaFons	
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Normalized	expression	change	

(From	Goodarzi	et	al.,	Mol.	Cell,	2009)	



Building	moFfs	into	networks	
ARMADA:	Inference	from	Fme	courses	

(Pemberton-Ross	et	al.,	Methods,	2015)	
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Building	systems-level	models	

•  MoFf	and	GO	term	analysis	
•  Kine#c	modeling	of	simple	networks	
•  Constraint-based	modeling	of	cellular	
metabolism	



Lazebnik,	Y.	Cancer	Cell	2002	



We	know	how	to	model		
electronic	circuits	

(Images	from	intmath.com)	
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DifferenFal	equaFons	are	the	
language	of	change	

dx/dt	=	…	
x’	=	...	
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All	mean:	
	
The	rate	of	change	in	x	per	
unit	Fme	is	…	



Example:	A	car	moving	at	
constant	speed	
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Our	constant	goal:	What	is	x(t)?	
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Example:	A	car	moving	at	
constant	speed	

•  Start	at	some	posiFon	–	we’ll	call	it	C	

•  Every	second,	add	to	the	current	
posiFon	the	distance	that	the	car	
travels	in	one	second	

•  Keep	doing	that	unFl	we	reach	the	
Fme	that	we	are	interested	in	



Example:	A	car	moving	at	
constant	speed	

carloc <- function(t,v,C) 
{
  x.curr <- C 
  t.curr <- 0
  while (t.curr < t) {
    t.curr <- t.curr+1
    x.curr <- x.curr + v
  }
  
  return(x.curr)
}
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Example:	A	car	moving	at	
constant	speed	

carloc <- function(t,v,C) 
{
  x.curr <- C 
  t.curr <- 0
  while (t.curr < t) {
    t.curr <- t.curr+1
    x.curr <- x.curr + v
  }
  
  return(x.curr)
}

Analy#cal	 Numerical	



DifferenFal	equaFons	are	
the	language	of	biology	

(Images	
from	wikipedia)	



Two	common	moFfs	
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Two	common	moFfs	



A	day	in	the	life	of	a	transcript	



A	day	in	the	life	of	a	transcript	

How	can	we	model	the	level	of	the	
transcript	at	any	given	Fme?	
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A	day	in	the	life	of	a	transcript	



StaFonary	point	analysis	

StaFonary	point:	
dx/dt	=	0	(for	all	variables)	
	
Finding	these	gives	
steady	state	values	
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ApplicaFon	to	feed	forward	loops	

(Shen-Orr	et	al.,	Nat.	Gen.	2002)	
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ApplicaFon	to	feed	forward	loops	

(Shen-Orr	et	al.,	Nat.	Gen.	2002)	



Can	we	test	our	answers	
from	Lab	1?	

Working	with	an	assigned	group	of	peers,	design	a	
BioBrick-based	construct	that	would	yield	a	transient	
burst	of	GFP	expression	when	E.	coli	cells	bearing	the	
plasmid	undergo	cold	shock	(20	C)	while	growing	in	
glucose	minimal	media.	Indicate	the	part	numbers	to	
be	assembled	(in	order),	draw	a	schema#c	of	the	
resul#ng	mini-network,	and	explain	why	your	
construct	will	implement	the	desired	func#on.	
	



Common	soluFons	
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Common	soluFons	

Equal	thresholds	



Common	soluFons	

Lower	threshold	on	y	



Common	soluFons	

Lower	threshold	on	y	



Common	soluFons	

With	lag	on	regulaFon	



BifurcaFon	analysis	

BifurcaFon:	Change	in	qualitaFve	behavior	of	system	as	
parameters	change	



Building	models:	SBML	

Systems	Biology	Markup	Language	



Building	models	for	humans:	
SBGN	

sbgn.github.io	



Tools	for	building	and	simulaFng	
DE-based	models	

•  COPASI	
•  CellDesigner	
•  BioSpice	
•  (and	a	bunch	more)	



Finding	pre-built	models	

hbp://www.ebi.ac.uk/biomodels-main	



How	do	we	build	models?	

Networks/wiring	from:	
•  Next	gen	sequencing	
•  Protein-protein	interacFons	
•  Enzyme	characterizaFon	
	
Parameters	from:	
•  Direct	measurement	of	key	constants	
•  Finng	parameters	to	experimental	results	



How	do	we	build	models?	
Networks/wiring	from:	
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•  Enzyme	characterizaFon	
	

Iget.c2b2.columbia.edu	



How	do	we	build	models?	
Parameters	from:	
•  Direct	measurement	of	key	constants	
•  Finng	parameters	to	experimental	results	

(Liepe	et	al.,	Nat.	Protoc.	2014)	



Building	systems-level	models	

•  MoFf	and	GO	term	analysis	
•  KineFc	modeling	of	simple	networks	
•  Constraint-based	modeling	of	cellular	
metabolism	



Constraint-based	modeling	allows	
simplified	metabolic	simulaFon	

(Image	from	Thomas	Forth)	
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Constraint-based	modeling	allows	
simplified	metabolic	simulaFon	

(Orth	et	al.,	Nat.	Biotechnol.	2010)	



Usage	cases	for	constraint-based	
modeling	

Strengths:	
•  Fast	model	evaluaFon	
•  Simple	interpretaFon	
•  Can	work	from	somewhat	incomplete	data	
Weaknesses:	
•  No	concentraFons,	only	fluxes	
•  No	dynamics	
•  OpFmality	assumpFon	



Usage	cases	for	constraint-based	
modeling	

•  Designing	metabolic	networks	to	make	
specific	products	

•  IdenFfying/understanding	effects	of	
mutaFons	

•  Finding	holes	in	current	state	of	knowledge	on	
metabolic	networks	

•  OpFmizing	media	for	growth	or	producFon	



Example:	IdenFfying	key	metabolic	
parameters	in	E.	coli	

(Edwards	et	al.,	Nat.	Biotech.,	2001)	



Example:	Engineering	strains	to	
produce	L-valine	

Gave	45%	improvement	over	raFonally	designed	strain	
	
(Park	et	al.,	PNAS,	2007)	



Tools	for	constraint-based	modeling	

•  COBRA	toolbox	(matlab)	
•  MASS	toolbox	(mathemaFca)	
•  Sybil	(R)	
•  cobrapy,	PyFBA	(python)	

Most	allow	SBML	import	



Common	FBA	variaFons	

•  Flux	Variability	Analysis	
(FVA):	Give	boundaries	
on	solu#ons	

•  MinimizaFon	of	
Metabolic	Adjustment	
(MOMA):	Find	smallest	
possible	perturbaFon	

•  Regulatory	on-off	
minimizaFon	(ROOM):	
Minimize	number	of	
regulatory	changes	

(Image	by	Thomas	Forth)	
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Common	FBA	variaFons	

•  Flux	Variability	Analysis	
(FVA):	Give	boundaries	
on	soluFons	

•  MinimizaFon	of	
Metabolic	Adjustment	
(MOMA):	Find	smallest	
possible	perturbaFon	

•  Regulatory	on-off	
minimiza#on	(ROOM):	
Minimize	number	of	
regulatory	changes	

(Shlomi	et	al.,	PNAS,	2005)	

PredicFon	of	knockout	lethality:	


