
Protein Structure Prediction and
Structural Genomics

David Baker1 and Andrej Sali2

Genome sequencing projects are producing linear amino acid sequences,
but full understanding of the biological role of these proteins will require
knowledge of their structure and function. Although experimental struc-
ture determination methods are providing high-resolution structure infor-
mation about a subset of the proteins, computational structure prediction
methods will provide valuable information for the large fraction of se-
quences whose structures will not be determined experimentally. The first
class of protein structure prediction methods, including threading and
comparative modeling, rely on detectable similarity spanning most of the
modeled sequence and at least one known structure. The second class of
methods, de novo or ab initio methods, predict the structure from se-
quence alone, without relying on similarity at the fold level between the
modeled sequence and any of the known structures. In this Viewpoint, we
begin by describing the essential features of the methods, the accuracy of
the models, and their application to the prediction and understanding of
protein function, both for single proteins and on the scale of whole
genomes. We then discuss the important role that protein structure
prediction methods play in the growing worldwide effort in structural
genomics.

Modeling of a sequence based on known
structures consists of four steps: finding
known structures related to the sequence to
be modeled (i.e., templates), aligning the se-
quence with the templates, building a model,
and assessing the model (1).

The templates for modeling may be found
by sequence comparison methods, such as
PSI-BLAST (2), or by sequence-structure
threading methods (3) that can sometimes
reveal more distant relationships than purely
sequence-based methods. In the latter case,
fold assignment and alignment are achieved
by threading the sequence through each of the
structures in a library of all known folds.
Each sequence-structure alignment is as-
sessed by the energy of a corresponding
coarse model, not by sequence similarity as
in sequence comparison methods.

Comparative structure prediction produc-
es an all-atom model of a sequence, based on
its alignment to one or more related protein
structures. Comparative model building in-
cludes either sequential or simultaneous mod-
eling of the core of the protein, loops, and
side chains. In the original comparative ap-
proach, a model is constructed from a few
template core regions and from loops and
side chains obtained from either aligned or
unrelated structures (4–6). Another family of
comparative methods relies on approximate

positions of conserved atoms from the tem-
plates to calculate the coordinates of other
atoms (7). A third group of methods uses
either distance geometry or optimization
techniques to satisfy spatial restraints ob-
tained from the sequence-template alignment
(8–10). There are also many methods that
specialize in the modeling of loops (11) and
side chains (12) within the restrained envi-
ronment provided by the rest of the structure.

De novo Structure Prediction
Although comparative modeling is limited to
protein families with at least one known struc-
ture, de novo structure prediction has no such
limitation. De novo methods start from the as-
sumption that the native state of a protein is at
the global free energy minimum and carry out a
large-scale search of conformational space for
protein tertiary structures that are particularly
low in free energy for the given amino acid
sequence. The two key components of such
methods are the procedure for efficiently carry-
ing out the conformational search and the free
energy function used for evaluating possible
conformations. To allow rapid and efficient
searching of conformational space, often only a
subset of the atoms in the protein chain is
represented explicitly; the potential functions
must then include terms that reflect the aver-
aged-out effects of the omitted atoms and sol-
vent molecules.

Recently, there have been a number of
promising advances in de novo structure pre-
diction (13–16). A particularly successful
method, called Rosetta, is based on a picture
of protein folding in which short segments of

the protein chain flicker between different
local structures consistent with their local
sequence, and folding to the native state oc-
curs when these local segments are oriented
such that low free energy interactions are
made throughout the protein (17). In simu-
lating this process, each short segment is
allowed to sample the local structures adopt-
ed by the sequence segment in known protein
structures, and a search is carried out through
the combinations of these local structures for
compact tertiary structures that bury the hy-
drophobic residues and pair the !-strands.
This strategy resolves some of the problems
with both the conformational search and the
free energy function: The search is greatly
accelerated because switching between dif-
ferent possible local structures can occur in a
single step, and fewer demands are placed on
the free energy function because the use of
fragments of known structures ensures that
the local interactions are close to optimal.

Accuracy and Applications of Models
The accuracy of a comparative model is re-
lated to the percentage sequence identity on
which it is based, correlating with the rela-
tionship between the structural and sequence
similarity of two proteins (Fig. 1) (1, 18, 19).
High-accuracy comparative models are based
on more than 50% sequence identity to their
templates. They tend to have about 1 Å root
mean square (RMS) error for the main-chain
atoms, which is comparable to the accuracy
of a medium-resolution nuclear magnetic res-
onance (NMR) structure or a low-resolution
x-ray structure. The errors are mostly mis-
takes in side-chain packing, small shifts or
distortions of the core main-chain regions,
and occasionally larger errors in loops. Me-
dium-accuracy comparative models are based
on 30 to 50% sequence identity. They tend to
have about 90% of the main-chain modeled
with 1.5 Å RMS error. There are more fre-
quent side-chain packing, core distortion, and
loop modeling errors, and there are occasion-
al alignment mistakes (18). Finally, low-ac-
curacy comparative models are based on less
than 30% sequence identity. The alignment
errors increase rapidly below 30% sequence
identity and become the most substantial or-
igin of errors in comparative models. In ad-
dition, when a model is based on an almost
insignificant alignment to a known structure,
it may also have an entirely incorrect fold.
Accuracies of the best model building meth-
ods are relatively similar when used optimal-
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ly (19, 20). Other factors such as template
selection and alignment accuracy usually
have a larger impact on the model accuracy,
especially for models based on less than 40%
sequence identity to the templates.

There is a wide range of applications of
protein structure models (Figs. 1 and 2). For
example, high- and medium-accuracy com-
parative models frequently are helpful in re-
fining functional predictions that have been
based on a sequence match alone because
ligand binding is more directly determined by
the structure of the binding site than by its
sequence. It is often possible to correctly
predict features of the target protein that do
not occur in the template structure. The size
of a ligand may be predicted from the volume
of the binding site cleft (Fig. 2A). For exam-
ple, the complex between docosahexaenoic
fatty acid and brain lipid-binding protein was
modeled on the basis of its 62% sequence
identity to the crystallographic structure of
adipocyte lipid-binding protein (PDB code
1ADL) (21). A number of fatty acids were
ranked for their affinity to brain lipid-binding
protein consistently with site-directed mu-

tagenesis and affinity chromatography exper-
iments, even though the ligand specificity
profile of this protein is different from that of
the template structure. Another example is
prediction of a binding site for a charged
ligand based on a cluster of charged residues
on the protein, as was done for mouse mast
cell protease 7 (Fig. 2B) (22). The prediction
of a proteoglycan binding patch was con-
firmed by site-directed mutagenesis and hep-
arin-affinity chromatography experiments.
Fortunately, errors in the functionally impor-
tant regions in comparative models are many
times relatively low because the functional
regions, such as active sites, tend to be more
conserved in evolution than the rest
of the fold. The utility of low-accuracy com-
parative models can be illustrated by a mo-
lecular model of the whole yeast ribosome,
whose construction was facilitated by fit-
ting comparative models of many ribosom-
al proteins into the electron microscopy
map of the ribosomal particle (23). This
example also suggests that structural
genomics of single proteins or their do-
mains, combined with protein structure pre-

diction, may contribute substantially to ef-
ficient structural characterization of large
macromolecular assemblies.

The accuracy and reliability of models
produced by de novo methods is much lower
than that of comparative models based on
alignments with more than 30% sequence
identity, but the basic topology of a protein or
domain can in some cases be predicted rea-
sonably well (Fig. 1, D and E). For roughly
40% of proteins shorter than 150 amino acids
that have been examined, one of the five most
commonly recurring models generated by
Rosetta has sufficient global similarity to the
true structure to recognize it in a search of the
protein structure database. Reasonable mod-
els can in some cases be produced for do-
mains of even very large proteins by using
multiple sequence alignments to identify do-
main boundaries (Fig. 1D).

The accuracy of de novo models is too
low for problems requiring high-resolution
structure information. Instead, the low-reso-
lution models produced by these methods can
reveal structural and functional relationships
between proteins not apparent from their ami-
no acid sequences and provide a framework
for analyzing spatial relationships between
evolutionarily conserved residues or between
residues shown experimentally to be func-
tionally important. These applications are il-
lustrated by examples from the recent CASP4
blind protein structure prediction experiment
(24, 25). The predicted structure of a protein
involved in cell lysis (26) was found to be
structurally related to a protein with a similar
function but no significant sequence similar-
ity (Fig. 2B). The predicted structure of a
domain of the mismatch repair protein MutS
(27) (Fig. 1D) has structural similarity to
proteins with related functions (28). Func-
tionally important residues of the signaling
protein Frizzled (29) were clustered in the
predicted structure in a surface patch likely to
be involved in a key protein-protein interac-
tion (Fig. 2C). Thus, in favorable cases de
novo predictions can provide some of the
most important functional insights obtainable
from experimentally determined structures.

Modeling on a Genomic Scale
Threading and comparative modeling methods
have already been applied on a genomic scale
(18, 30, 31). In total, domains in 58% of all
600,000 known protein sequences were mod-
eled with ModPipe (18) and MODELLER (9)
and deposited into a comprehensive database of
comparative models, ModBase (32–34). The
Web interface to the database allows flexible
querying for fold assignments, sequence-struc-
ture alignments, models, and model assessments
of interest. An integrated sequence/structure
viewer, ModView, allows inspection and anal-
ysis of the query results. ModBase will be in-
creasingly interlinked with other applications

Fig. 1. Accuracy and
application of protein
structure models.
Shown are the differ-
ent ranges of applica-
bility of comparative
protein structure mod-
eling, threading, and de
novo structure predic-
tion; the corresponding
accuracy of protein
structure models; and
their sample applica-
tions. (A through C).
Sample comparative
models based on about
60% (A), 40% (B), and
30% (C) sequence
identity to their tem-
plate structure. (D and
E) Examples of Rosetta
de novo structure pre-
dictions for the CASP4
structure prediction
experiment. Predicted
structures are in red,
and actual structures
are in blue. The accura-
cy of the models de-
crease significantly in
going from (A) to (E),
but the overall struc-
ture is still roughly cor-
rect. (D) A domain
from the 811-residue
MUtS protein which
was recognized as an
autonomous unit from
an alignment of ho-
mologous sequences;
such parsing of large
proteins into domains
can make structure

prediction more tractable.

5 OCTOBER 2001 VOL 294 SCIENCE www.sciencemag.org94

G E N O M E : U N L O C K I N G B I O L O G Y ’ S S T O R E H O U S E



and databases such that structures and other
types of information can be easily used for
functional annotation. Although the current
number of modeled proteins may look impres-
sive given the early stage of structural genomics,
usually only one domain per protein is modeled
(on the average, proteins have slightly more than
two domains), and two-thirds of the models are
based on less than 30% sequence identity to the
closest template.

Automation and large-scale modeling
with de novo methods have lagged behind
those of comparative modeling methods, be-
cause of the relatively poor quality of the
models produced and the relatively large
amount of computer time required. However,
inspired by the potential for functional in-
sights, large-scale modeling calculations
have been initiated with Rosetta. In the first
such project, models for representatives of all
PFAM families with less than 150 amino
acids and currently not linked to proteins of
known structure have been produced. Strong
structural similarities of these models to
structures of previously determined proteins
can indicate previously unidentified relation-
ships that may provide functional insights. It
should soon be possible to extend these large-
scale calculations to cover most of the do-
mains not represented in ModBase.

The Role of Protein Structure
Prediction in Structural Genomics
Structural genomics aims to structurally char-
acterize most protein sequences by an effi-
cient combination of experiment and predic-
tion (35–37). This aim will be achieved by
careful selection of target proteins and their
structure determination by x-ray crystallogra-
phy or NMR spectroscopy. There are a vari-

ety of target selection schemes (38), ranging
from focusing on only novel folds to select-
ing all proteins in a model genome. A model-
centric view requires that targets be selected
such that most of the remaining sequences
can be modeled with useful accuracy by com-
parative modeling. Even with structural
genomics, the structure of most of the pro-
teins will be modeled, not determined by
experiment. As discussed above, the accu-
racy of comparative models and corre-
spondingly the variety of their applications
decrease sharply below the 30% sequence
identity cutoff, mainly as a result of a rapid
increase in alignment errors. Thus, we will
need to determine protein structures so that
most of the remaining sequences are related
to at least one known structure at higher
than 30% sequence identity (36, 37 ). It was
recently estimated that this cutoff requires a
minimum of 16,000 targets to cover 90% of
all protein domain families, including those
of membrane proteins (36 ). These 16,000
structures will allow the modeling of a very
much larger number of proteins. For exam-
ple, New York Structural Genomics Re-
search Consortium measured the impact of
its structures by documenting the number
and quality of the corresponding models for
detectably related proteins in the nonredun-
dant sequence database. For each new
structure, on average, "100 protein se-
quences without any prior structural char-
acterization could be modeled at least at the
fold level (39). This large leverage of struc-
ture determination by protein structure
modeling illustrates and justifies the
premise of structural genomics.

De novo structure prediction will contrib-
ute to structural genomics in several ways.

Large-scale de novo prediction can guide tar-
get selection by focusing experimental struc-
ture determination on proteins likely to adopt
novel folds. De novo methods should also be
useful in complementing comparative model-
ing methods by building portions of proteins
not present in template structures. In addition,
de novo methods supplemented by restraints
from cross linking or other experiments can
provide models for proteins not readily ame-
nable to x-ray crystallographic or NMR anal-
ysis. Finally, large-scale de novo modeling
may allow coarse structure-based insights
into protein function of a large number of
proteins well in advance of experimentally
determined structures.

Conclusions
Improvement in the accuracy of models pro-
duced by both de novo and comparative mod-
eling approaches will require methods that
finely sample protein conformational space
using a free energy or scoring function that
has sufficient accuracy to distinguish the na-
tive structure from the nonnative conforma-
tions. Despite many years of development of
molecular simulation methods, attempts to
refine models that are already relatively close
to the native structure have met with relative-
ly little success. This failure is likely to be
due to inaccuracies in the potential functions
used in the simulations, particularly in the
treatment of electrostatics and solvation ef-
fects. Improvements in sampling strategies
may also be necessary, given the relatively
long time scale of protein folding (millisec-
onds to seconds). Combination of physical
chemistry with the vast amount of informa-
tion in known protein structures may provide
a route to development of improved potential

Fig. 2. Sample applica-
tions of protein struc-
ture models. (A) A
comparative model of
a complex between
docosahexaenoic fatty
acid (violet) and brain
lipid-binding protein.
Such models for a
number of fatty acid li-
gands were used to
rank their binding af-
finities (21). (B) A com-
parative model of mouse mast cell protease 7, color-coded by the surface electrostatic
potential. This model facilitated identification of a proteoglycan binding site (22). (C) The de
novo predicted structure of a protein that lyses bacteria (left) was found to be similar to the
structure of a protein with a similar function (nk-lysin; right) despite a lack of significant
sequence similarity between the two proteins. Such similarity between predicted structures
and previously determined structures can provide clues about protein function in the
absence of strong sequence homology. (D) The de novo predicted structure (left) of the
signaling protein Frizzled is compared with the experimentally determined structure (right)
(26), with the residues identified bymutagenesis to be involved in binding theWNT signaling
protein, indicated by gray spheres. The clustering of the putative functional residues at the
right in the model and the true structure suggests that they form a contiguous protein-
protein interaction site despite their lack of adjacency along the linear amino acid sequence.
(C and D) Rosetta de novo predictions from CASP4; to faciliate comparison, the colors
indicate position along the the chain from the NH2 terminus (blue) to the COOH terminus (red).
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functions. The refinement of de novo and
comparative models provides a good test and
application of the molecular dynamics meth-
ods widely used to simulate biological mac-
romolecules (40).

Automated methods for deducing function
from structure will be critical to obtaining func-
tional insights from both predicted and experi-
mentally determined structures. Considerable
insight can be gained from structural compari-
son of a given structure with all other known
protein structures using methods such as Dali
(41), which can frequently detect structural re-
lationships with functional significance that are
not evident from sequence comparisons. Also
promising are methods that match a structure
against a library of structural motifs associated
with different functions (42–44). For higher res-
olution models produced by comparative mod-
eling methods, functional sites on proteins can
potentially be identified and characterized by
explicit ligand docking calculations. Finally,
large-scale protein-protein docking calculations
in years to come may contribute to the identifi-
cation and characterization of protein interaction
networks.
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R E V I E W

Making Sense of Eukaryotic DNA
Replication Origins

David M. Gilbert

DNA replication is the process by which cells make one complete copy of
their genetic information before cell division. In bacteria, readily identifi-
able DNA sequences constitute the start sites or origins of DNA replica-
tion. In eukaryotes, replication origins have been difficult to identify. In
some systems, any DNA sequence can promote replication, but other
systems require specific DNA sequences. Despite these disparities, the
proteins that regulate replication are highly conserved from yeast to
humans. The resolution may lie in a current model for once-per-cell-cycle
regulation of eukaryotic replication that does not require defined origin
sequences. This model implies that the specification of precise origins is a
response to selective pressures that transcend those of once-per-cell-cycle
replication, such as the coordination of replication with other chromo-
somal functions. Viewed in this context, the locations of origins may be an
integral part of the functional organization of eukaryotic chromosomes.

Transmission of genetic information from
one cell generation to the next requires the
accurate and complete duplication of each
DNA strand exactly once before each cell

division. Typically, this process begins with
the binding of an “initiator” protein to a
specific DNA sequence or “replicator.” In
response to the appropriate cellular signals,
the initiator directs a local unwinding of the
DNA double helix and recruits additional
factors to initiate the process of DNA repli-
cation. This paradigm describes most of the
currently tractable replication systems and,

although derived from prokaryotic and viral
systems, there is no compelling reason to
doubt that it will apply to all eukaryotic
organisms. In fact, the proteins that regulate
replication are highly conserved from yeast to
humans, including the origin recognition
complex (ORC), which binds directly to rep-
lication origin sequences in budding yeast (1,
2). However, in several eukaryotic replication
systems, it appears that any DNA sequence
can function as a replicator. Those outside the
field are often perplexed as to how investiga-
tors of different eukaryotic systems can work
with assumptions that range from very spe-
cific to completely random origin sequence
recognition, yet all agree on the basic mech-
anism regulating DNA replication. This re-
view summarizes our current understanding
of eukaryotic replication origins and then pre-
sents some simple guidelines to help demys-
tify these seemingly disparate observations,
providing a framework for understanding eu-
karyotic origins that includes all existing
data.
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