
Name:		__________________________________________	
	
BIOINF	525	Module	3																																
Lab	#3	
4/6/2017	
	
Please	complete	the	exercises	below.	Throughout	the	lab	sessions	for	this	module,	
we	will	use	the	following	notation:	
	
Plain	text	indicates	actions	that	should	be	taken	
Italicized	text	indicates	explanatory	material	
Bold	text	indicates	a	point	where	a	written	response	is	required	
	
We	will	pause	at	each	point	with	a	long	horizontal	line	for	discussion.	If	you	reach	
those	pause	points	but	the	rest	of	the	class	is	still	working,	I	encourage	you	to	try	
out	some	variations	on	whatever	step	you	were	currently	working	on.	
	
	
Exercise	1:	Kinetic	modeling	of	regulatory	networks	
	
Go	to	File->New	and	generate	a	new	model	(you	can	call	it	something	like	
simple_example)	
	
As	a	simple	example	of	a	generic	pathway,	we	will	just	create	three	proteins,	A,	B,	
and	C,	where	A	is	converted	to	B	at	a	constant	rate,	and	B	is	converted	to	C	at	a	
constant	rate.	
	
Draw	three	protein	nodes,	labeled	A,	B,	and	C.	Then	define	state	transitions	between	
them,	such	that	A	->	B	and	B	->	C.	To	make	a	particular	type	of	reaction,	first	select	
the	arrow	type	that	you	want	in	the	top	menu,	then	click	on	the	center	of	the	source	
node,	then	the	destination	node.	Your	network	should	look	like	the	image	below	
(the	reaction	numbers	may	be	different).	
	

	
	
At	this	point	we	have	the	network	layout,	but	no	reactions	defined	yet.	Right	click	on	
the	arrow	connecting	A->B,	and	go	to	Edit	KineticLaw.	Set	it	to	use	Mass	Action	
Kinetics	and	set	the	constant	to	0.2.	Then	click	update,	and	close	the	menus.	Do	the	
same	for	the	B->C	reaction,	but	set	the	constant	to	0.1.	This	means	that	A	will	be	
converted	to	B	at	a	rate	of	0.2	times	the	current	concentration	of	A,	and	B	will	be	
converted	to	C	at	a	rate	of	0.1	times	the	current	concentration	of	B.	



	
At	this	point	you	should	see	a	display	like	the	following	in	the	reactions	tab	of	the	
bottom	menu:	
	

	
	
Write	the	differential	equations	that	govern	the	behavior	of	the	network	here	
as	it	is	currently	set	up:	
	
A’	=							__________________					B’	=	________________________						C’	=	______________________	
	
	
	
	
Now	we	can	simulate	the	behavior	of	our	network,	and	observe	how	it	changes	as	
we	change	either	initial	conditions	or	parameters.	
	
Go	to	Simulation->Control	Panel	and	bring	up	the	simulation	menu.	Set	the	initial	
quantity	of	A	to	be	1.0,	and	leave	the	others	at	0.	Click	“Execute”	to	simulate	the	
model.	Record	the	(approximate)	peak	concentration	of	B,	and	the	time	that	it	
takes	for	90%	of	the	mass	of	the	system	to	be	converted	to	C.	
	
	
	
	
	
Now	we	will	change	the	initial	conditions	of	the	system	and	see	how	the	dynamics	
change.	Set	the	initial	quantity	of	A	to	2.0,	and	rerun	the	simulation.		Record	the	
same	quantities	that	you	did	before,	and	compare	them	to	the	results	from	the	
first	run.	Are	you	surprised	by	what	you	find?	
	
	
	
	
Keeping	the	same	initial	conditions,	change,	the	rate	constant	for	the	B->C	
conversion	from	0.1	to	0.2.	What	do	you	think	this	will	do	to	the	observables	
that	we	had	recorded	relative	to	the	previous	simulations?	
	



	
	
	
	
Now	run	the	simulation.	Record	the	resulting	values	for	the	peak	B	
concentration	and	time	to	reach	90%	maximal	C.	How	do	the	results	compare	
with	your	expectations?	
	
	
	
	
	
	
	
We	will	now	design	a	toy	example	of	a	network	called	a	repressilator.	This	
represents	one	of	the	first	efforts	to	make	a	completely	synthetic	regulatory	
network	for	a	specific	purpose,	in	this	case,	to	have	long	term	oscillatory	behavior	in	
the	expression	of	a	GFP	reporter.	The	design	of	the	network	is	
	

	
	
(this	was	originally	described	in	detail	in	Nature	403(6767):335-8,	2000)	
	
Close	the	simulation	control	panel	and	go	to	File->New	to	create	a	new	network	for	
your	repressilator.	Note	that	for	the	purposes	of	this	example,	we’re	going	to	ignore	
transcription/translation	and	just	represent	each	entity	as	an	abstract	object	that	
can	repress	synthesis	of	its	target.		
	
First	let’s	make	a	network	that	just	shows	constitutive	expression	of	GFP.	Make	a	
“GFP”		protein	node,	and	a	‘degraded”	note	(which	effectively	represents	nothing.	
Then	generate	a	state	transition	from	the	‘degraded’	node	to	GFP	–	this	represents	
translation	of	GFP.	Likewise,	generate	a	state	transition	from	GFP	to	another	
degraded	node	–	this	represents	degredation	of	the	GFP.	
	

	
	



Now	use	the	“edit	kineticlaw”	interface	to	set	up	rates	for	both	reactions.	For	the	
synthesis,	use	a	NonPredefinedFunction	and	set	the	rate	to	k1.	For	the	degredation,	
use	Mass_Action_Kinetics.	Use	a	rate	constant	of	1.0	for	the	synthesis	reaction	and	
0.1	for	the	degredation	reaction.	
	

	 	
	
	
	
What	is	the	differential	equation	for	GFP	expression	being	implemented	by	
this	approach?	
	
d[GFP]/dt	=		
	
	
What	steady	state	value	will	GFP	attain?	
	
	
	
	
	
	
Now	open	the	simulation	Control	Panel	and	simulate	the	network’s	behavior,	
starting	with	zero	concentrations	of	GFP.	Note	that	you	will	probably	want	to	
uncheck	the	boxes	on	the	right	for	the	source	and	sink	nodes,	which	are	not	
informative	to	look	at.	
	
What	is	the	actual	steady-state	GFP	concentration	that	you	observe?	
	
	
	
	
	
	
Now,	to	build	up	the	repressilator,	we	need	to	apply	some	regulation	to	the	GFP	
synthesis.	Define	another	network	node	called	TetR,	and	set	up	its	synthesis	and	
degredation	to	be	identical	to	GFP.		Finally,	draw	an	“Inhibition”	arrow	between	
TetR	and	the	GFP	synthesis	reaction.		
	



To	actually	add	repression,	you	need	to	edit	the	kinetic	law	for	GFP	production	to	be	
inhibited	by	TetR.	Here	we	will	use	the	form	
	
k1	/	(1	+	k3	*	(s9	/	k2)	*	(s9	/	k2))	
	
Here	k1,	k2,	and	k3	are	constants,	and	s9	is	the	identifier	for	TetR	(this	may	differ	in	
your	setup	–	look	at	the	“Species”	tab	at	the	bottom	of	the	KineticLaw	menu	to	see	
the	variable	name	for	each	concentration).	Set	k1=1,	k2=5,	k3=5.	
	
Your	kinetic	law	should	now	look	something	like:	
	

	
	
Now	simulate	the	network’s	behavior	using	the	ControlPanel	as	before,	starting	with	
all	concentrations	at	zero.	What	is	the	maximum	concentration	of	GFP	that	is	
achieved?	
	
	
	



	
	
Using	the	same	protein-only	setup	for	the	other	components,	assemble	a	complete	
repressilator,	following	the	diagram	below:	

	
	
Set	all	of	the	synthesis	and	degradation	terms	to	have	the	same	logic	and	
parameters	that	you	used	for	the	synthesis	of	GFP	(but	driven	by	the	appropriate	
repressor).	Then,	to	let	the	GFP	part	be	more	visible,	raise	the	k1	constant	to	3	
instead	of	1	in	the	GFP	synthesis	reaction.	Your	model	should	look	something	like:	
	

	
	
In	your	model	network,	what	is	the	differential	equation	for	the	rate	of	change	
of	LacI	concentration?	
	
D[LacI]/dt	=		
	
	
Go	to	the	simulation	control	panel,	set	the	“End	Time”	and	“Num	of	points”	both	to	
250,	set	the	initial	concentration	of	TetR	to	1,	and	then	run	the	simulation.	As	usual,	
remove	the	source/sink	nodes	that	you’re	not	interested	in	and	then	re-zoom.	
	



Does	your	network	actually	undergo	any	kind	of	oscillation?	Does	it	
eventually	reach	a	steady	state?	If	so,	what	does	that	steady	state	look	like?		
	
	
	
	
Try	changing	the	initial	concentrations	of	the	three	repressors	to	a	variety	of	
different	values.	How	stable	are	the	dynamics	of	the	system	to	different	initial	
concentrations?	What	about	its	endpoint?	Can	you	find	initial	conditions	
where	no	oscillation	occurs?		
	
	
	
	
	
Now,	try	changing	the	parameters	of	the	network,	first	by	increasing	the	rate	
constant	for	the	degradation	of	TetR	from	0.1	to	0.5.	What	do	you	think	this	will	
do	to	the	steady	state?	(What	will	the	rank	ordering	be	of	repressor	
abundances)	
	
	
	
	
Now	run	the	simulation	with	the	altered	parameters.	What	actually	happens?	
	
	
	
Next,	try	changing	all	of	the	degradation	constants	for	the	repressors	to	0.01,	and	
then	simulate	the	system	again.	(You	will	probably	want	to	increase	the	total	
number	of	steps	to	2000	or	so).	How	is	the	behavior	changed	by	making	the	
repressors	more	stable?	
	
	
	
CellDesigner	also	allows	you	to	download	a	variety	of	models	from	databases	such	
as	the	ones	that	we	discussed	in	class.	Go	to	database->Import	model	from	
biomodels.net,	search	for	repressilator,	and	load	the	Elowitz2000	model.	Simulate	it	
for	at	least	1000	steps.	How	does	its	behavior	compare	with	that	of	your	model	
network?	
	
	
	
	
	
	



Exercise	2:	Flux	balance	analysis	
	
We	will	use	the	Sybil	R	package	to	perform	several	variations	of	flux	balance	
analysis	on	the	core	metabolic	network	of	E.	coli.	The	examples	shown	here	are	
based	on	the	Sybil	reference	paper:	BMC	Sys.	Biol.	7:125,	2013.	
	
Open	an	R	session,	load	the	Sybil	library	and	glpkAPI	package,	and	then	load	a	
model	of	the	E.	coli	central	carbon	metabolism	network	with	the	command	
	
data(Ec_core)	
	
	
You	can	then	fit	an	FBA	model	to	determine	the	fluxes	through	this	network	with	the	
command	
	
fba	<-	optimizeProb(Ec_core,	algorithm	=	"fba")	
	
We	are	first	interested	in	looking	at	fluxes	into	and	out	of	the	cells.	We	can	find	a	list	
of	all	of	the	exchange	reactions	with	
	
ex	<-	findExchReact(Ec_core)	
ex	
	
The	resulting	listing	gives	boundaries	on	the	flux	of	several	metabolites	into	
(negative)	and	out	of	(positive)	the	cells.	
	
In	the	initial	formulation	of	the	model,	what	carbon	sources	are	available	to	
the	cells?	
	
	
	
	
	
Now,	we	can	get	the	distribution	of	fluxes	from	the	fitted	model	with	the	command	
	
fd	<-	getFluxDist(fba,	ex)	
	
The	fluxes	can	be	observed	in	a	simpler	form	using	the	command	
	
getNetFlux(fd)	
	
and	we	can	observe	the	value	of	the	objective	function	(in	this	case,	biomass	
production)	with	the	command	
	
mod_obj(fbap)	



	
Simply	by	looking	at	the	fluxes	from	this	model,	what	factors	aside	from	
nutrient	depletion	might	halt	the	growth	of	E.	coli	cultures?	
	
	
	
	
	
	
Now	we	will	use	FBA	to	predict	how	the	growth	of	E.	coli	will	change	if	we	alter	the	
carbon	source	that	they	are	using.		
	
We	will	use	the	Ec_core	model	as	the	basis	for	a	new	model	where	we	have	replaced	
the	main	carbon	source	with	pyruvate:	
	
Ec_core_pyr	=	changeBounds(Ec_core,	ex[c("EX_glc(e)",	"EX_pyr(e)")],	lb	=	c(0,	-10))	
ex.p<-	findExchReact(Ec_core_pyr)	
ex.p	
	
Fit	a	new	FBA	model	for	the	cells	growing	on	pyruvate	as	a	sole	carbon	source.	
How	does	the	growth	rate	compare	to	that	observed	for	growth	on	glucose?	
	
	
	
Has	there	been	any	notable	change	in	the	net	import	or	export	of	resources	for	
cells	growing	in	pyruvate?	(Aside	from	the	change	in	primary	carbon	source	
being	imported)	
	
	
	
	
	
	
Now	we	can	look	at	the	behavior	of	the	cells	in	the	face	of	a	genetic	perturbation;	we	
will	do	so	separately	using	glucose	and	pyruvate	as	a	carbon	source.	
	
A	knockout	can	be	simulated	by	adding	a	“gene”	parameter	to	optimizeProb;	genes	
can	be	looked	up	directly	in	the	model	files	or	on	a	database	like	ecocyc.org	(but	
don’t	do	that	just	yet).	
	
	
Fit	models	for	knockouts	of	the	gene	b4025	as	follows	(note	that	this	gene	naming	is	
the	standard	systematic	notation	for	E.	coli):	
	
optimizeProb(Ec_core,	gene	=	"b4025",	lb	=	0,	ub	=	0)	



optimizeProb(Ec_core_pyr,	gene	=	"b4025",	lb	=	0,	ub	=	0)	
	
(for	each	fitted	model,	we	want	to	look	at	the	value	of	the	objective	function,	which	
gives	the	growth	rate)	
	
Gene	b4025	is	phosphoglucose	isomerase,	responsible	for	the	second	step	in	
glycolysis.	Are	you	surprised	by	your	results?		
	
	
	
	
	
	
	
	
	
We	can	use	FBA	to	perform	a	more	systematic	analysis	of	lethal	genes	and	how	they	
change	under	different	conditions.	The	central	function	for	this	approach	is	the	
oneGeneDel	function,	which	will	fit	the	model	with	individual	simulated	deletions	of	
each	gene.	For	the	original,	glucose-using	model,	this	can	be	done	with:	
	
ref.glu	=	optimizeProb(Ec_core)	
opt.glu	=	oneGeneDel(Ec_core)	
essential.genes	=	lethal(opt.glu,wt=mod_obj(ref.glu))	
allGenes(Ec_core)[essential.genes]	
	
A	list	of	essential	genes	will	then	be	printed.	
	
Identify	the	essential	genes	for	growth	on	glucose	and	on	pyruvate	as	carbon	
sources.	Record	any	that	differ	between	the	two	carbon	sources:	
	
	


