PAIRWISE SEQUENCE ALIGNMENT AND DATABASE SEARCHING

Barry Grant University of Michigan

www.thegrantlab.org

BIOINF 525

http://tinyurl.com/bioinfl7

17-Jan-2017

MODULE OVERVIEW

Objective: Provide an introduction to the practice of bioinformatics as well as a practical guide to using common bioinformatics databases and algorithms

- **1.1.** *Introduction to Bioinformatics*
- **1.2.** Sequence Alignment and Database Searching
- **1.3** Structural Bioinformatics
- 1.4 Genome Informatics: High Throughput Sequencing Applications and Analytical Methods

WEEK ONE REVIEW

Muddy Point Assessment (14/20): <u>Responses</u>

- Need for FASTA header lines ">example1"
- More on protein structure viewing and NGL...
- "what does the AU assembly mean?
- "Great first lab!" ... Nice Assignment".

THIS WEEK'S HOMEWORK

Check out the "Background Reading" material online: **Dynamic Programming Database Searching**

Complete the lecture 1.2 homework questions: http://tinyurl.com/bioinf525-guiz2

TODAYS MENU

- Alignment basics
 - Why compare biological sequences?
- Homologue detection
 - Orthologs, paralogs, similarity and identity
 - Sequence changes during evolution
 - Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
 - Brute force alignment
 - Dot matrices
 - Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
 - BLAST
- Practical database searching
 - PSI-BLAST and HMM approaches

Seq1: CATTCAC Seq2: CTCGCAGC

Seq1: CAT - TCA - C | | | | | Seq2: C - TCGCAGC mismatch Add gaps to increase number of matches

Seq1: CAT - TCA - CSeq2: C - T C G C A G C-match mismatch } mutation insertion **}** indels Gaps represent 'indels' mismatch represent mutations

Why compare biological sequences?

- To obtain functional or mechanistic insight about a sequence by inference from another potentially better characterized sequence
- To find whether two (or more) genes or proteins are evolutionarily related
- To find structurally or functionally similar regions within sequences (e.g. catalytic sites, binding sites for other molecules, etc.)
- Many practical bioinformatics applications...

Practical applications of sequence alignment include...

• Similarity searching of databases

Protein structure prediction, annotation, etc...

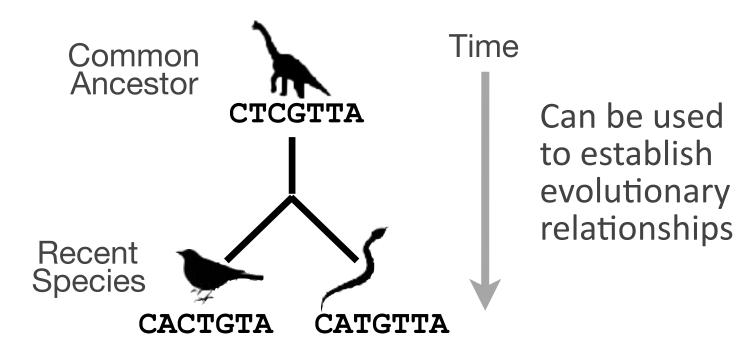
- Assembly of sequence reads into a longer construct such as a genomic sequence
- Mapping sequencing reads to a known genome
 - "Resequencing", looking for differences from reference genome - SNPs, indels (insertions or deletions)
 - Mapping transcription factor binding sites via ChIP-Seq (chromatin immuno-precipitation sequencing)
 - Pretty much all next-gen sequencing data analysis

Practical applications of sequence alignment include...

- War Pairwise sequence alignment is arguably the most fundamental operation of bioinformatics!

(chromatin immuno-precipitation sequencing)

Pretty much all next-gen sequencing data analysis


Outline for today

- Alignment basics
 - Why compare biological sequences?
- Homologue detection
 - Orthologs, paralogs, similarity and identity
 - Sequence changes during evolution
 - Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
 - Brute force alignment
 - Dot matrices
 - Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
 - BLAST
- Practical database searching
 - PSI-BLAST and HMM approaches

Sequence comparison is most informative when it detects **homologs**

Homologs are sequences that have common origins *i.e.* they share a **common ancestor**

• They may or may not have common activity

Key terms

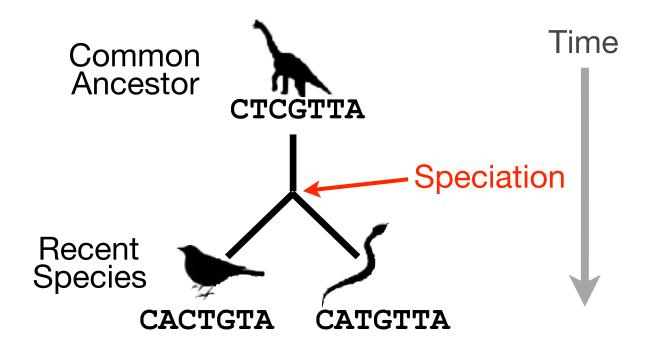
When we talk about related sequences we use specific terminology.

Homologous sequences may be either:

- Orthologs or Paralogs

(Note. these are all or nothing relationships!)

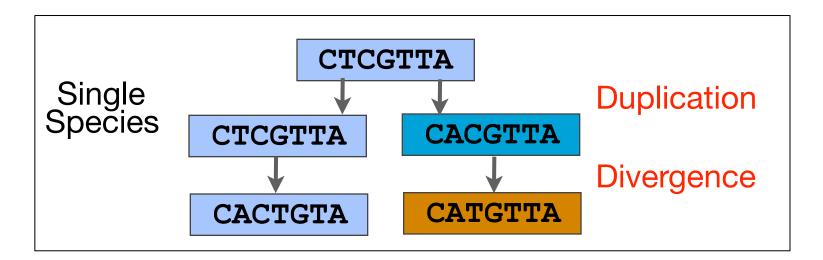
Any pair of sequences may share a certain level of:


– Identity and/or Similarity

(Note. if these metrics are above a certain level we often <u>infer</u> homology)

Orthologs tend to have similar function

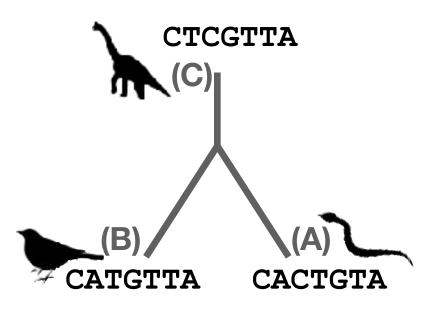
Orthologs: are homologs produced by <u>speciation</u> that have diverged due to divergence of the organisms they are associated with.


– Ortho = [greek: straight] ... implies direct descent

Paralogs tend to have slightly different functions

Paralogs: are homologs produced by **gene duplication**. They represent genes derived from a common ancestral gene that <u>duplicated within an organism</u> and then subsequently <u>diverged by accumulated mutation</u>.

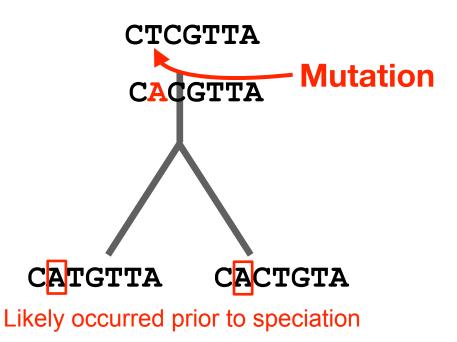
– Para = [greek: along side of]


Orthologs vs Paralogs

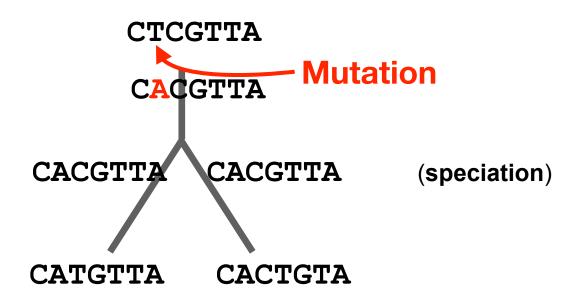
- In practice, determining ortholog vs paralog can be a complex problem:
 - gene loss after duplication,
 - lack of knowledge of evolutionary history,
 - weak similarity because of evolutionary distance
- Homology does not necessarily imply exact same function
 - may have similar function at very crude level but play a different physiological role

Sequence changes during evolution

There are three major types of sequence change that can occur during evolution.


- Mutations/Substitutions
- Deletions
- Insertions

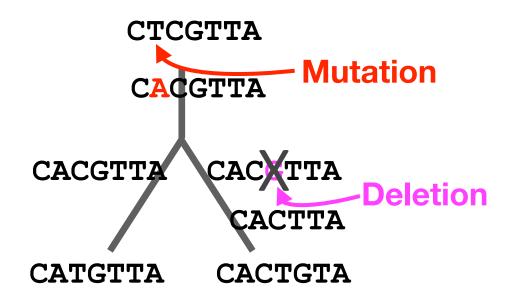
There are three major types of sequence change that can occur during evolution.


 $CTCGTTA \rightarrow CACGTTA$

- Mutations/Substitutions
- Deletions
- Insertions

There are three major types of sequence change that can occur during evolution.

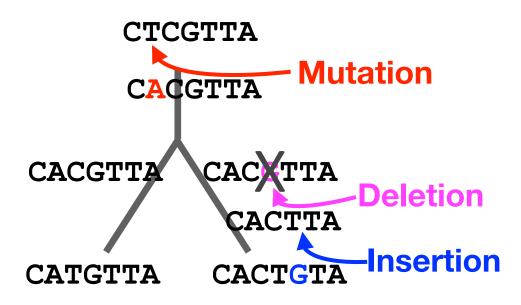
- Mutations/Substitutions
- Deletions
- Insertions


 $CTCGTTA \rightarrow CACGTTA$

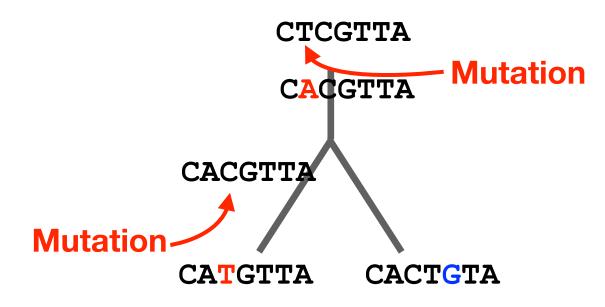
There are three major types of sequence change that can occur during evolution.

- Mutations/Substitutions
- Deletions

 $CTCGTTA \longrightarrow CACGTTA$ $CACGTTA \longrightarrow CACTTA$

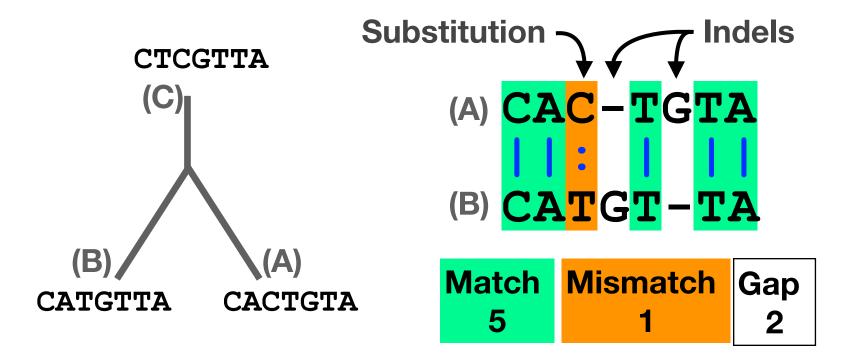

- Insertions

There are three major types of sequence change that can occur during evolution.


- Mutations/Substitutions
- Deletions
- Insertions

 $CTCGTTA \longrightarrow CACGTTA$ $CACGTTA \longrightarrow CACTTA$ $CACTTA \longrightarrow CACTGTA$

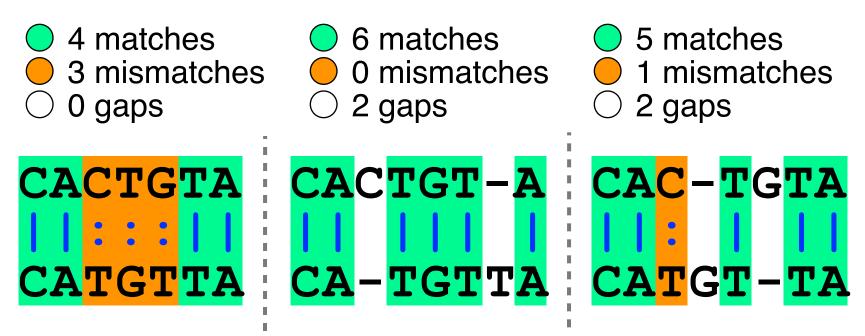
There are three major types of sequence change that can occur during evolution.


- Mutations/SubstitutionsCTCGTTA \rightarrow CACGTTA- DeletionsCACGTTA \rightarrow CATGTTA
- Insertions

Alignment view

Alignments are great tools to visualize sequence similarity and evolutionary changes in homologous sequences.

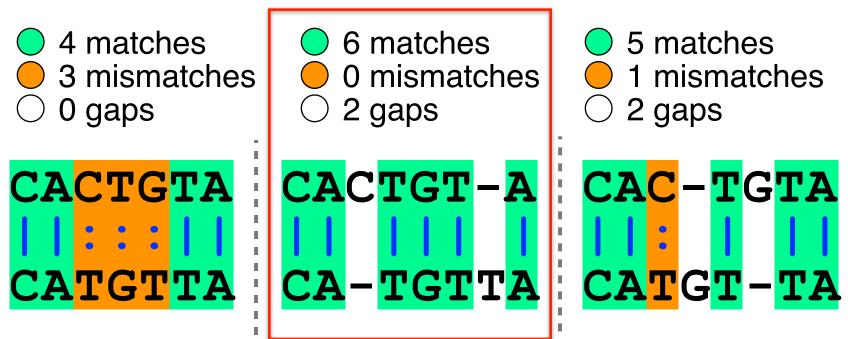
- Mismatches represent mutations/substitutions
- Gaps represent insertions and deletions (indels)


Alternative alignments

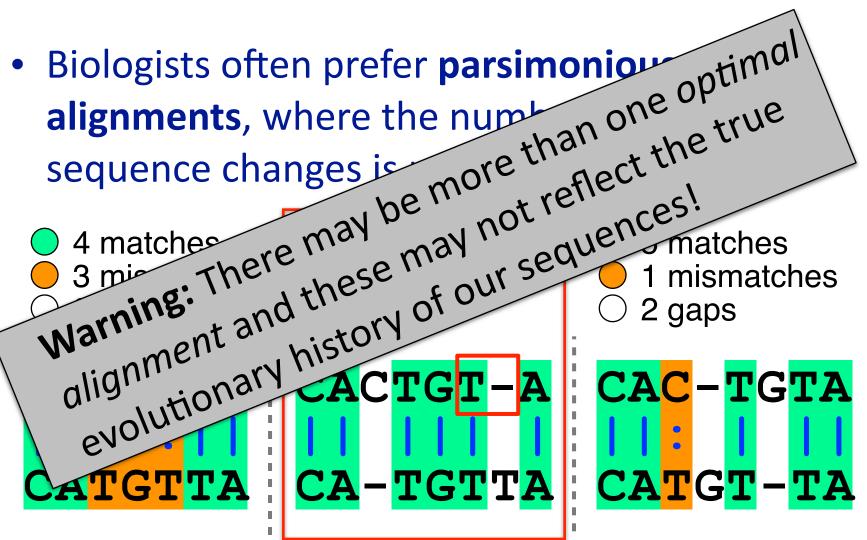
- Unfortunately, finding the correct alignment is difficult if we do not know the evolutionary history of the two sequences
 - There are many possible alignments
 - Which alignment is best?

Alternative alignments

 One way to judge alignments is to compare their number of matches, insertions, deletions and mutations



Scoring alignments


• We can assign a score for each match (+3), mismatch (+1) and indel (-1) to identify the optimal alignment for this scoring scheme

Optimal alignments

 Biologists often prefer parsimonious alignments, where the number of postulated sequence changes is minimized.

Optimal alignments

Side note: sequence *identity* and *similarity*

- Two commonly quoted metrics for pairs of aligned sequences.
 - Sequence identity: typically quotes the percent of identical characters in the aligned region of two sequences
 - Sequence similarity: typically the score resulting from optimal pair-wise alignment (note dependence on parameters used: *i.e.* scoring scheme)
- N.B. In contrast, homology is an all or nothing relationship, you can not have a percent homology!

Side note: sequence identity and similarity

- High sequence similarity is frequently used as an indicator of homology
 - Use to find genes and/or proteins with potentially similar or identical function
 - Can query a database of sequences by performing a series of pair-wise alignments
- Knowledge of the difference between sequences can also yield valuable functional and mechanistic insights
 - A gene from a normal and an affected subject possible cause of a heritable disease
 - Similar proteins with different substrate specificities what amino acid changes might be responsible for this?

Outline for today

- Alignment basics
 - Why compare biological sequences?
- Homologue detection
 - Orthologs, paralogs, similarity and identity
 - Sequence changes during evolution
 - Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
 - Brute force alignment
 - Dot matrices
 - Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
 - BLAST
- Practical database searching
 - PSI-BLAST and HMM approaches

Outline for today

- Alignment basics
 - Why compare biological sequences?
- Homologue detection
 - Orthologs, paralogs, similarity and identity
 - Sequence changes during evolution
 - Alignment view: matches, mismatches and gaps
- Painvise sequence alignment methods

How do we compute the optimal

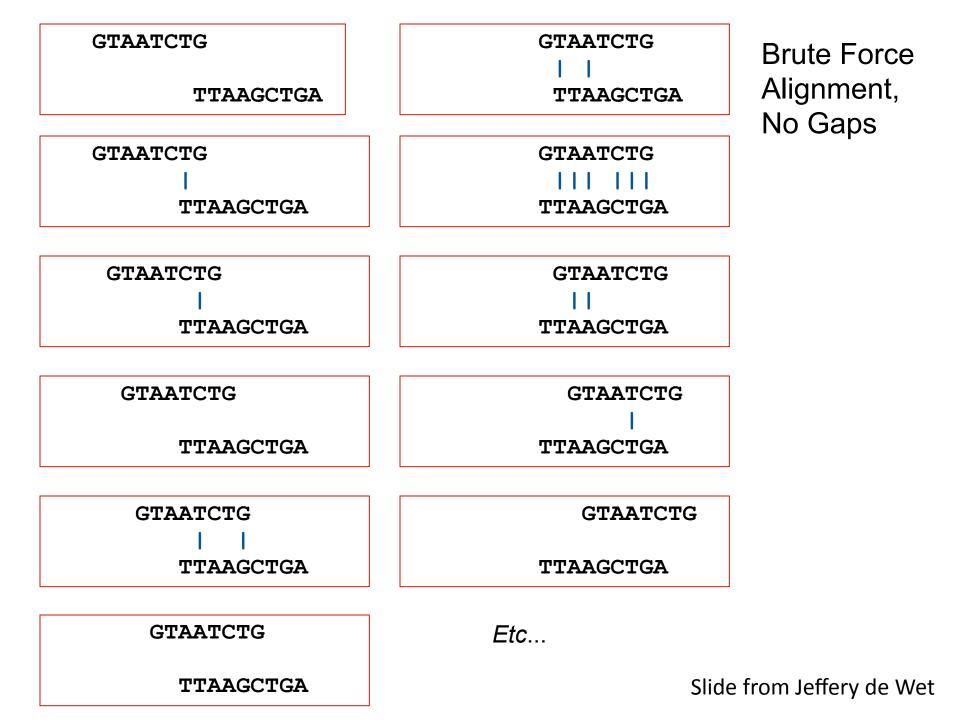
alignment between two sequences?

(уюраг vs юсаг ануптнент)

- Rapid heu
 - BLAST **Quiz questions:**
- Practical c
 PSI-BL

http://tinyurl.com/bioinf525-quiz2

Pair-wise Sequence Alignment


- Objective: arrange two sequences in such a fashion that pairs of matching characters between the two sequences are maximized
 - Match does not have to be identity, can be defined by a function that ranks or scores the characters being compared (often termed a **substitution matrix**)
 - Ungapped alignment example bars indicate matching characters

Simplest case – brute force alignments

- In the simplest case we can simply slide one sequence across the other and count matching characters for each possible alignment
 - Chose a scoring scheme and do not allow internal gaps within sequences
 - Algorithmic complexity is linear

N + M alignments to consider

(where N and M are the length of each sequence)

Gaps make the brute force method unusable for all but the shortest sequences

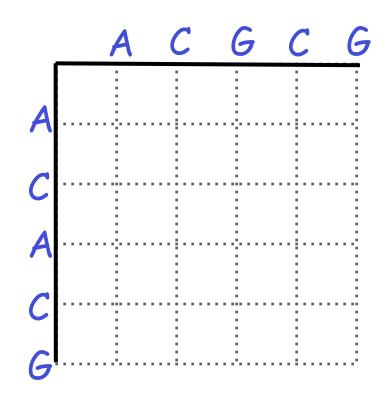
- Pairs of related sequences often have insertions or deletions relative to one-another, we therefore require gapped pair-wise alignment
 - Need to generate all the possible gap lengths and combinations of gaps at all possible positions in both sequences
 - For two sequences of equal length, the formula is:

$$\binom{2N}{N} = \frac{(2N)!}{(N!)^2} \cong \frac{2^{2N}}{\sqrt{\pi N}}$$

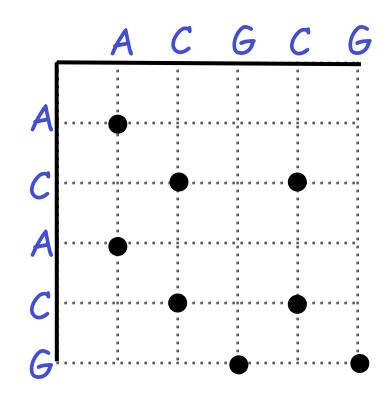
Slide from Jeffery de Wet

Three general solutions to the alignment problem

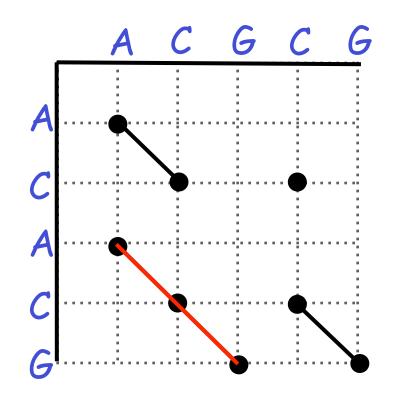
• The **dot plot** or **dot matrix** approach

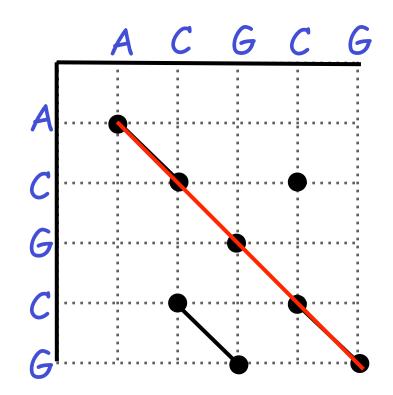

- A simple graphical method for pair-wise alignment
- No scoring, so difficult to compare alternative alignments
- Can give visual clues to sequence structure but requires human interaction
- **Dynamic programming** algorithms
 - Provides Optimal solutions (but not necessarily unique solutions)
- Heuristic word or k-tuple approaches
 - Much faster (e.g. BLAST and FASTA)
 - Widely used for database searches
 - May miss some pairs with low similarity

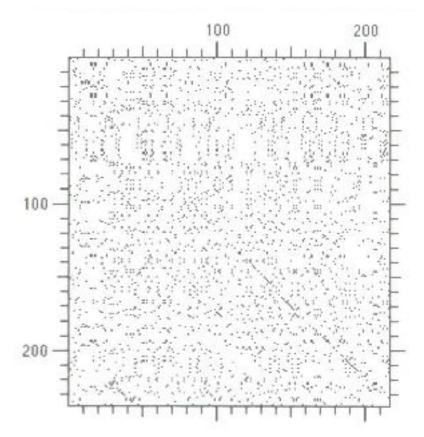
Three general solutions to the alignment problem


• The **dot plot** or **dot matrix** approach

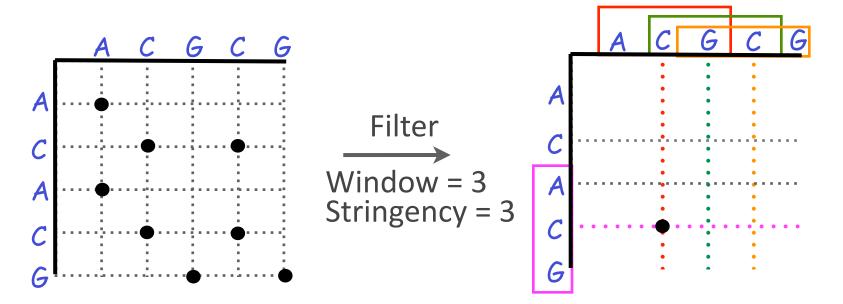
- A simple graphical method for pair-wise alignment
- No scoring, so difficult to compare alternative alignments
- Can give visual clues to sequence structure but requires human interaction
- **Dynamic programming** algorithms
 - Provides Optimal solutions (but not necessarily unique solutions)
- Heuristic word or k-tuple approaches
 - Much faster (e.g. **BLAST** and **FASTA**)
 - Widely used for database searches
 - May miss some pairs with low similarity


• Place one sequence on the vertical axis of a 2D grid (or matrix) and the other on the horizontal


 Now simply put dots where the horizontal and vertical sequence values match

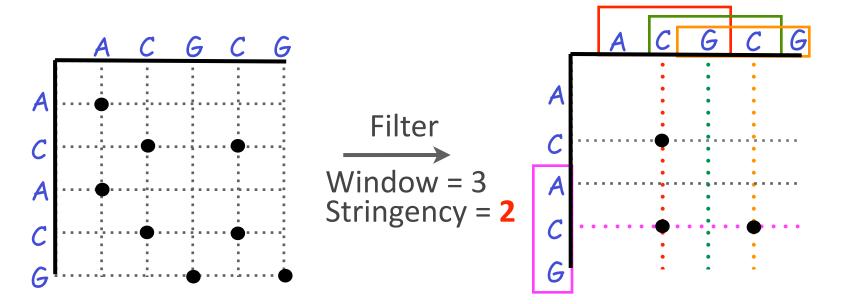

 Diagonal runs of dots indicate matched segments of sequence

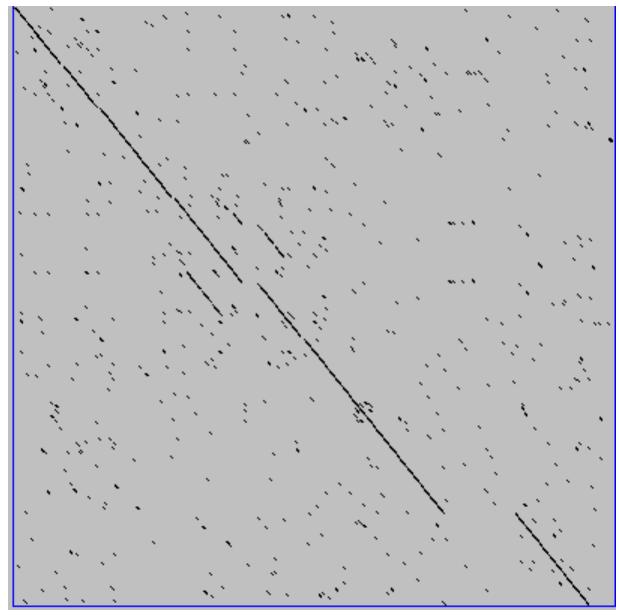
Q. What would the dot matrix of a two identical sequences look like?


Dot matrices for long sequences can be noisy

Dot plots: window size and match stringency

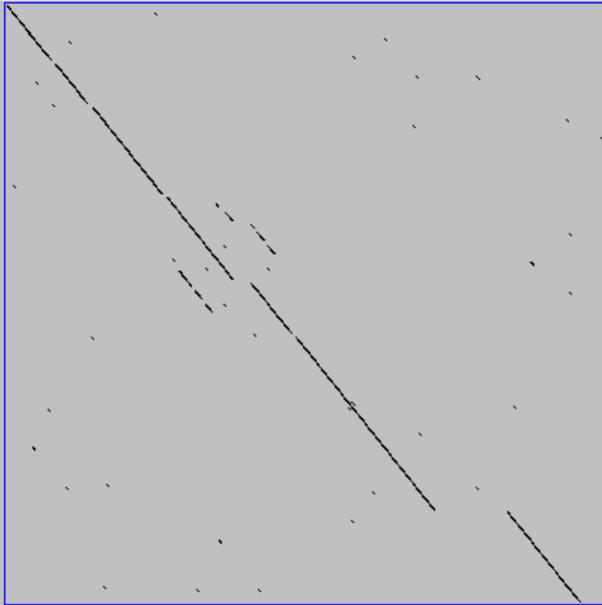
Solution: use a window and a threshold


- compare character by character within a window
- require certain fraction of matches within window in order to display it with a dot.
 - You have to choose window size and stringency


Dot plots: window size and match stringency

Solution: use a window and a threshold

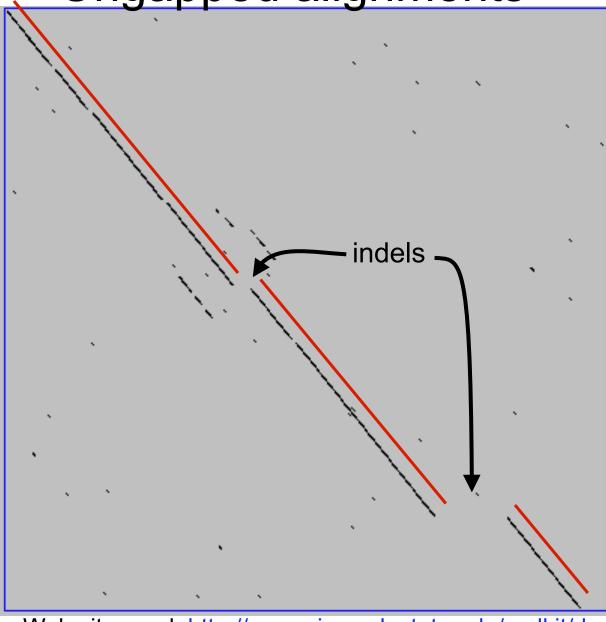
- compare character by character within a window
- require certain fraction of matches within window in order to display it with a dot.
 - You have to choose window size and stringency


Window size = 5 bases

A dot plot simply puts a dot where two sequences match. In this example, dots are placed in the plot if 5 bases in a row match perfectly. Requiring a 5 base perfect match is a **heuristic** – only look at regions that have a certain degree of identity.

Do you expect evolutionarily related sequences to have more word matches (matches in a row over a certain length) than random or unrelated sequences?

Window size = 7 bases

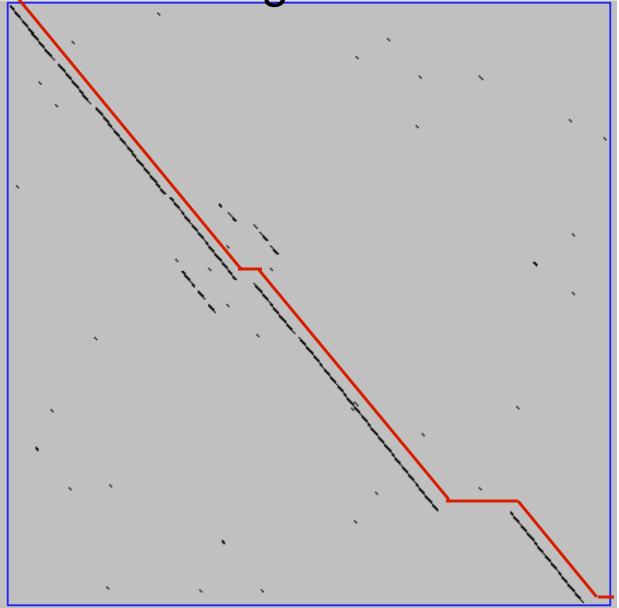

This is a dot plot of the same sequence pair. Now 7 bases in a row must match for a dot to be place. Noise is reduced.

Using windows of a certain length is very similar to using words (kmers) of N characters in the heuristic alignment search tools

Bigger window (kmer) fewer matches to consider

Web site used: http://www.vivo.colostate.edu/molkit/dnadot/

Ungapped alignments



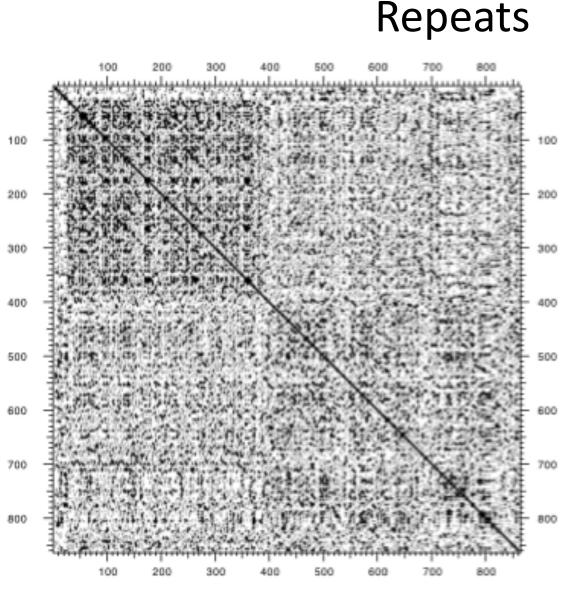
Only **diagonals** can be followed.

Downward or rightward paths represent **insertion** or **deletions** (gaps in one sequence or the other).

Web site used: http://www.vivo.colostate.edu/molkit/dnadot/

Global alignments

Global alignments go

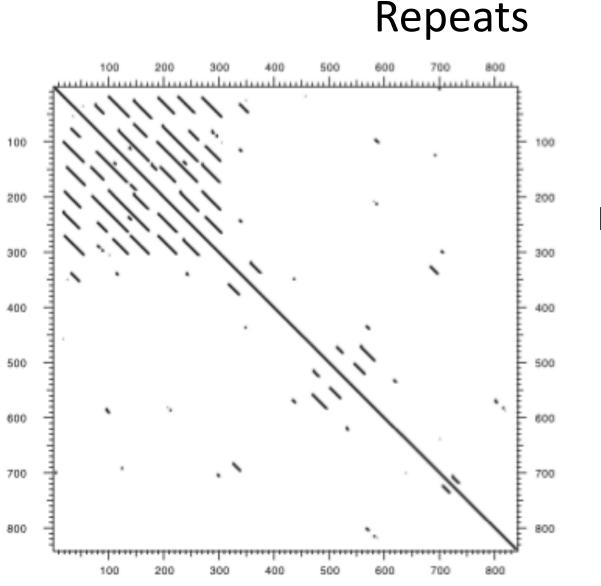

from end to end, *i.e.* from the upper left corner to the lower right corner.

Global alignments do not have good statistical characterization and are **not used for database searches.**

Web site used: http://www.vivo.colostate.edu/molkit/dnadot/

Uses for dot matrices

- Visually assessing the similarity of two protein or two nucleic acid sequences
- Finding local repeat sequences within a larger sequence by comparing a sequence to itself
 - Repeats appear as a set of diagonal runs stacked vertically and/or horizontally



Human LDL receptor protein sequence (Genbank P01130)

> W = 1 S = 1

(Figure from Mount, "Bioinformatics sequence and genome analysis")

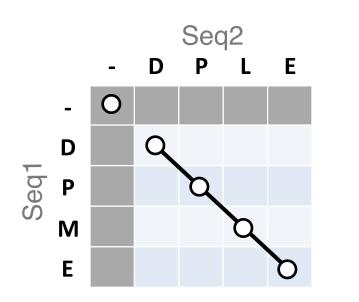
54

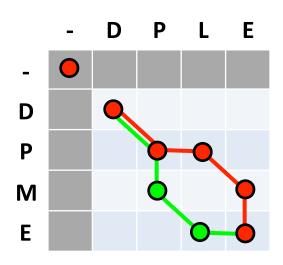
Human LDL receptor protein sequence (Genbank P01130)

> W = 23 S = 7

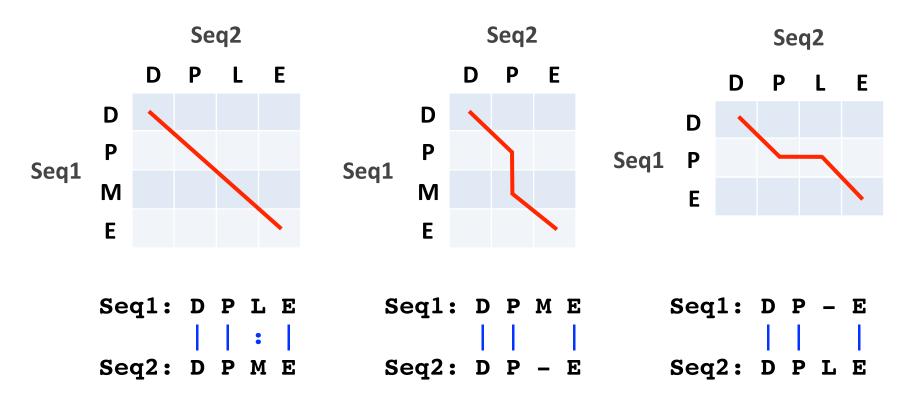
(Figure from Mount, "Bioinformatics sequence and genome analysis")

Side note: dots can have "weights"

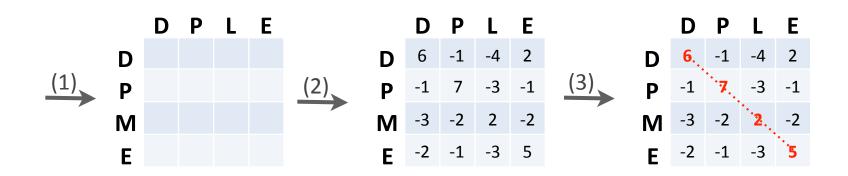

- Some matches can be rewarded more than others, depending on likelihood
- Use PAM or BLOSUM substitution matrix
 (more on these later)
- Put a dot only if a minimum total or average weight is achieved
 - See chapter 3 in Mount, "Bioinformatics sequence and genome analysis".


Three general solutions to the alignment problem

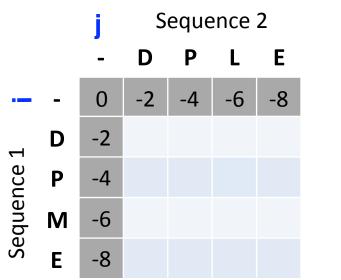
- The **dot plot** or **dot matrix** approach
 - A simple graphical method for pair-wise alignment
 - No scoring, so difficult to compare alternative alignments
 - Can give visual clues to sequence structure but requires human interaction
- **Dynamic programming** algorithms
 - Provides Optimal solutions (but not necessarily unique solutions)
- Heuristic word or k-tuple approaches
 - Much faster (e.g. **BLAST** and **FASTA**)
 - Widely used for database searches
 - May miss some pairs with low similarity

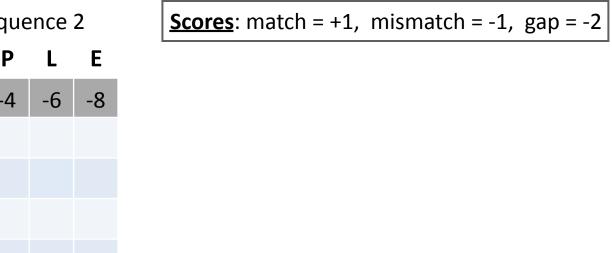

The Dynamic Programming Algorithm

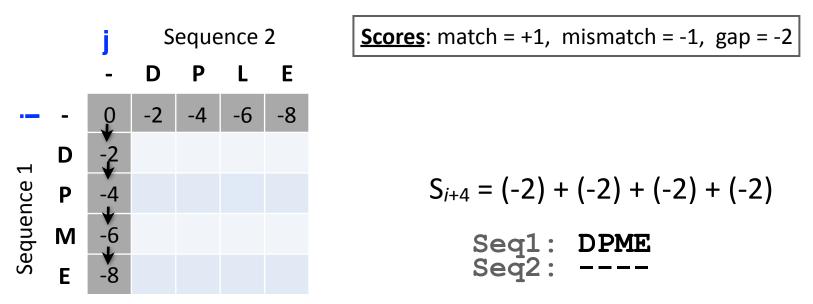
- The dynamic programming algorithm can be thought of an extension to the dot plot approach
 - One sequence is placed down the side of a grid and another across the top
 - Instead of placing a dot in the grid, we **compute a score** for each position
 - Finding the optimal alignment corresponds to finding the path through the grid with the **highest possible score**


Different paths represent different alignments

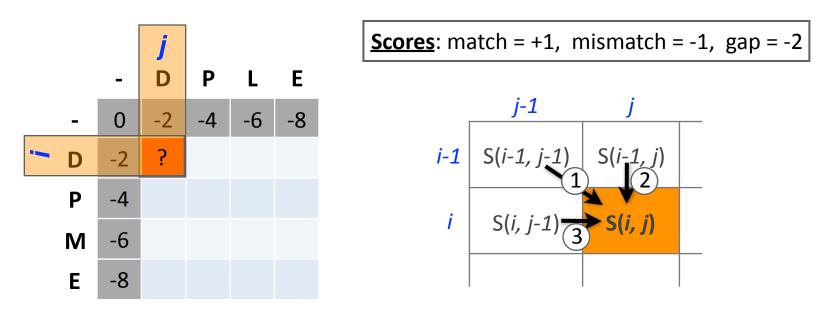
Matches are represented by diagonal paths and indels with horizontal or vertical path segments

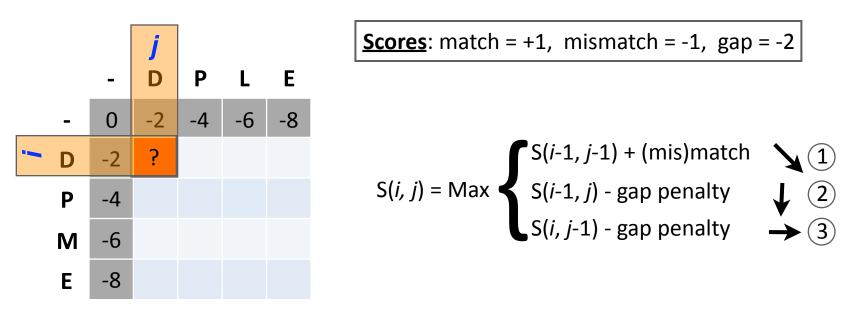

Algorithm of Needleman and Wunsch

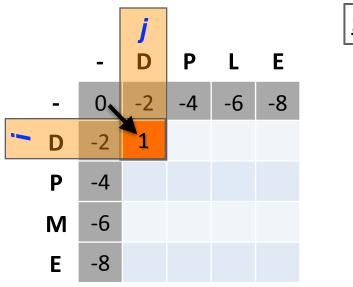

- The Needleman–Wunsch approach to global sequence alignment has three basic steps:
 - (1) setting up a 2D-grid (or alignment matrix),
 - (2) scoring the matrix, and
 - (3) identifying the **optimal path** through the matrix

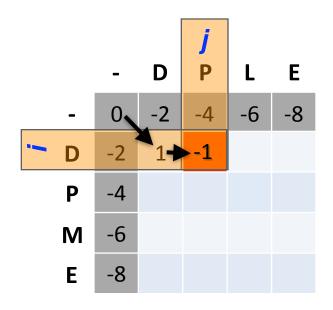

Needleman, S.B. & Wunsch, C.D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453.

- Start by filling in the first row and column these are all indels (gaps).
 - Each step you take you will add the **gap penalty** to the score $(S_{i,j})$ accumulated in the previous cell

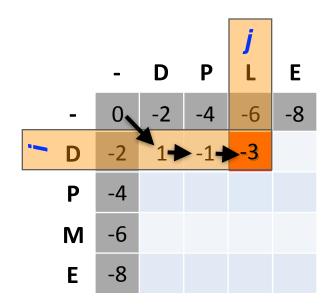



- Start by filling in the first row and column these are all indels (gaps).
 - Each step you take you will add the **gap penalty** to the score $(S_{i,j})$ accumulated in the previous cell


- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
 - Now can ask which of the three directions gives the highest score?
 - keep track of this score and direction

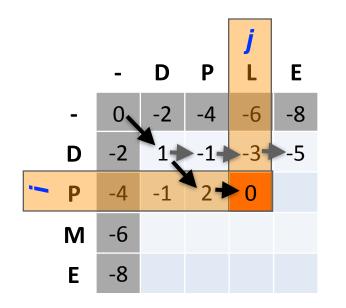

- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
 - Now can ask which of the three directions gives the highest score?
 - keep track of this score and direction

- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
 - Now can ask which direction gives the highest score
 - keep track of direction and score



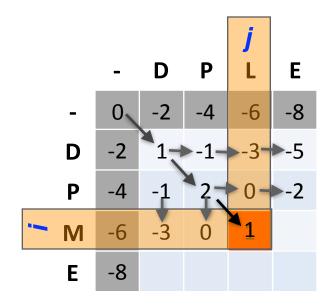
- At each step, the score in the current cell is determine by the scores in the neighboring cells
 - The maximal score and the direction that gave that score is stored (we will use these later to determine the optimal alignment)

✓ 1 (-2)+(-1) = -3 <= (D-P) mismatch! Alignment ↓ 2 (-4)+(-2) = -6 D^- DP → 3 (1)+(-2) = -1


• We will continue to store the alignment score (S_{i,j}) for all possible alignments in the alignment matrix.

(-1)+(-2) = -3

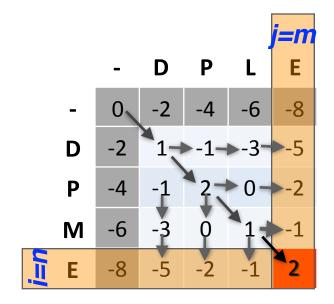
(3)


 For the highlighted cell, the corresponding score (S_{i,j}) refers to the score of the optimal alignment of the first *i* characters from sequence1, and the first *j* characters from sequence2.

Scores: match = +1, mismatch = -1, indel = -2

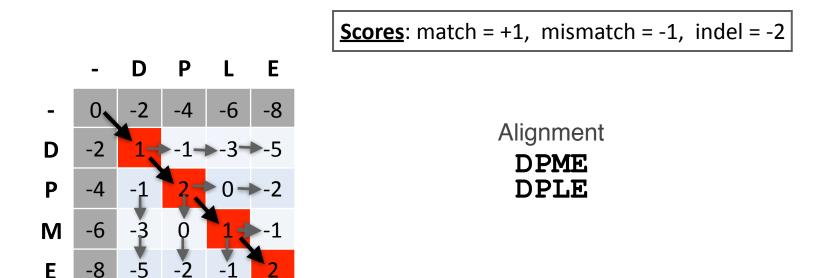
$$(1)(-1)+(-1) = -2$$

Alignment
 $(2)(-3)+(-2) = -5$
 $(-3)+(-2) = -5$
 $(-3)+(-2) = 0$

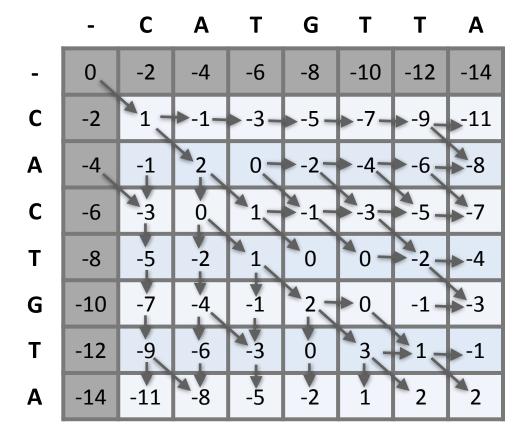

- At each step, the score in the current cell is determine by the scores in the neighboring cells
 - The maximal score and the direction that gave that score is stored

Scores: match = +1, mismatch = -1, indel = -2
(1) (2)+(-1) = 0 <= mismatch
Alignment
DPM
DPL

$$\rightarrow$$
 (3) (0)+(-2) = -2

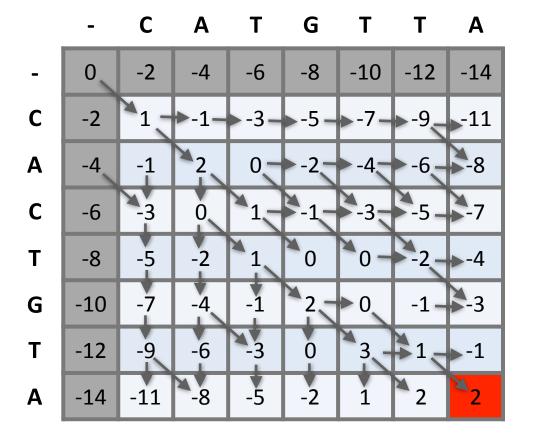

- The score of the best alignment of the entire sequences corresponds to S_{n,m}
 - (where *n* and *m* are the length of the sequences)

Scores: match = +1, mismatch = -1, indel = -2

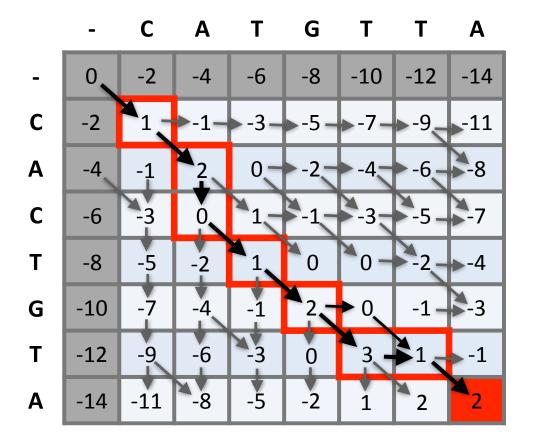

$$(1) (+1)+(+1) = +2$$

Alignment
 $(2) (-1)+(-2) = -3$
 $(-1)+(-2) = -3$

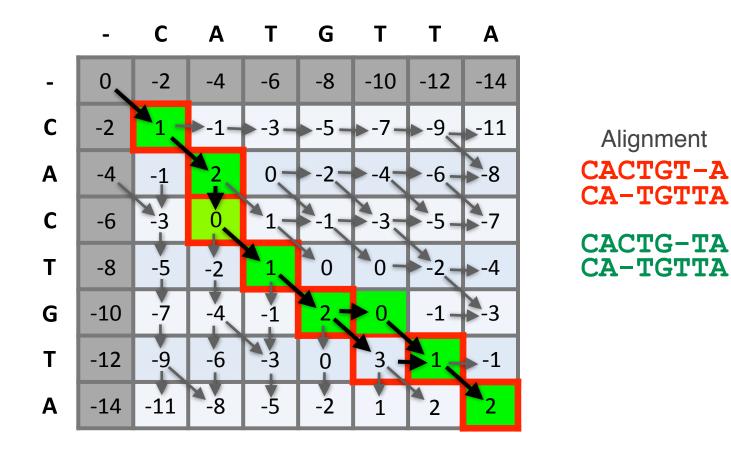
- To find the best alignment, we retrace the arrows starting from the bottom right cell
 - N.B. The optimal alignment score and alignment are dependent on the chosen scoring system


Questions:

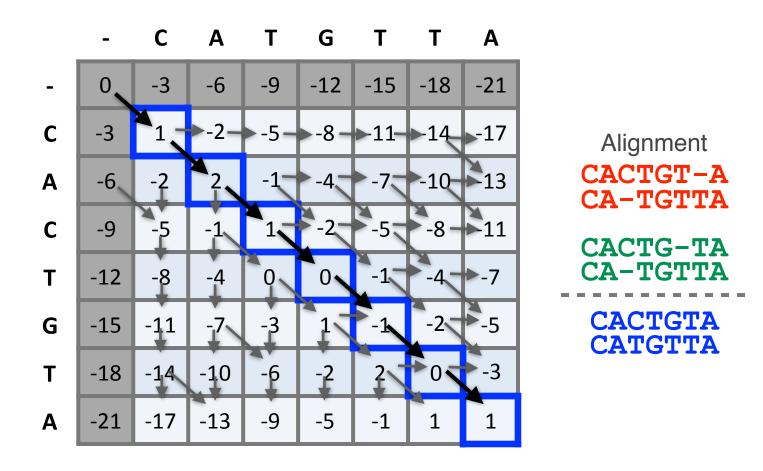
• What is the optimal score for the alignment of these sequences and how do we find the optimal alignment?


Questions:

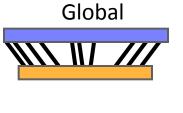
• What is the optimal score for the alignment of these sequences and how do we find the optimal alignment?

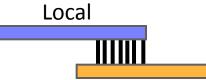

Questions:

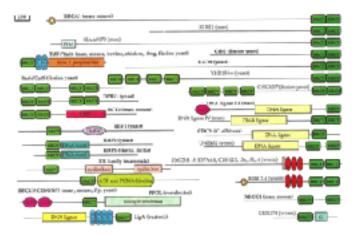
• To find the best alignment we retrace the arrows starting from the bottom right cell


More than one alignment possible

• Sometimes more than one alignment can result in the same optimal score


The alignment and score are dependent on the scoring system


• Here we increase the gap penalty from -2 to -3

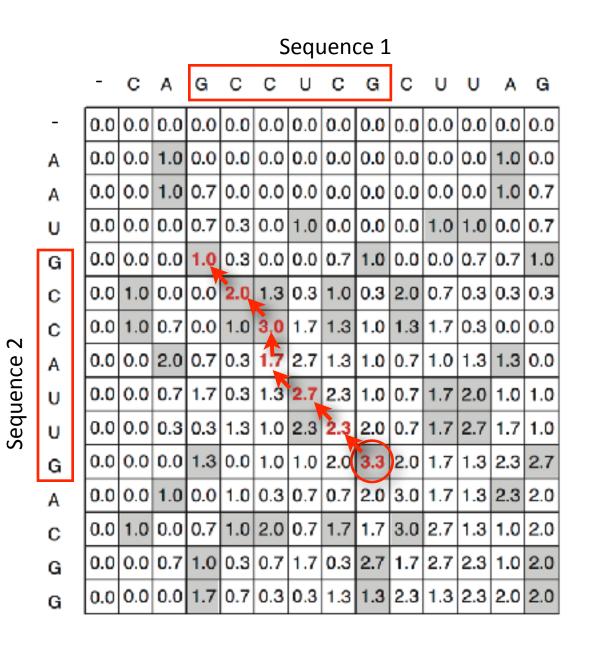


Global vs local alignments

- Needleman-Wunsch is a global alignment algorithm
 - Resulting alignment spans the complete sequences end to end
 - This is appropriate for closely related sequences that are similar in length
- For many practical applications we require **local alignments**
 - Local alignments highlight subregions (*e.g.* protein domains) in the two sequences that align well

Local alignment: Definition

 Smith & Waterman proposed simply that a local alignment of two sequences allow arbitrary-length segments of each sequence to be aligned, with no penalty for the unaligned portions of the sequences. Otherwise, the score for a local alignment is calculated the same way as that for a global alignment

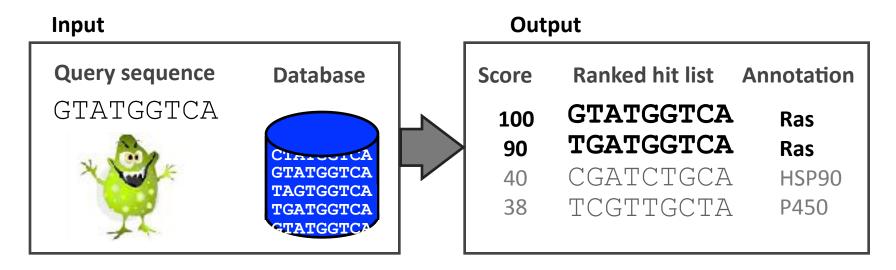

Smith, T.F. & Waterman, M.S. (1981) "Identification of common molecular subsequences." J. Mol. Biol. 147:195-197.

The Smith-Waterman algorithm

- Three main modifications to Needleman-Wunsch:
 - Allow a node to start at 0
 - The score for a particular cell cannot be negative
 - if all other score options produce a negative value, then a zero must be inserted in the cell
 - Record the highest- scoring node, and trace back from there

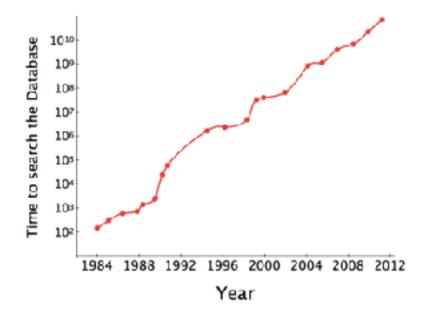
: 1

$$S(i, j) = Max \begin{cases} S(i-1, j-1) + (mis)match \\ S(i-1, j) - gap penalty \\ S(i, j-1) - gap penalty \\ 0 \end{cases} \stackrel{(1)}{4} \stackrel{(-1)}{4} \stackrel{(-1)}{3} \stackrel{(-1)}{5} \stackrel{(-1, j-1)}{3} \stackrel{(-1)}{3} \stackrel{(-1$$



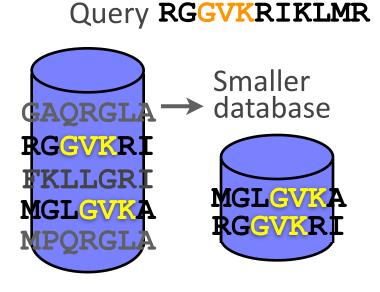
Local alignment GCC-AUG GCCUCGC

80


Local alignments can be used for database searching

- Goal: Given a query sequence (Q) and a sequence database (D), find a list of sequences from D that are most similar to Q
 - Input: Q, D and scoring scheme
 - Output: Ranked list of hits

The database search problem


- Due to the rapid growth of sequence databases, search algorithms have to be both efficient and sensitive
 - Time to search with SW is proportional to m x n (m is length of query, n is length of database), too slow for large databases!

To reduce search time **heuristic algorithms**, such as BLAST, first remove database sequences without a strong local similarity to the query sequence in a quick initial scan.

The database search problem

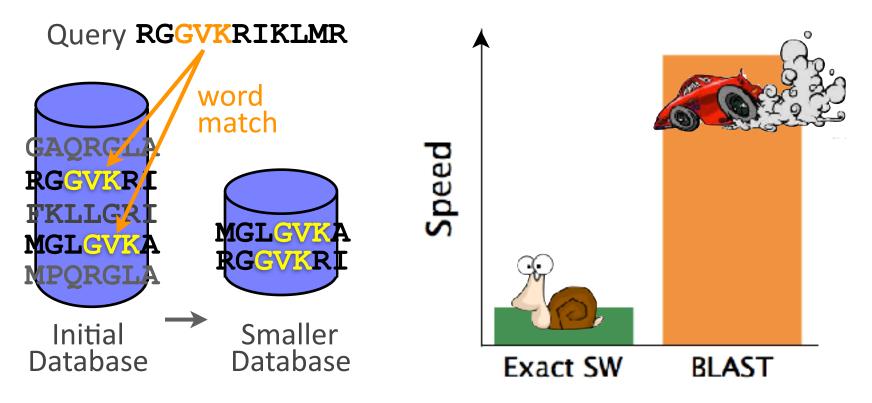
- Due to the rapid growth of sequence databases, search algorithms have to be both efficient and sensitive
 - Time to search with SW is proportional to m x n (m is length of query, n is length of database), too slow for large databases!

To reduce search time **heuristic algorithms**, such as BLAST, first remove database sequences without a strong local similarity to the query sequence in a quick initial scan.

Outline for today

- Alignment basics
 - Why compare biological sequences?
- Homologue detection
 - Orthologs, paralogs, similarity and identity
 - Sequence changes during evolution
 - Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
 - Brute force alignment
 - Dot matrices
 - Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
 - BLAST
- Practical database searching
 - PSI-BLAST and HMM approaches

Rapid, heuristic versions of Smith–Waterman: **BLAST**


- BLAST (<u>Basic Local Alignment Search Tool</u>) is a simplified form of Smith-Waterman (SW) alignment that is popular because it is **fast** and **easily accessible**
 - BLAST is a heuristic approximation to SW It examines only part of the search space
 - BLAST saves time by restricting the search by scanning database sequences for likely matches before performing more rigorous alignments
 - Sacrifices some sensitivity in exchange for speed
 - In contrast to SW, BLAST is not guaranteed to find optimal alignments

Rapid, heuristic versions of Smith–Waterman: BLAST

- BLA of the BLAST algorithm is to confine attention Ine central ruea or the purper arborning word pair match? to sequence pairs that contain an initial word pair match? contrast to SW, BLAST is not guaranteed to find optimal
 - alignments

ed

 BLAST uses this pre-screening heuristic approximation resulting in an approach that is about 50 times faster than the Smith-Waterman algorithm

How **BLAST** works

• Four basic phases

- Phase 1: compile a list of query word pairs (w=3)

	RGGVKRI	Query sequence
	RGG	
	GGV	
generate list of	GVK	
w=3 words for	VKR	
query	KRI	

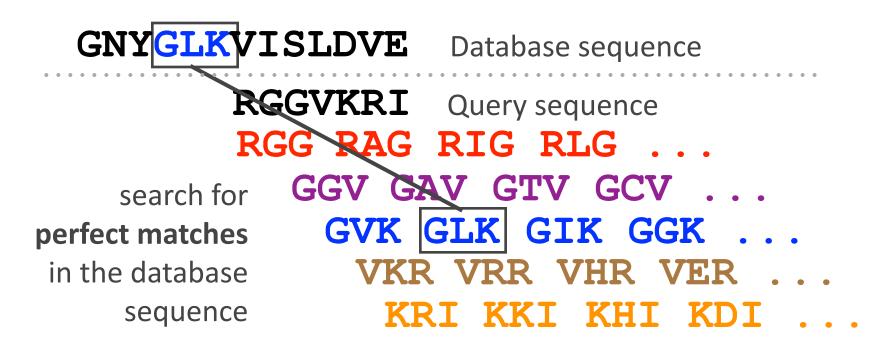
Blast

 Phase 2: expand word pairs to include those similar to query (defined as those above a similarity threshold to original word, i.e. match scores in substitution matrix)

 RGGVKRI
 Query sequence

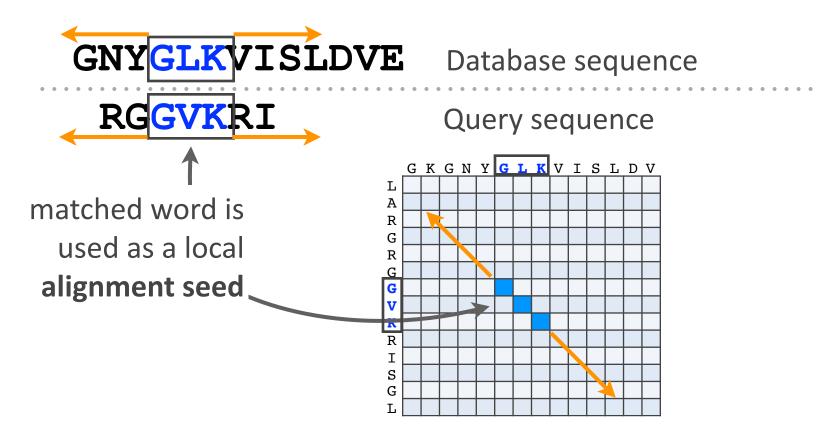
 RGG RAG RIG RLG
 GGV GAV GTV GCV

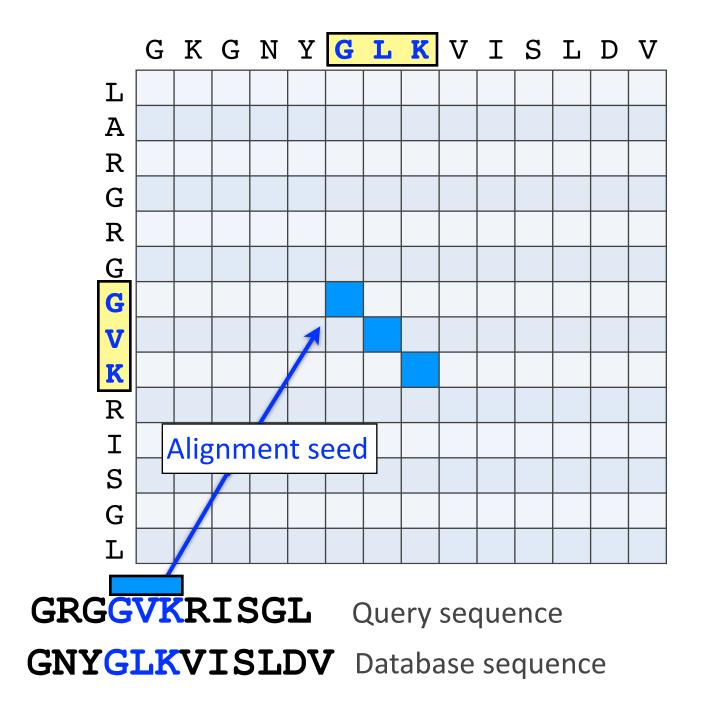
 GGV GAV GTV GCV
 GVK GAK GIK GGK

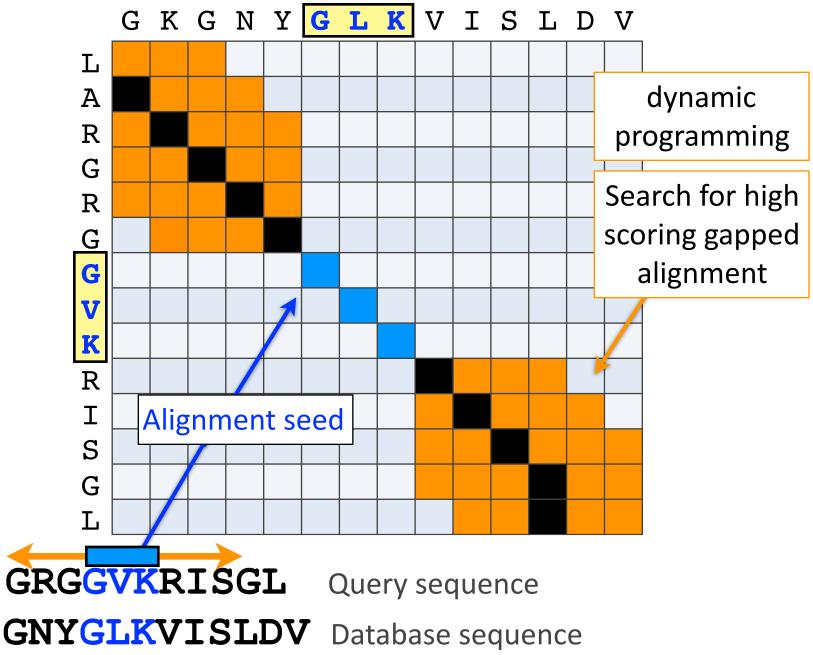

 extend list of
 GVK GAK GIK GGK

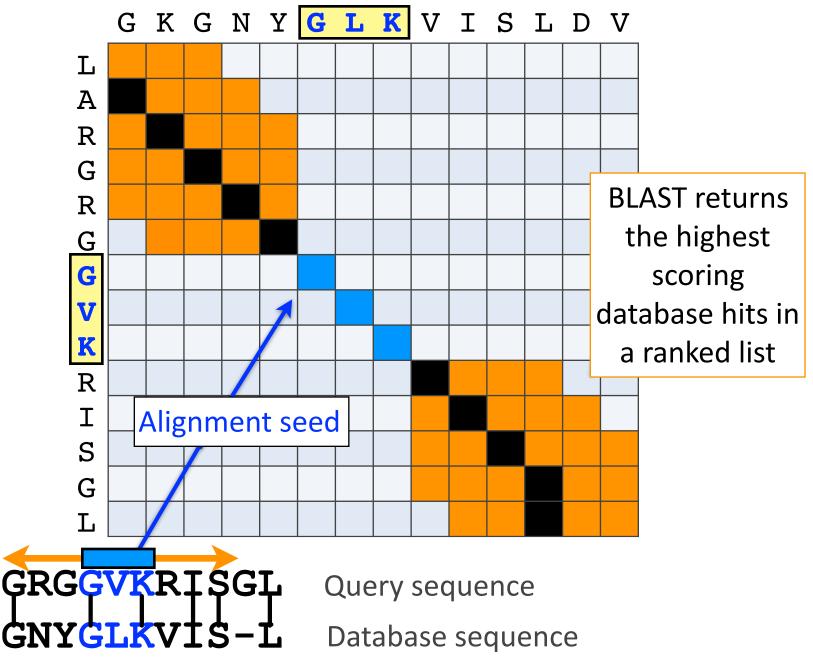
 words similar
 VKR VRR VHR VER

 to query
 KRI KKI KHI KDI


Blast


– Phase 3: a database is scanned to find sequence entries that match the compiled word list




Blast

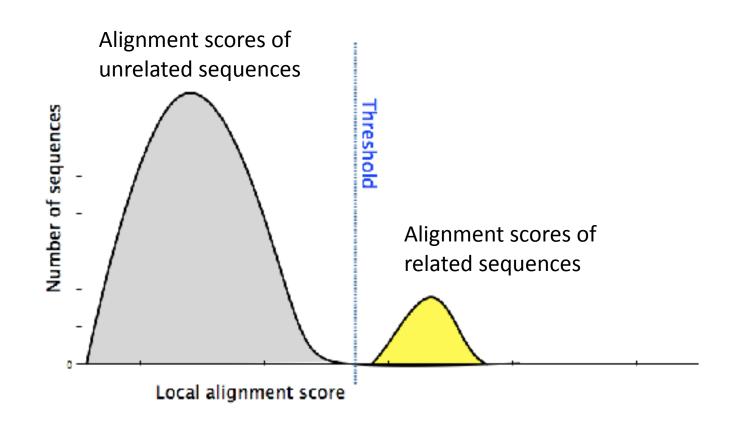
– Phase 4: the initial database hits are extended in both directions using dynamic programing

BLAST output

 BLAST returns the highest scoring database hits in a ranked list along with details about the target sequence and alignment statistics

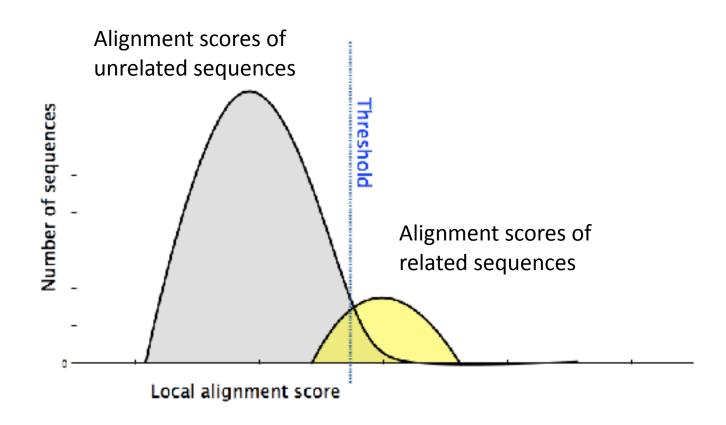
Description	Max	Query	E . Jalua	Max	A
Description	score	cover	E value	ident	Accession
kinesin-1 heavy chain [Homo sapiens]	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	100%	0	98%	AAA20133.1
Kinesin-14 heavy chain [Danio rerio]	595	88%	0	78%	XP_00320703
hypothetical protein EGK_18589	48.2	40%	0.03	32%	ELK35081.1
mKIAA4102 protein [Mus musculus]	42.7	38%	3.02	24%	EHH28205.1

Statistical significance of results

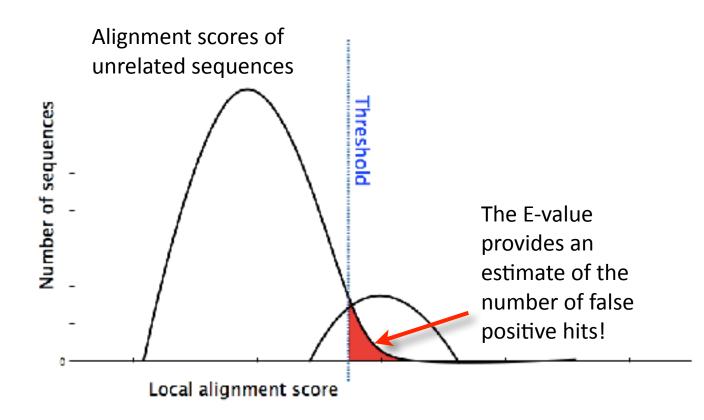

 An important feature of BLAST is the computation of statistical significance for each hit. This is described by the **E value** (expect value)

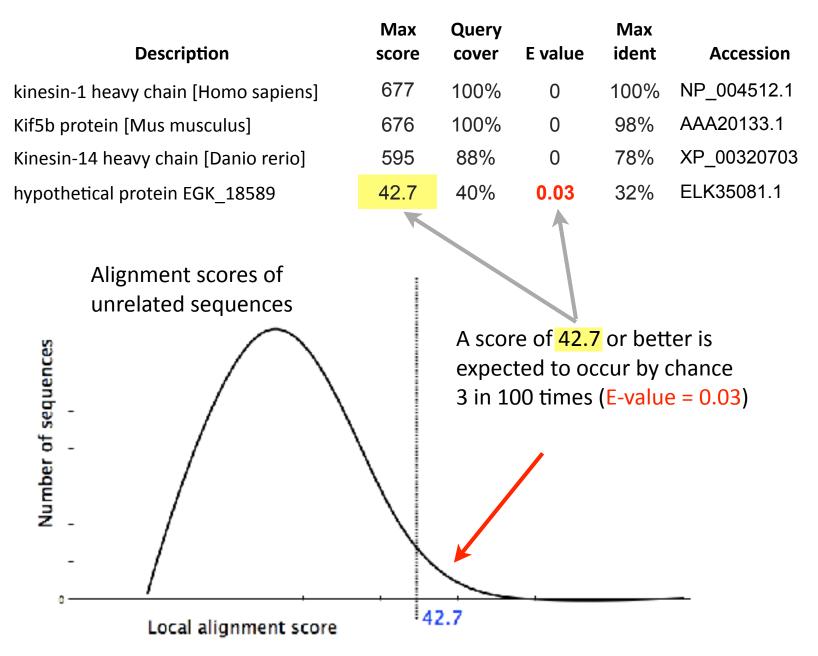
Description	Max score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo sapiens]	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	100%	0	98%	AAA20133.1
Kinesin-14 heavy chain [Danio rerio]	595	88%	0	78%	XP_00320703
hypothetical protein EGK_18589	48.2	40%	0.03	32%	ELK35081.1
mKIAA4102 protein [Mus musculus]	42.7	38%	3.02	24%	EHH28205.1

BLAST scores and E-values


- The E value is the expected number of hits that are as good or better than the observed local alignment score (with this score or better) if the query and database are random with respect to each other
 - *i.e.* the number of alignments expected to occur by chance with equivalent or better scores
- Typically, only hits with E value **below** a significance threshold are reported
 - This is equivalent to selecting alignments with score above a certain score threshold

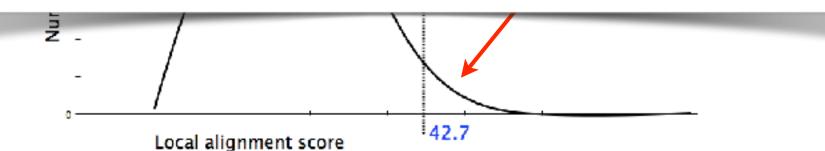
 Ideally, a threshold separates all query related sequences (yellow) from all unrelated sequences (gray)


Unfortunately, often both score distributions overlap


 The E value describes the expected number of hits with a score above the threshold if the query and database are unrelated

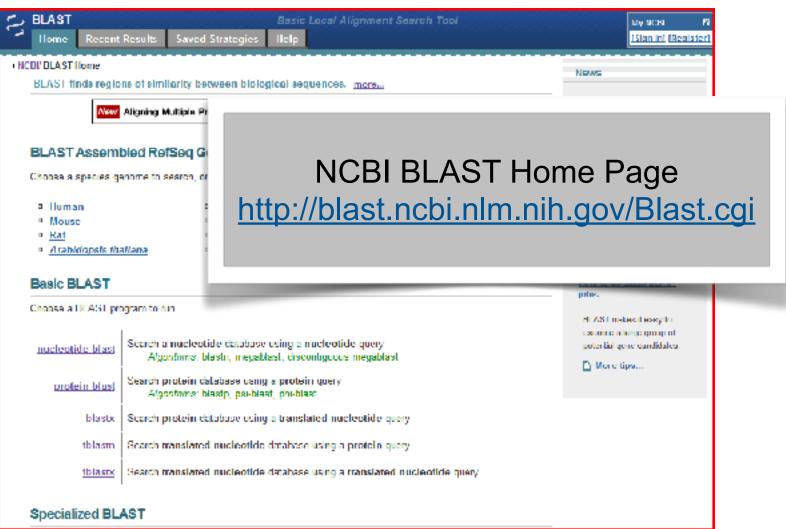
Unfortunately, often both score distributions overlap

 The E value describes the expected number of hits with a score above the threshold if the query and database are unrelated



In general *E* values < 0.005 are usually significant.

To find out more about *E* values see: "*The Statistics of Sequence Similarity Scores*" available in the help section of the NCBI BLAST site:

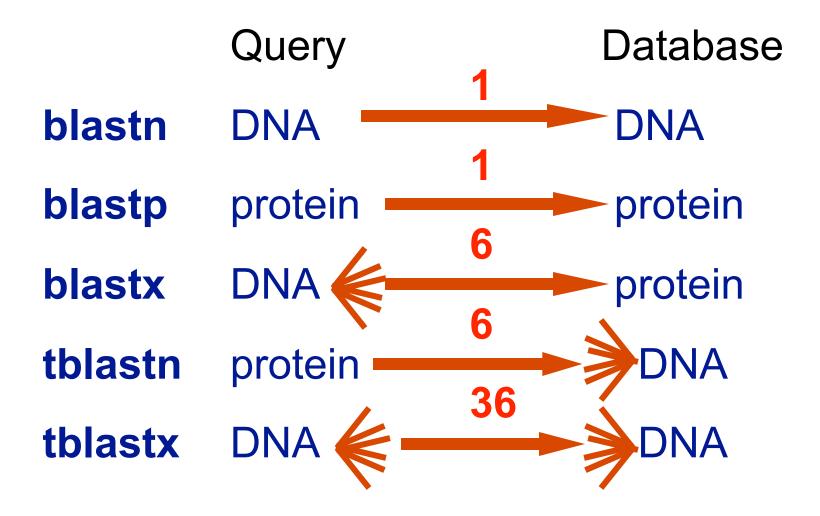

http://www.ncbi.nlm.nih.gov/blast/tutorial/Altschul-1.html

Outline for today

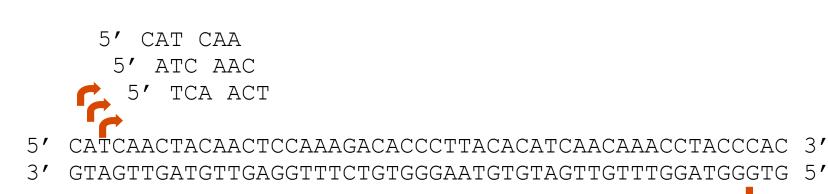
- Alignment basics
 - Why compare biological sequences?
- Homologue detection
 - Orthologs, paralogs, similarity and identity
 - Sequence changes during evolution
 - Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
 - Brute force alignment
 - Dot matrices
 - Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
 - BLAST
- Practical database searching
 - BLAST, PSI-BLAST and HMM approaches

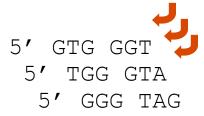
Practical database searching with BLAST

Practical database searching with BLAST


- There are four basic components to a traditional BLAST search
 - (1) Choose the sequence (query)
 - (2) Select the BLAST program
 - (3) Choose the database to search
 - (4) Choose optional parameters
- Then click "BLAST"

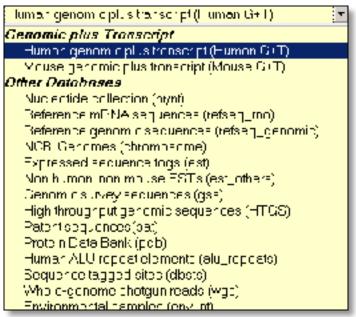
Step 1: Choose your sequence


• Sequence can be input in FASTA format or as accession number


😌 NCBI - Wesn roes 🖂 Hirw In 🗹		My N
Protein Search. F	Protoin	nch Clear
	Sendita: 👁	Change region shown
NDBI Reference Sequence NE_0005001 GonPept Graphics	[Homo sapiens]	Analyze this sequence Rur BLAST
AVALT. 11KERVTRIKCKUNUSIVCCIRICKI.	egielin subunit beta "Homo sapiens; 1999. ATERFFESFEDLSTFDAVHENFKVKAHEKKVLE NYRLIGNVLVEVLAHHFEKEFTPPVÇAAYÇKVVAGVAN	dentify Concerved Domainc and in this Lequence

Step 2: Choose the BLAST program

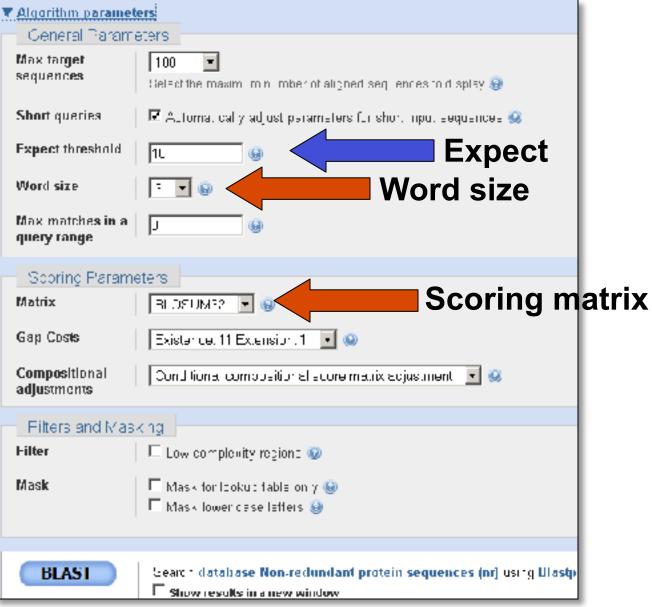
DNA potentially encodes six proteins



Eastern concerns	Sequence	0
	number(s), gi(s), or FASTA sequence(s) 😥 <u>Clear</u>	Query subra
MVHLTPEEKSAV	f[NP_000509.1] hemoglobin subunit beta [Homo sapiens] TALWGKVNVDEVGCEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGK LDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQK (YH	
Or, upload file	Choose File no tile selected	
Job Title		7
	Enter a descriptive title for your BLAST search 🧕	
Align two or m	tore sequences 🚯	
Choose Sear	rch Set	
Database	Non-redundant protein sequences (nr)	
Organism		
Optional	Exclude +	
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be show	wn. 🕖
Exclude	Models (XM/XP) Uncultured/environmental sample sequences	
Entrez Query		
Optional	Enter an Entrez query to limit search 😡	
	ection	
Program Sele	blastp (protein-protein BLAST)	
Program Sele Algorithm	Constant for one character to the	
	O PSI-BLAST (Position-Specific Iterated BLAST)	
	 PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) 	
	O PHI-BLAST (Pattern Hit Initiated BLAST)	
	 O PHI-BLAST (Pattern Hit Initiated BLAST) O DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) 	
	 O PHI-BLAST (Pattern Hit Initiated BLAST) O DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) 	

Step 3: Choose the database

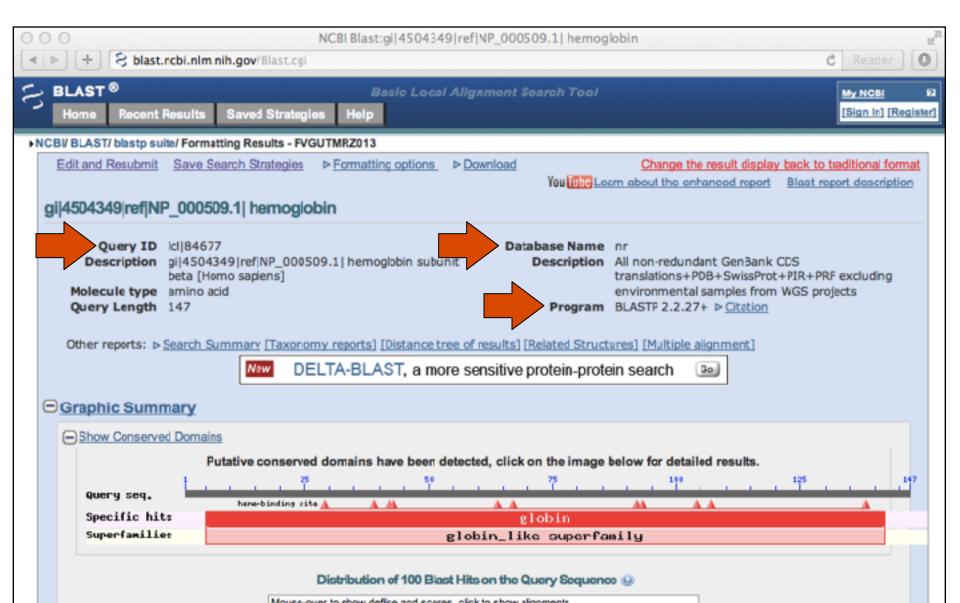
nr = non-redundant (most general database)
dbest = database of expressed sequence tags
dbsts = database of sequence tag sites
gss = genomic survey sequences

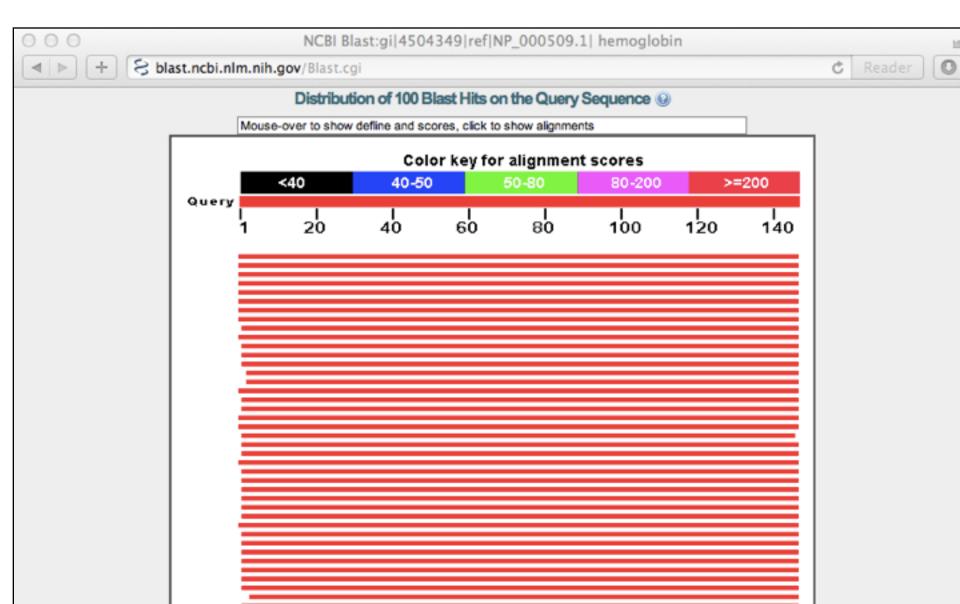


Non-reduceant protein acquences (n/)
Non-reduceant protein acquences (n/)
Reference proteins (refsequences (n)
Swissprot protein sequences(swissprot)
Patented protein sequences(pat)
Protein Data Bank proteins(pdb)
Environmental samples(environ)

protein databases

0	00	Protein BLAST: search protein databases using a protein query	ц ²
	🕞 🕂 😫 blast	t.ncbi.nlm.nih.gov/Blast.cgiPPROGRAM=blastp&BLAST_PROGRAMS=blastp&PA	C 🖒 Reader
	Enter Query Se	quence	_
	Enter accession nu	mber(s), gi(s), or FASTA sequence(s) 😳 <u>Clear</u>	Query subrange 🕢
	MVHLTPEEKSAVTA	NP_000509.1 hemoglobin subunit beta [Homo sapiens] LWGKVNVDEVGCEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGK NLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQK H	To
	Or, upload file Job Title	Choose File no tilo solacted	
	Align two or more	Enter a descriptive title for your BLAST search 🧕	
	Choose Search	Set	
	Database	Non-redundant protein sequences (nr)	
	Organism	Exclude	
Organism	Optional	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown	
	Exclude	Models (XM/XP) Uncultured/environmental sample sequences	. W
	Optional		
Entrez	Entrez Query Optional	Enter an Entrez query to limit search 🥪	
	Program Select	tion	
	Algorithm	blastp (protein-protein BLAST) O PSI-BLAST (Position-Specific Iterated BLAST)	
		O PHI-BLAST (Pattern Hit Initiated BLAST)	
		DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST)	
		Choose a BLAST algorithm 🤢	
	BLASI	Search database Non-redundant protein sequences (nr) using Blastp (p	rotein-protein BLAST)
Settings!	Algorithm parameter	<u>ers</u>	
<u></u>			


Step 4a: Select optional search parameters


Step 4: Optional parameters

- You can...
 - choose the organism to search
 - change the substitution matrix
 - change the expect (E) value
 - change the word size
 - change the output format

Results page

Further down the results page...

Further down the results page...

0 (NCBI Blast:gi 4504349 ref NP_000509.1 hemoglobin								
•	◄ ► + S blast.ncbi.nlm.nih.gov/Blast.cgi C Reader								
Sec	quences producing significant alignments:								
	ect: <u>All None</u> Selected:0								
	Alignments Download GenPept Graphics Distance tree of results Multiple a	lignme	nt					0	
	Description	Max score	Total score	Query cover	E value	Max ident	Accession	n	
	hemoglobin beta [synthetic construct]	301	301	100%	9e-103	100%	AAX37051.1		
	hemoglobin beta [synthetic construct]	301	301	100%	1e-102	100%	AAX29557.1		
	hemoglobin subunit beta [Homo sapiens] >ref[XP_508242.1] PREDICTED: hemoglobin s	301	301	100%	1e-102	100%	NP_000509.1	L	
	RecName: Full=Hemoglobin subunit beta; AltName: Full=Beta-globin; AltName: Full=Hen	300	300	100%	4e-102	99%	P02024.2		
	beta globin chain variant [Homo sapiens]	299	299	100%	5e-102	99%	AAN84548.1		
	beta globin [Homo sapiens] >gb AAZ39781.1 beta globin [Homo sapiens] >gb AAZ39782	299	299	100%	5e-102	99%	AAZ39780.1		
	beta-globin [Homo sapiens]	299	299	100%	5e-102	99%	ACU56984.1		
	hemoglobin beta chain [Homo sapiens]	299	299	100%	6e-102	99%	AAD19696.1		
	Chain B, Structure Of Haemoglobin In The Deoxy Quaternary State With Ligand Bound At	298	298	99%	9e-102	100%	1COH_B		
	hemoglobin beta subunit variant [Homo sapiens] >gb]AAA88054.1] beta-globin [Homo sa	298	298	100%	1e-101	99%	AAF00489.1		
	Chain B, Human Hemoglobin D Los Angeles: Crystal Structure >pdb/2YRS/D Chain D, H	298	298	99%	2e-101	99%	2YRS B		
	Chain B. High-Resolution X-Ray Study Of Deoxy Recombinant Human Hemoglobins Syn	297	297	99%	3e-101	99%	1DXU B		
	Chain B, Analysis Of The Crystal Structure, Molecular Modeling And Infrared Spectroscop		297	99%	3e-101	99%	1HDB_B		

Further down the results page...

000		NCBI Blast:gi 4504349 ref NP_000509.1 hemoglobin	Li Li
< ▶ +	. 8	blast.ncbi.nlm.nih.gov/Blast.cgi	C Reader
hemogle Sequence Sequence See 84 Range 1: Score 301 bits Query Sbjct Query	obin s ID: rs 1 to 1 s(770 1 1 61	subunit beta [Homo sapiens] f[NP_000509.1] Length: 147 Number of Matches: 1	Related Information Gene - associated gene details UniGene - clustered expressed sequence tags Map Viewer - aligned genomic context Structure - 3D structure displays PubChem Bio
		KEFTPPVQAAYQKVVAGVANALAHKYH 147 KEFTPPVQAAYQKVVAGVANALAHKYH 147	Assay - bioactivity screening
Downlo	ad ~	GenPept Graphics	ext 🔺 Previous 🛕 Descriptions
		ull=Hemoglobin subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin pP02024.2 HBB_GORGO_Length: 147_Number of Matches: 1	beta chain
Range 1: Score	1 to 1	Identities Positives Gaps 147 GenPept Graphics Vext Match A Previous Match Expect Method Identities Positives Gaps) 4e-102 Compositional matrix adjust. 146/147(99%) 147/147(100%) 0/147(0%)	Related Information

Different output formats are available

00			CBI Blast:gi 4504349 ref NP_000509.1 hemoglobin	H
4	▶ + S bi	ast.ncbi.nlm.nih.gov/B	ast.cgi C Rea	ider
S	BLAST [®] Home Rece	ent Results Saved S	Basic Local Alignment Search Tool My NC Strategies Help	<u>BI</u> [? In] [Register
► N	Edit and Resubr	nit Save Search Stra		
			Formatting options	Reforma
		Show	Alignment as HTML + Old View Reset form to d	defaults
		Alignment View	Query-anchored with letters for identities	
		Display	Graphical Overview Sequence Retrieval OVCBI-gi	
		Masking	Character: Lower Case Color: Grey	
		Limit results	Descriptions: 50 \$ Graphical overview: 50 \$ Alignments: 50 \$	
			Organism Type common name, binomial, taxid, or group name. Only 20 top taxa will be shown.	
			Enter organism name or idcompletions will be suggested Exclude +	
			Entrez query:	
			Expect Min: Expect Max:	
			Percent Identity Min: Percent Identity Max:	
		Format for	PSI-BLAST with inclusion threshold:	

gi|4504349|ref|NP_000509.1| hemoglobin

E.g. Query anchored alignments

000			NCBI Blast:gi 4504349 ref NP_000509.1 hemoglobin				Ы
	+ S blast.ncbi	.nlm.	nih.gov/Blast.cgi		Ċ	Reader	0
	Query	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	AAX37051	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	AAX29557	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	NP 000509	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	P02024	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	AAN84548	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	AAZ39780	1	MVHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	ACU56984	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFKSFGDLSTPDAVMGNPK	60			
	AAD19696	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFLESFGDLSTPDAVMGNPK	60			
	CICOH B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	AAF00489	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	2YRS_B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	DIDXU B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	1HDB B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	DIDXV B	2	HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	3KMF_C	2	HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	AAL68978	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	INQP B	1	VHLTPEEKSAVTALWGKVNVDEVGGKALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	IK1K B	1	VHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	AAN11320	1	MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	XP 002822173	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	1Y85 B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	IYE0 B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLAVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	1010 B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	CAA23759	1	MVHLTPVEKSAVTAXWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60			
	1YE2 B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVFPWTQRFFESFGDLSTPDAVMGNPK	59			
	1Y5F B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	1A00 B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPYTQRFFESFGDLSTPDAVMGNPK	59			
	1HBS B	1	VHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	ABY B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			
	CICMY B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59			

... and alignments with dots for identities

O NCBI Blast:gi 4504349 ref NP_000509.1 hemoglobin								
Hold Blast.ncbi.nlm.nih.gov/Blast.cgi	C Reader							
Query 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDI AAX29557 1 AAX29557 1 PP_002024 1 AAX37051 1 AAX29557 1 PP_002024 1 AAX8548 1 AAX39780 1 AAX39780 1 AAX239780 1 AAX196984 1 AAX196989 1 AAF00489 1 IDXU_B 1 INOP B 1 IXIK_B 1 IXIK_B 1 IXIK_B 1 IXIK_B 1 IXIK_B 1 IXIK_B 1 IXIED_B 1 IXIE	60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 59							

Common problems

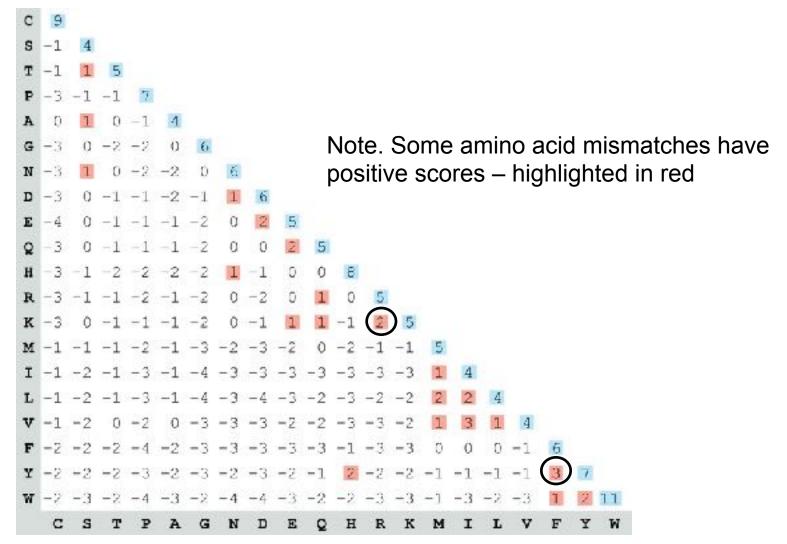
- Selecting the wrong version of BLAST
- Selecting the wrong database
- Too many hits returned
- Too few hits returned
- Unclear about the significance of a particular result - are these sequences homologous?

How to handle too many results

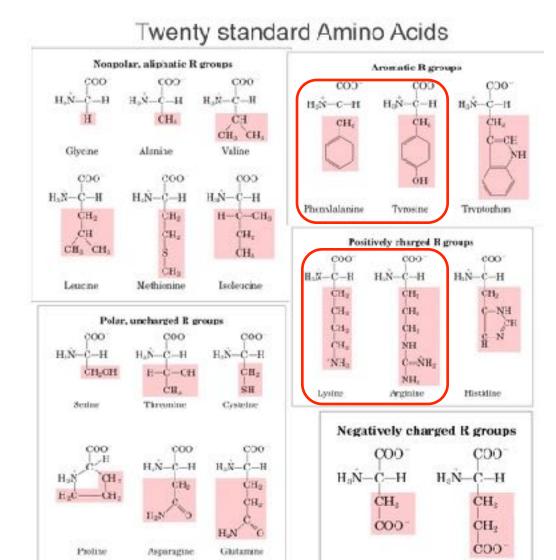
- Focus on the question you are trying to answer
 - select "refseq" database to eliminate redundant matches from "nr"
 - Limit hits by organism
 - Use just a portion of the query sequence, when appropriate
 - Adjust the expect value; lowering *E* will reduce the number of matches returned

How to handle too few results

- Many genes and proteins have no significant database matches
 - remove Entrez limits
 - raise E-value threshold
 - search different databases
 - try scoring matrices with lower BLOSUM values (or higher PAM values)
 - use a search algorithm that is more sensitive than BLAST (*e.a.* PSI-BLAST or HMMer)


Side note: Scoring matrices

- A substitution matrix contains values proportional to the probability that amino acid *i* mutates into amino acid *j* for all pairs of amino acids
- Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments (or multiple sequence alignments) of amino acids.
- Substitution matrices should reflect the probabilities of mutations occurring through a period of evolution
- The two major types of substitution matrices are PAM and BLOSUM


BLOSUM62 is the default BLASTp scoring matrix

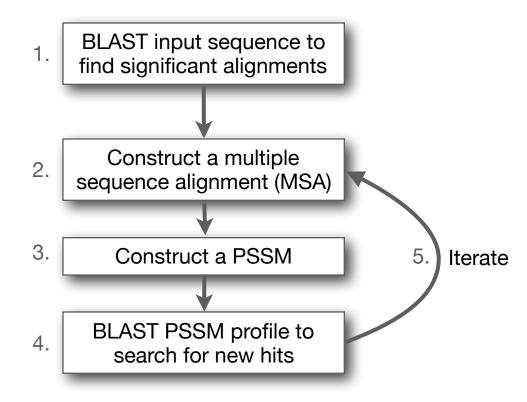
- BLOSUM matrices are based on short, ungapped blocks of conserved amino acid sequences from multiple alignments
 - members of a block that have a most X percent sequence identity to each other are used to generate a BLOSUMX matrix
 - For example, using a cutoff of 62% identity will generate the BLOSUM62 matrix
- PAM matrices are similar but built from multiple alignments where amino acid substitutions are at rate of 1% (PAM 1)
 - Matrix multiplication is used generate higher PAM matrices
 - PAM3 = (PAM1 x PAM1 x PAM1) etc...

By default BLASTp Match scores come from the BLOSUM62 matrix

Protein scoring matrices reflect the properties of amino acids

127

Two problems standard BLAST cannot solve


- Use human beta globin as a query against human RefSeq proteins, and blastp does not "find" human myoglobin
 - This is because the two proteins are too distantly related
 - PSI-BLAST at NCBI as well as hidden Markov models (HMMs) easily solve this problem
- How can we search using 10,000 base pairs as a query, or even millions of base pairs?
 - Many BLAST-like tools for genomic DNA are now available such as Megablast

PSI-BLAST: Position specific iterated BLAST

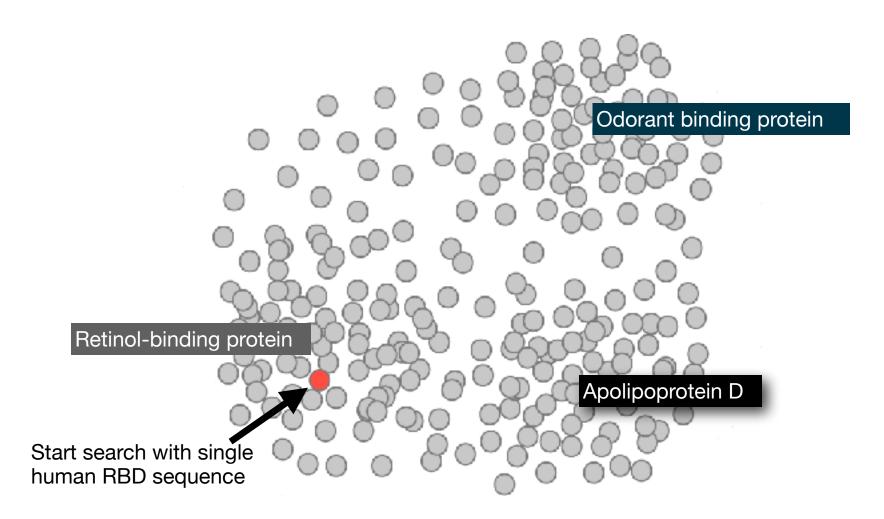
- The purpose of PSI-BLAST is to look deeper into the database for matches to your query protein sequence by employing a scoring matrix that is customized to your query
 - PSI-BLAST constructs a multiple sequence alignment from the results of a first round BLAST search and then creates a "profile" or specialized **position-specific scoring matrix (PSSM)** for subsequent search rounds

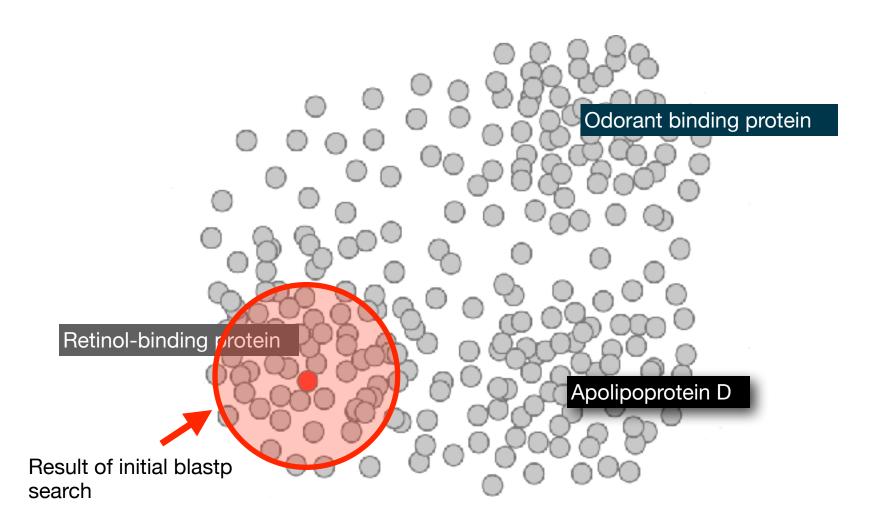
PSI-BLAST: Position-Specific Iterated BLAST

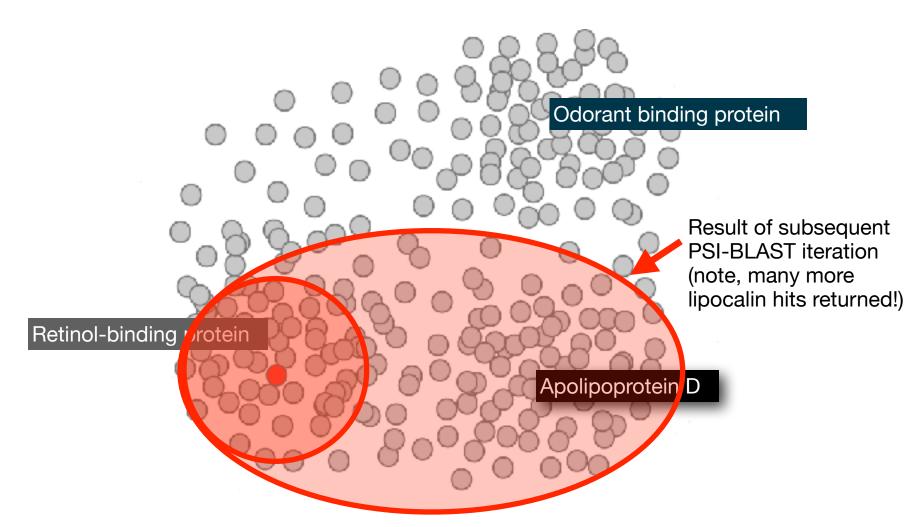
 Many proteins in a database are too distantly related to a query to be detected using standard BLAST. In many other cases matches are detected but are so distant that the inference of homology is unclear. Enter the more sensitive PSI-BLAST

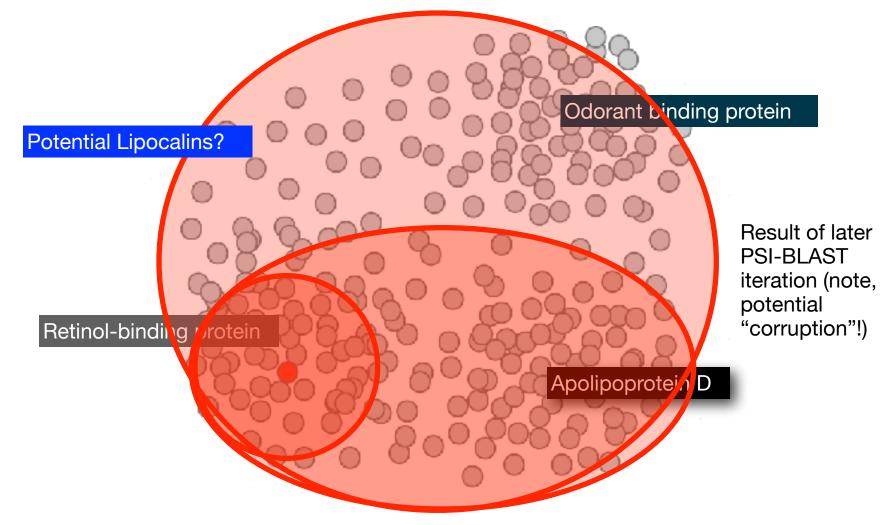
Inspect the blastp output to identify empirical "rules" regarding amino acids tolerated at each position

730496	66	FTVDENGQMSATAKGRVRLFNNUDVCADMIGSFTDTEDPAKFKNKYWGVASFLQKGNDDH 123	5
200679	63	FSVDEKGHMSATAKGRVRLLSNVEVCADMVGTFTDTEDPAKFKMKYWGVASFLQRGNDDH 122	2
206589	34	FSVDEKGHMSATAKGRVRLLSNWEVCADMVGTFTDTEDPAKFKMKYWGVASFLQRGNDDH 93	
2136812	2	MSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDH 53	
132408	65	FKIEDNGKTTATAKGRVRILDKLELCANMVGTFIETNDPAKYRMKYHGALAILERGLDDH 124	4
267584	44	FSVDESGKVTATAHGRVIILNNWEMCANMFGTFEDTPDPAKFKMRVWGAASYLQTGNDDH 103	3
267585	44	FSVDGSGKVTATAQGRVIILNNWEMCANMFGTFEDTPDPAKFKMRYWGAAAYLQSGNDDH 103	3
8777608	63	FTIHEDGAMTATAKGRVIILNNWEMCADMMATFETTPDPAKFRMRYWGAASYLQTGNDDH 123	2
6687453	60	FKVEEDGTMTATAIGRVIILNNWEMCANMFGTFEDTEDPAKFKMKYWGAAAYLQTGYDDH 119	9
10697027	81	FKVQEDGTMTATATGRVIILNNWEMCANMFGTFEDTEEPARFKMKYWGAAAYLQTGYDDH 14(0
13645517	1	MVGTFTDTEDPAKFKMKYWGVASFLQKGNDDH 32	
13925316	38	FSVDGSGKMTATAQGRVIILNNWEMCANMFGTFEDTPDPAKFKMRYWGAAAYLQSGNDDH 97	
131649	65	YTVEEDGTMTASSKGRVKLFGFWVICADMAAQYTDPTTPAKMYNTYQGLASYLSSGGDNY 120	6


R,I,K C D,E,T K,R,T N,L,Y,G


.


		A	RN	D C	Q	Ε	G	H	I	L	K	Μ	F	Ρ	S	Т	W	Y	v
1 M		-1	-2	2 0	1	2	C	^	1	^	2	6	^	C	2	1	^	1	- 1
2 K		-1	1 0	⊥ - 4	2	4	-2	υ	-3	-3	3	-2	-4	- T	υ	-1	-3	-2	- 3
3 W		-3	-3 -4	-5 -3	-2	-3	-3	າດ	or	nin		-	40	-4	-3	-3	12	2	-3
4 V	•	0	-3 -3	-4 -1	-3	-3	-4	20	a		U a	acio	JS	-3	-2	0	-3	-1	4
5 W		-3	-3 -4	-5 -3	-2	-3	-3	-3	-3	-2	-3	-2	1	-4	-3	-3	12	2	-3
6 A		5	-2 -2	-2 -1	-1	-1	0	-2	-2	-2	-1	-1	-3	-1	1	0	-3	-2	0
7 L		-2	-2 -4	-4 -1	-2	-3	-4	-3	2	4	-3	2	0	-3	-3	-1	-2	-1	1
8 L		-1	-3 -3	-4 -1	-3	-3	-4	-3	2	2	-3	1	3	-3	-2	-1	-2	0	3
9 L		-1	-3 -4	-4 -1	-2	-3	-4	-3	2	4	-3	2	0	-3	-3	-1	-2	-1	2
10 L		-2	-2 -4	-4 -1	-2	-3	-4	-3	2	4	-3	2	0	-3	-3	-1	-2	-1	1
11 A		5	-2 -2	-2 -1	-1	-1	0	-2	-2	-2	-1	-1	-3	-1	1	0	-3	-2	0
12 A		5		1	_1	_1	$\mathbf{\cap}$	_つ	-2	-2	-1	-1	-3	-1	1	0	-3	-2	0
13 W		-2	all the	e am	ino	ac	ids		L	4	-3	2	1	-3	-3	-2	7	0	0
14 A		3							2	-2	-1	-2	-3	-1	1	-1	-3	-3	-1
15 A		2	from	posit	lion	11	to t	he	3	-3	0	-2	-3	-1	3	0	-3	-2	-2
16 A		4	end c	of you	ur F	PSI	-		2	-2	-1	-1	-3	-1	1	0	-3	-2	-1
 37 S		2			ior\	1 nr	rntc	nin	2	-3	0	2	С	1	л	1	2	2	-2
			BLAS	y dr	JEI J	<u>י</u> א	Ole	7111	Ě	-3	0	-2	-3	-T	4	T	-3	-2	-2
38 G		0	-5 -1	-2 -3	-2	-2	0	-2	-4	-4	-2	-3	-4	-2	0	-2	-3	-3	-4
39 Т		0	-1 0	-1 -1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-3	-2	0
40 W		-3	-3 -4	-5 -3	-2	-3	-3	-3	-3	-2	-3	-2	1	-4	-3	-3	12	2	-3
41 Y		-2	-2 -2	-3 -3	-2	-2	-3	2	-2	-1	-2	-1	3	-3	-2	-2	2	7	-1
42 A		4	-2 -2	-2 -1	-1	-1	0	-2	-2	-2	-1	-1	-3	-1	1	0	-3	-2	0


a	ARND	CQEGHILKM	
1 M	-1 -2 -2 -3	-	5 0 -3 -2 -1 -2 -1 1
2 K	-1 1 0 1	-4 2 4 -2 0 -3 -3 3 -2	2 -4 -1 0 -1 -3 -2 -3
3 W	-3 -3 -4 -5	-3 -2 -3 -3 -3 -3 -2 -3 -2	2 1 -4 -3 -3 12 2 -3
4 V	0 -3 -3 -4	-1 -3 -3 -4 -4 3 1 -3 1	L -1 -3 -2 0 -3 -1 4
5 W	<u>-3</u> -3 -4 -5	-3 -2 -3 -3 -3 -3 -2 -3 -2	2 1 -4 -3 -3 12 2 -3
6 A	5 -2 -2 -2	-1 -1 -1 0 -2 -2 -2 -1 -1	L -3 -1 1 0 -3 -2 0
7 L	-2 -2 -4 -4	-1 -2 -3 -4 -3 2 4 -3 2	2 0 -3 -3 -1 -2 -1 1
8 L	-1 -3 -3 -4	-1 -3 -3 -4 -3 2 2 -3 1	L 3 -3 -2 -1 -2 0 3
9 L	-1 -3 -4 -4		0 -3 -3 -1 -2 -1 2
10 L	-2 -2 -4 -4	note that a given	0 -3 -3 -1 -2 -1 1
11 A	5 -2 -2 -2	Ū.	-3 -1 1 0 -3 -2 0
12 A	5 -2 -2 -2	amino acid (such as	-3 -1 1 0 -3 -2 0
13 W	-2 -3 -4 -4	alanine) in your	1 -3 -3 -2 7 0 0
14 A	3 -2 -1 -2	, <u>-</u>	-3 -1 1 -1 -3 -3 -1
15 A	2 -1 0 1	query protein can	-3 -1 3 0 -3 -2 -2
16 A	4 -2 -1	receive different	-3 -1 1 0 -3 -2 -1
· · ·	2 -1 0 -1	scores for matching	-3 -1 4 1 -3 -2 -2
37 S		Ŭ	
38 G	0 -3 -1 -2	alanine—depending	-4 -2 0 -2 -3 -3 -4
39 T	0 -1 0 -1		2 -1 1 5 -3 -2 0
40 W	-3 -3 -4 -5	on the position in the	1 -4 -3 -3 12 2 -3
41 Y	-2 -2 -2 -3	protein	. 3 -3 -2 -2 2 7 -1
42 A	4 -2 -2 -2		-3 -1 1 0 -3 -2 0

1 M	A R N D -1 -2 -2 -3	C Q E G H : -2 -1 -2 -3 -2 :		MFP 60-3-	S T W Y V 2 -1 -2 -1 1
2 K 3 W 4 V 5 W		LAST PSSM is es rix that is more se			J
6 A 7 L 8 L	5 -2 -2 -2 -2 -2 -4 -4 -1 -3 -3 -4	-1 -2 -3 -4 -3		1 -3 -1 2 0 -3 - 1 3 -3 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9 L 10 L 11 A 12 A 13 W 14 A 15 A 16 A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	note that a give amino acid (su alanine) in you query protein receive differe	uch as ur can nt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
37 S 38 G 39 T 40 W 41 Y 42 A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	scores for mat alanine—depe on the position protein	ending	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

PSI-BLAST returns dramatically more hits

- The search process is continued iteratively, typically about five times, and at each step a new PSSM is built
 - You must decide how many iterations to perform and which sequences to include!
 - You can stop the search process at any point typically whenever few new results are returned or when no new "sensible" results are found

Iteration	Hits with E < 0.005	Hits with $E > 0.005$				
1	34	61				
2	314	79				
3	416	57				
4	432	50				
5	432	50				

Human retinol-binding protein 4 (RBP4; P02753) was used as a query in a PSI-BLAST search of the RefSeq database.

HMMER3: a new generation of sequence homology search software

HMMER is used for searching sequence databases for homologs of protein sequences, and for making protein sequence alignments. It implements methods using probabilistic models called **profile hidden Markov models** (profile HMMs).

Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be significantly *more* accurate and *more* able to detect remote homologs because of the strength of its underlying mathematical models. In the past, this strength came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially **as fast as** BLAST.

As part of this evolution in the HMMER software, we are committed to making the software available to as many scientists as possible. Earlier releases of HMMER were restricted to command line use. To make the software more accessible to the wide scientific community, we now provide **servers** that allow **sequence searches** to be performed interactively via the **Web**.

The current version is **HMMER 3.0** (28 March 2010) and can be **downloaded** from the software section of the site. Previous versions of the HMMER software can be obtained from the **archive** section.

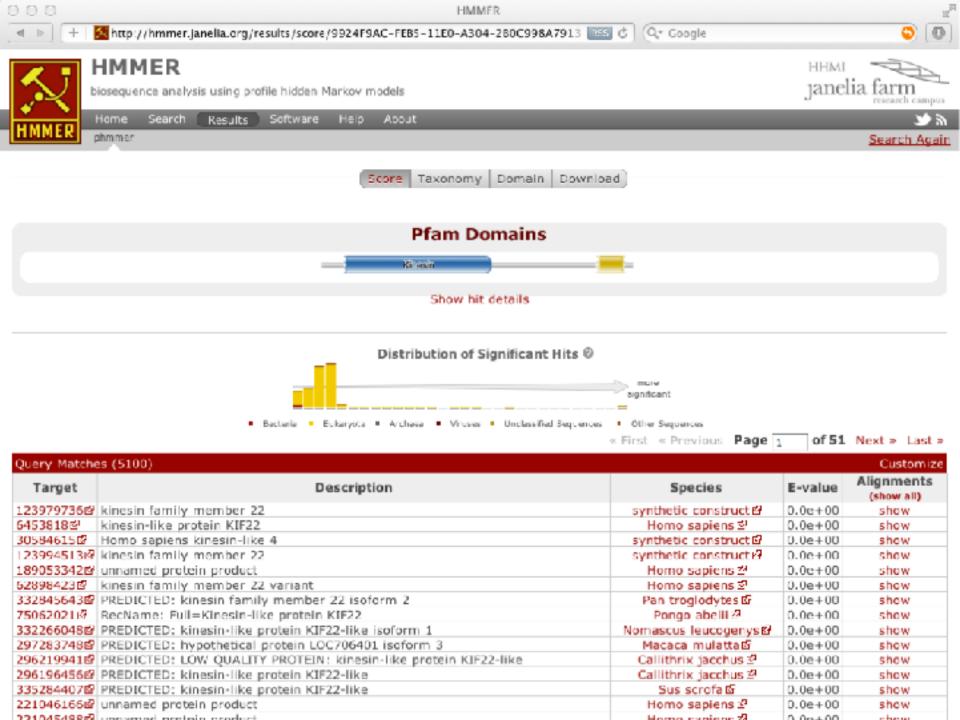
If you have used the HMMER website, please consider citing the following reference that describes this work:

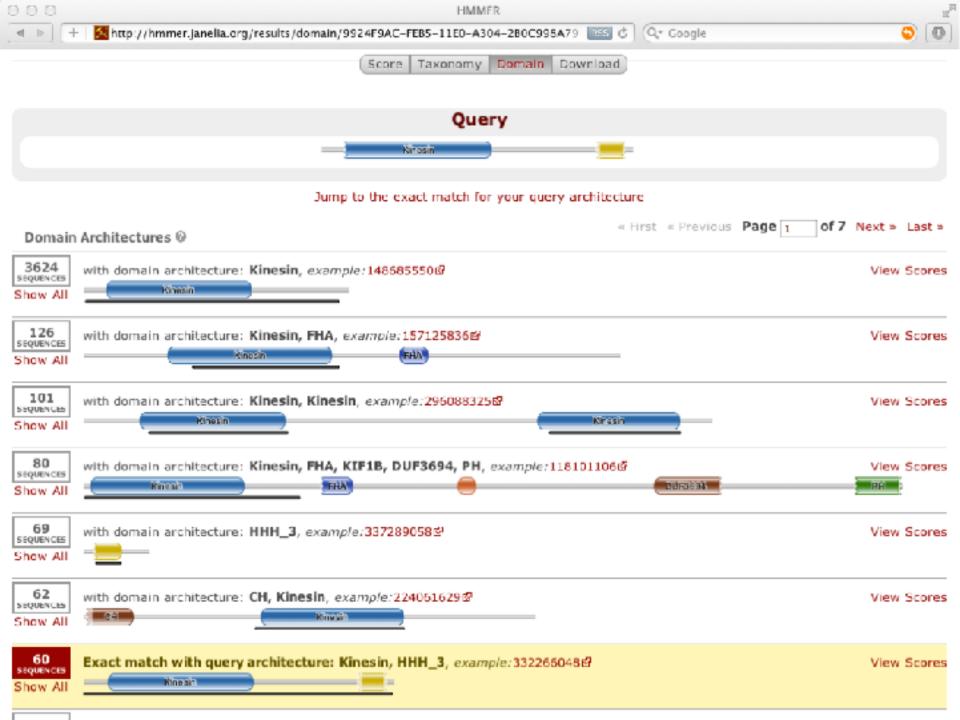
HMMER web server: Interactive sequence similarity searching R.D. Finn, I. Clements, S.R. Eddy Nucleic Acids Research (2011) Web Server Issue 39:W29-W37. PDF²

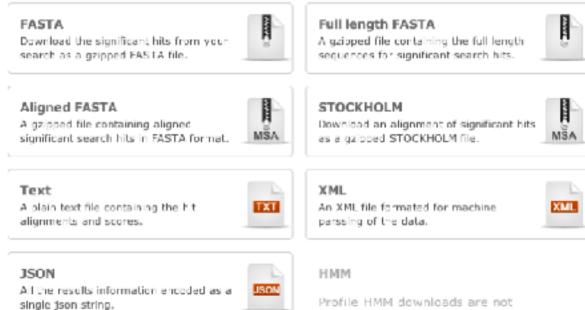
Comments or questions on the site? Send a mail to hmmer@janelia.hhmi.org Howard Hughes Medical Institute

protein sequence vs protein sequence database

Paste in your sequence or use the example


Advanced


> SpIQ14807 IKIF22_HUMAN MAAGGSTQQRRREMAAASAAAISGAGRCRLSKIGATRRPPPARVRVAVRLRPFVDGTAGA SDPPCVRGMDSCSLEIANWRNHQETLKYQFDAFYGERSTQQDIYAGSVQPILRHLLEGQN ASVLAYGPTGAGKTHTMLGSPEQPGVIPRALMDLLQLTREEGAEGRPWALSVTMSYLEIY QEKVLDLLDPASGDLVIREDCRGNILIPGLSQKPISSFADFERHFLPASRNRTVGATRLN QRSSRSHAVLLVKVDQRERLAPFRQREGKLYLIDLAGSEDNRRTGNKGLRLKESGAINTS LFVLGKVVDALNQGLPRVPYRDSKLTRLLQDSLGGSAHSILIANIAPERRFYLDTVSALN FAARSKEVINRPFTNESLQPHALGPVKLSQKELLGPPEAKRARGPEEEIGSPEPMAAPA SASQKLSPLQKLSSMDPAMLERLLSLDRLLASQGSQGAPLLSTPKRERMVLMKTVEEKDL EIERLKTKQKELEAKMLAQKAEEKENHCPTMLRPLSHRTVTGAKPLKKAVVMPLQLIQEQ AASPNAEIHILKNKGRRREISLDALEPEEKAEDOWELQSPELLAHGRQKILDLINEGS AADLRSLORIGKKAOLINGWRELHGPESONEDLERVEGTCKOMESEIKANILGLAAGO


Comments or questions on the site? Send a mail to hmmer@janelia.hhmi.org Howard Hughes Medical Institute

available.

Summary

- Alignment basics
 - Why compare biological sequences?
- Homologue detection
 - Orthologs, paralogs, similarity and identity
 - Sequence changes during evolution
 - Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
 - Brute force alignment
 - Dot matrices
 - Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
 - BLAST
- Practical database searching
 - BLAST, PSI-BLAST and HMM approaches