PAIRWISE SEQUENCE ALIGNMENT AND DATABASE SEARCHING

MODULE OVERVIEW

Objective: Provide an introduction to the practice of bioinformatics as well as a practical guide to using common bioinformatics databases and algorithms
1.1. Introduction to Bioinformatics
1.2. . Sequence Alignment and Database Searching
1.3 - Structural Bioinformatics
1.4 Genome Informatics: High Throughput Sequencing Applications and Analytical Methods

WEEK ONE REVIEW

I Answers to last weeks homework (19/20):
Answers week 1
\square Muddy Point Assessment (14/20): Responses

- Need for FASTA header lines ">example1"
- More on protein structure viewing and NGL...
- "what does the AU assembly mean?
- "Great first lab!" ... Nice Assignment".

THIS WEEK'S HOMEWORK

V Check out the "Background Reading" material online:
Dynamic Programming
Database Searching
(Complete the lecture 1.2 homework questions: http://tinyurl.com/bioinf525-quiz2

TODAYS MENU

- Alignment basics
- Why compare biological sequences?
- Homologue detection
- Orthologs, paralogs, similarity and identity
- Sequence changes during evolution
- Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
- Brute force alignment
- Dot matrices
- Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
- BLAST
- Practical database searching
- PSI-BLAST and HMM approaches

Basic Idea: Display one sequence above another with spaces (termed gaps) inserted in both to reveal similarity of nucleotides or amino acids.

Seq1: CATTCAC
Seq2: C T C G C A G C

Basic Idea: Display one sequence above another with spaces (termed gaps) inserted in both to reveal similarity of nucleotides or amino acids.

Seq1: CATTCAC
 Seq2: CTCGCAGC
 mismatch
 match

Two types of character correspondence

Basic Idea: Display one sequence above another with spaces (termed gaps) inserted in both to reveal similarity of nucleotides or amino acids.

$$
\begin{aligned}
& \text { Seq1: CAT-TCA-C } \\
& \text { Seq2: C-TCGCAGC } \\
& \simeq \text { match } \\
& \text { mismatch }
\end{aligned}
$$

Add gaps to increase number of matches

Basic Idea: Display one sequence above another with spaces (termed gaps) inserted in both to reveal similarity of nucleotides or amino acids.

$$
\begin{aligned}
& \text { Seq1: CAT-TCA-C } \\
& \text { Seq2: C-TCGCAGC }
\end{aligned}
$$

Gaps represent 'indels' $\left.\begin{array}{l}\text { insertion } \\ \text { deletion }\end{array}\right\}$ indels mismatch represent mutations

Why compare biological sequences?

- To obtain functional or mechanistic insight about a sequence by inference from another potentially better characterized sequence
- To find whether two (or more) genes or proteins are evolutionarily related
- To find structurally or functionally similar regions within sequences (e.g. catalytic sites, binding sites for other molecules, etc.)
- Many practical bioinformatics applications...

Practical applications of sequence alignment include...

- Similarity searching of databases
- Protein structure prediction, annotation, etc...
- Assembly of sequence reads into a longer construct such as a genomic sequence
- Mapping sequencing reads to a known genome
- "Resequencing", looking for differences from reference genome - SNPs, indels (insertions or deletions)
- Mapping transcription factor binding sites via ChIP-Seq (chromatin immuno-precipitation sequencing)
- Pretty much all next-gen sequencing data analysis

Practical applications of sequence alignment include...

- Similarity searching of databases
- Assembly of sequen a alisnmen of bio informans construct
- M.B. Pairwis en mental operatio to a known genome rapping transcription factor binding sites via ChIP-Seq (chromatin immuno-precipitation sequencing)
- Pretty much all next-gen sequencing data analysis

Outline for today

- Alignment basics
- Why compare biological sequences?
- Homologue detection
- Orthologs, paralogs, similarity and identity
- Sequence changes during evolution
- Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
- Brute force alignment
- Dot matrices
- Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
- BLAST
- Practical database searching
, PSI-BLAST and HMM approaches

Sequence comparison is most informative when it detects homologs

Homologs are sequences that have common origins i.e. they share a common ancestor

- They may or may not have common activity

Key terms

When we talk about related sequences we use specific terminology.

Homologous sequences may be either:

- Orthologs or Paralogs
(Note. these are all or nothing relationships!)
Any pair of sequences may share a certain level of:
- Identity and/or Similarity
(Note. if these metrics are above a certain level we often infer homology)

Orthologs tend to have similar function

Orthologs: are homologs produced by speciation that have diverged due to divergence of the organisms they are associated with.

- Ortho = [greek: straight] ... implies direct descent

Paralogs tend to have slightly different functions

Paralogs: are homologs produced by gene duplication. They represent genes derived from a common ancestral gene that duplicated within an organism and then subsequently diverged by accumulated mutation.

- Para = [greek: along side of]

Orthologs vs Paralogs

- In practice, determining ortholog vs paralog can be a complex problem:
- gene loss after duplication,
- lack of knowledge of evolutionary history,
- weak similarity because of evolutionary distance
- Homology does not necessarily imply exact same function
- may have similar function at very crude level but play a different physiological role

Sequence changes during evolution

There are three major types of sequence change that can occur during evolution.

- Mutations/Substitutions
- Deletions
- Insertions

Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.

- Mutations/Substitutions CTCGTTA \rightarrow CACGTTA
- Deletions
- Insertions

Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.

- Mutations/Substitutions CTCGTTA \rightarrow CACGTTA
- Deletions
- Insertions

Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.

- Mutations/Substitutions CTCGTTA \rightarrow CACGTTA
- Deletions

CACGTTA \rightarrow CACTTA

- Insertions

Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.

- Mutations/Substitutions CTCGTTA \rightarrow CACGTTA
- Deletions
- Insertions

CACGTTA \rightarrow CACTTA
CACTTA \rightarrow CACTGTA

Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.

- Mutations/Substitutions CTCGTTA \rightarrow CACGTTA
- Deletions

CACGTTA \rightarrow CATGTTA

- Insertions

Alignment view

Alignments are great tools to visualize sequence similarity and evolutionary changes in homologous sequences.

- Mismatches represent mutations/substitutions
- Gaps represent insertions and deletions (indels)

Substitution $\downarrow \downarrow \square^{\text {Indels }}$

$$
\begin{aligned}
& \text { (A) CAC-TGTA } \\
& \text { (B) CATGT-TA }
\end{aligned}
$$

Alternative alignments

- Unfortunately, finding the correct alignment is difficult if we do not know the evolutionary history of the two sequences
- There are many possible alignments
- Which alignment is best?

CACTGTA ||: : : ||
 CATGTTA

Alternative alignments

- One way to judge alignments is to compare their number of matches, insertions, deletions and mutations

4 matches
3 mismatches 0 gaps

6 matches
0 mismatches
$\bigcirc 2$ gaps

5 matches
1 mismatches
$\bigcirc 2$ gaps

Scoring alignments

- We can assign a score for each match (+3), mismatch (+1) and indel (-1) to identify the optimal alignment for this scoring scheme

$5(+3)$
$1(+1)$
$2(-1)=14$
CACTGTA

CATGTTA

Optimal alignments

- Biologists often prefer parsimonious alignments, where the number of postulated sequence changes is minimized.

4 matches
3 mismatches
$\bigcirc 0$ gaps

CACTGTA
 ||: : : ||
 CATGTTA

5 matches1 mismatches
2 gaps

Optimal alignments

- Biologists often prefer parsimonio sequence changes alignmeionary history
evolution

CATGTTA CA-TGTTA
o matches 1 mismatches 2 gaps

Side note: sequence identity and similarity

- Two commonly quoted metrics for pairs of aligned sequences.
- Sequence identity: typically quotes the percent of identical characters in the aligned region of two sequences
- Sequence similarity: typically the score resulting from optimal pair-wise alignment (note dependence on parameters used: i.e. scoring scheme)
- N.B. In contrast, homology is an all or nothing relationship, you can not have a percent homology!

Side note: sequence identity and similarity

- High sequence similarity is frequently used as an indicator of homology
- Use to find genes and/or proteins with potentially similar or identical function
- Can query a database of sequences by performing a series of pair-wise alignments
- Knowledge of the difference between sequences can also yield valuable functional and mechanistic insights
- A gene from a normal and an affected subject - possible cause of a heritable disease
- Similar proteins with different substrate specificities - what amino acid changes might be responsible for this?

Outline for today

- Alignment basics
- Why compare biological sequences?
- Homologue detection
- Orthologs, paralogs, similarity and identity
- Sequence changes during evolution
- Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
- Brute force alignment
- Dot matrices
- Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
- BLAST
- Practical database searching
, PSI-BLAST and HMM approaches

Outline for today

- Alignment basics
- Why compare biological sequences?
- Homologue detection
- Orthologs, paralogs, similarity and identity
- Sequence changes during evolution
- Alignment view: matches, mismatches and gaps

How do we compute the optimal
alignment between two sequences?
(yIUDd VS IUCal allynimient)
- Rapid heu
- BLAST

Quiz questions:

- Practical c http://tinyurl.com/bioinf525-quiz2
, PSI-BL

Pair-wise Sequence Alignment

- Objective: arrange two sequences in such a fashion that pairs of matching characters between the two sequences are maximized
- Match does not have to be identity, can be defined by a function that ranks or scores the characters being compared (often termed a substitution matrix)
- Ungapped alignment example - bars indicate matching characters

> Seq1: GTAATCTG-
> Seq2: -TAAGCTGA

Simplest case - brute force alignments

- In the simplest case we can simply slide one sequence across the other and count matching characters for each possible alignment
- Chose a scoring scheme and do not allow internal gaps within sequences
- Algorithmic complexity is linear
$\mathrm{N}+\mathrm{M}$ alignments to consider
(where N and M are the length of each sequence)

GTAATCTG
TTAAGCTGA

GTAATCTG
TTAAGCTGA

GTAATCTG
। ।
TTAAGCTGA

GTAATCTG
TTAAGCTGA

Brute Force Alignment, No Gaps

Gaps make the brute force method

 unusable for all but the shortest sequences- Pairs of related sequences often have insertions or deletions relative to one-another, we therefore require gapped pair-wise alignment
- Need to generate all the possible gap lengths and combinations of gaps at all possible positions in both sequences
- For two sequences of equal length, the formula is:

$$
\binom{2 N}{N}=\frac{(2 N)!}{(N!)^{2}} \cong \frac{2^{2 N}}{\sqrt{\pi N}} \begin{aligned}
& N=10: 184756 \\
& N=50: \sim 1.00 \mathrm{E} 29 \\
& \mathrm{~N}=250: \sim 1.17 \mathrm{E} 149
\end{aligned}
$$

Three general solutions to the alignment problem

- The dot plot or dot matrix approach
- A simple graphical method for pair-wise alignment
- No scoring, so difficult to compare alternative alignments
- Can give visual clues to sequence structure but requires human interaction
- Dynamic programming algorithms
- Provides Optimal solutions (but not necessarily unique solutions)
- Heuristic word or k-tuple approaches
- Much faster (e.g. BLAST and FASTA)
- Widely used for database searches
- May miss some pairs with low similarity

Three general solutions to the alignment problem

- The dot plot or dot matrix approach
- A simple graphical method for pair-wise alignment
- No scoring, so difficult to compare alternative alignments
- Can give visual clues to sequence structure but requires human interaction
- Dynamic programming algorithms
- Provides Optimal solutions (but not necessarily unique solutions)
- Heuristic word or k-tuple approaches
- Much faster (e.g. BLAST and FASTA)
- Widely used for database searches
- May miss some pairs with low similarity

Dot plots: simple graphical approach

- Place one sequence on the vertical axis of a 2D grid (or matrix) and the other on the horizontal

Dot plots: simple graphical approach

- Now simply put dots where the horizontal and vertical sequence values match

Dot plots: simple graphical approach

- Diagonal runs of dots indicate matched segments of sequence

Dot plots: simple graphical approach

Q. What would the dot matrix of a two identical sequences look like?

Dot plots: simple graphical approach

- Dot matrices for long sequences can be noisy

Dot plots: window size and match stringency

Solution: use a window and a threshold

- compare character by character within a window
- require certain fraction of matches within window in order to display it with a dot.
- You have to choose window size and stringency

Dot plots: window size and match stringency

Solution: use a window and a threshold

- compare character by character within a window
- require certain fraction of matches within window in order to display it with a dot.
- You have to choose window size and stringency

Window size $=5$ bases

A dot plot simply puts a dot where two sequences match. In this example, dots are placed in the plot if 5 bases in a row match perfectly. Requiring a 5 base perfect match is a heuristic - only look at regions that have a certain degree of identity.

Do you expect evolutionarily related sequences to have more word matches (matches in a row over a certain length) than random or unrelated sequences?

Window size $=7$ bases

This is a dot plot of the same sequence pair. Now 7 bases in a row must match for a dot to be place. Noise is reduced.

Using windows of a certain length is very similar to using words (kmers) of N characters in the heuristic alignment search tools

Bigger window (kmer) fewer matches to consider

Web site used: http://www.vivo.colostate.edu/molkit/dnadot/

Ungapped alignments

Web site used: http://www.vivo.colostate.edu/molkit/dnadot/

Global alignments

Uses for dot matrices

- Visually assessing the similarity of two protein or two nucleic acid sequences
- Finding local repeat sequences within a larger sequence by comparing a sequence to itself
- Repeats appear as a set of diagonal runs stacked vertically and/or horizontally

Repeats

Human LDL receptor protein sequence (Genbank P01130)

$$
\begin{aligned}
& W=1 \\
& S=1
\end{aligned}
$$

Repeats

Human LDL receptor protein sequence (Genbank P01130)

$$
\begin{aligned}
W & =23 \\
S & =7
\end{aligned}
$$

(Figure from Mount, "Bioinformatics sequence and genome analysis")

Side note: dots can have "weights"

- Some matches can be rewarded more than others, depending on likelihood
- Use PAM or BLOSUM substitution matrix - (more on these later)
- Put a dot only if a minimum total or average weight is achieved
- See chapter 3 in Mount, "Bioinformatics sequence and genome analysis".

Three general solutions to the alignment problem

- The dot plot or dot matrix approach
- A simple graphical method for pair-wise alignment
- No scoring, so difficult to compare alternative alignments
- Can give visual clues to sequence structure but requires human interaction
- Dynamic programming algorithms
- Provides Optimal solutions (but not necessarily unique solutions)
- Heuristic word or k-tuple approaches
- Much faster (e.g. BLAST and FASTA)
- Widely used for database searches
- May miss some pairs with low similarity

The Dynamic Programming Algorithm

- The dynamic programming algorithm can be thought of an extension to the dot plot approach
- One sequence is placed down the side of a grid and another across the top
- Instead of placing a dot in the grid, we compute a score for each position
- Finding the optimal alignment corresponds to finding the path through the grid with the highest possible score

Different paths represent different alignments

$\begin{array}{lcccc}\text { Seq1: } & D & P & \text { L } & \text { E } \\ & \mid & \mid & : & \mid \\ \text { Seq2: } & D & P & M & E\end{array}$

Seq2: D P L E

Matches are represented by diagonal paths and indels with horizontal or vertical path segments

Algorithm of Needleman and Wunsch

- The Needleman-Wunsch approach to global sequence alignment has three basic steps:
(1) setting up a 2D-grid (or alignment matrix),
(2) scoring the matrix, and
(3) identifying the optimal path through the matrix

Needleman, S.B. \& Wunsch, C.D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453.

Scoring the alignment matrix

- Start by filling in the first row and column - these are all indels (gaps).
- Each step you take you will add the gap penalty to the score $\left(S_{i, j}\right)$ accumulated in the previous cell

Scoring the alignment matrix

- Start by filling in the first row and column - these are all indels (gaps).
- Each step you take you will add the gap penalty to the score $\left(S_{i, j}\right)$ accumulated in the previous cell

Scoring the alignment matrix

- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
- Now can ask which of the three directions gives the highest score?
- keep track of this score and direction

	-	j	P	L	E
-	0	-2	-4	-6	-8
- D	-2	?			
P	-4				
M	-6				
E	-8				

Scores: match $=+1$, mismatch $=-1$, gap $=-2$

Scoring the alignment matrix

- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
- Now can ask which of the three directions gives the highest score?
- keep track of this score and direction

	-	j	P	L	E
-	0	-2	-4	-6	-8
\cdots D	-2	?			
P	-4				
M	-6				
E	-8				

Scores: match $=+1$, mismatch $=-1$, gap $=-2$
$\mathrm{S}(i, j)=\operatorname{Max} \begin{cases}\mathrm{S}(i-1, j-1)+(\text { mis }) \text { match } & \searrow(1) \\ \mathrm{S}(i-1, j)-\text { gap penalty } & \downarrow(2) \\ \mathrm{S}(i, j-1)-\text { gap penalty } & \rightarrow(3)\end{cases}$

Scoring the alignment matrix

- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
- Now can ask which direction gives the highest score
- keep track of direction and score

Scores: match $=+1$, mismatch $=-1$, gap $=-2$
(1) $(0)+(+1)=+1 \quad<=(D-D)$ match! Alignment

$$
\begin{aligned}
& \downarrow \text { (2) }(-2)+(-2)=-4 \\
& \rightarrow(3)(-2)+(-2)=-4
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D} \\
& \mathrm{D}
\end{aligned}
$$

Scoring the alignment matrix

- At each step, the score in the current cell is determine by the scores in the neighboring cells
- The maximal score and the direction that gave that score is stored (we will use these later to determine the optimal alignment)

Scores: match $=+1$, mismatch $=-1$, gap $=-2$
\pm (1) $(-2)+(-1)=-3 \quad<=(D-P)$ mismatch!
Alignment
\downarrow (2) $(-4)+(-2)=-6$
D-
DP
\rightarrow (3) (1) $+(-2)=-1$

Scoring the alignment matrix

- We will continue to store the alignment score $\left(S_{i, j}\right)$ for all possible alignments in the alignment matrix.

Scores: match $=+1$, mismatch $=-1$, gap $=-2$
\pm (1) $(-4)+(-1)=-5 \quad<=(D-L)$ mismatch Alignment
$\downarrow(2)(-6)+(-2)=-8 \quad \begin{aligned} & \mathrm{D}-- \\ & \mathrm{DPL}\end{aligned}$
\rightarrow (3) $(-1)+(-2)=-3$

Scoring the alignment matrix

- For the highlighted cell, the corresponding score $\left(\mathrm{S}_{i, j}\right)$ refers to the score of the optimal alignment of the first i characters from sequence1, and the first j characters from sequence2.

Scores: match $=+1$, mismatch $=-1$, indel $=-2$
$\pm(1)(-1)+(-1)=-2$
Alignment
\downarrow (2) $(-3)+(-2)=-5$
DP-
DPL
\rightarrow (3) (2)+(-2) $=0$

Scoring the alignment matrix

- At each step, the score in the current cell is determine by the scores in the neighboring cells
- The maximal score and the direction that gave that score is stored

Scores: match $=+1$, mismatch $=-1$, indel $=-2$
$\begin{array}{ll}\text { (1) }(2)+(-1)=0 & \begin{array}{c}<=\text { mismatch } \\ \text { Alignment }\end{array} \\ \\ \downarrow \text { (2) }(0)+(-2)=-2 & \begin{array}{l}\text { DPM } \\ \text { DPI }\end{array} \\ \rightarrow(3)(0)+(-2)=-2 & \end{array}$

Scoring the alignment matrix

- The score of the best alignment of the entire sequences corresponds to $S_{n, m}$
- (where n and m are the length of the sequences)

Scores: match $=+1$, mismatch $=-1$, indel $=-2$
(1) $(+1)+(+1)=+2$

Alignment
$\downarrow(2)(-1)+(-2)=-3$
DPME
DPLE
\rightarrow (3) $(-1)+(-2)=-3$

Scoring the alignment matrix

- To find the best alignment, we retrace the arrows starting from the bottom right cell
- N.B. The optimal alignment score and alignment are dependent on the chosen scoring system

```
Scores: match = +1, mismatch =-1, indel =-2
```


Alignment
DPME
DPLE

Questions:

- What is the optimal score for the alignment of these sequences and how do we find the optimal alignment?

Questions:

- What is the optimal score for the alignment of these sequences and how do we find the optimal alignment?

Questions:

- To find the best alignment we retrace the arrows starting from the bottom right cell

More than one alignment possible

- Sometimes more than one alignment can result in the same optimal score

The alignment and score are dependent on the scoring system

- Here we increase the gap penalty from -2 to -3

Global vs local alignments

- Needleman-Wunsch is a global alignment algorithm
- Resulting alignment spans the complete sequences end to end
- This is appropriate for closely related sequences that are similar in length
- For many practical applications we require local alignments
- Local alignments highlight subregions (e.g. protein domains) in the two sequences that align well

Local alignment: Definition

- Smith \& Waterman proposed simply that a local alignment of two sequences allow arbitrary-length segments of each sequence to be aligned, with no penalty for the unaligned portions of the sequences. Otherwise, the score for a local alignment is calculated the same way as that for a global alignment

Smith, T.F. \& Waterman, M.S. (1981) "Identification of common molecular subsequences." J. Mol. Biol. 147:195-197.

The Smith-Waterman algorithm

- Three main modifications to Needleman-Wunsch:
- Allow a node to start at 0
- The score for a particular cell cannot be negative
- if all other score options produce a negative value, then a zero must be inserted in the cell
- Record the highest- scoring node, and trace back from there

Sequence 1

Local alignment
GCC-AUG GCCUCGC

Local alignments can be used for database searching

- Goal: Given a query sequence (Q) and a sequence database (D), find a list of sequences from D that are most similar to Q
- Input: Q, D and scoring scheme
- Output: Ranked list of hits

The database search problem

- Due to the rapid growth of sequence databases, search algorithms have to be both efficient and sensitive
- Time to search with SW is proportional to $m \times n$ (m is length of query, n is length of database), too slow for large databases!

To reduce search time heuristic algorithms, such as BLAST, first remove database sequences without a strong local similarity to the query sequence in a quick initial scan.

The database search problem

- Due to the rapid growth of sequence databases, search algorithms have to be both efficient and sensitive
- Time to search with SW is proportional to $m \times n$ (m is length of query, n is length of database), too slow for large databases!

Query RGGVKRIKLMR

To reduce search time heuristic algorithms, such as BLAST, first remove database sequences without a strong local similarity to the query sequence in a quick initial scan.

Outline for today

- Alignment basics
- Why compare biological sequences?
- Homologue detection
- Orthologs, paralogs, similarity and identity
- Sequence changes during evolution
- Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
- Brute force alignment
- Dot matrices
- Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
- BLAST
- Practical database searching
, PSI-BLAST and HMM approaches

Rapid, heuristic versions of Smith-Waterman: BLAST

- BLAST (Basic Local Alignment Search Tool) is a simplified form of Smith-Waterman (SW) alignment that is popular because it is fast and easily accessible
- BLAST is a heuristic approximation to SW - It examines only part of the search space
- BLAST saves time by restricting the search by scanning database sequences for likely matches before performing more rigorous alignments
- Sacrifices some sensitivity in exchange for speed
- In contrast to SW, BLAST is not guaranteed to find optimal alignments

Rapid, heuristic versions of Smith-Waterman: BLAST

- BLAST (Basic Local Alignment Search Tooll. because it is fast and easily, ithm is to cor ar match" - BLAST finds regiond $\angle A T$ algorithin word P sequences of the BLAS in an initial woral π contrast to SW, BLAST is not guaranteed to find optimal alignments
- BLAST uses this pre-screening heuristic approximation resulting in an an approach that is about 50 times faster than the Smith-Waterman algorithm

How BLAST works

- Four basic phases
- Phase 1: compile a list of query word pairs ($w=3$)

RGGVKRI Query sequence RGG GGV
 GVK
 VKR
 KRI

generate list of
w=3 words for
query

Blast

- Phase 2: expand word pairs to include those similar to query (defined as those above a similarity threshold to original word, i.e. match scores in substitution matrix)

RGGVKRI Query sequence RGG RAG RIG RLG

 GGV GAV GTV GCVextend list of words similar to query
GVK GAK GIK GGK \ldots
VKR VRR VHR VER
KRI KRI KHI KDI

Blast

- Phase 3: a database is scanned to find sequence entries that match the compiled word list

GNYGLKVISLDVE Database sequence
RGGVKRI Query sequence
RGG RAG RIG RLG
search for perfect matches in the database sequence GGV GAV GTV GCV
GVK GLK GIK GGK . . .
VKR VRR VHR VER
KRI KKI KHI KDI

Blast

- Phase 4: the initial database hits are extended in both directions using dynamic programing

GNYGLKVISLDVE Database sequence

RGGVKRI
Query sequence
matched word is used as a local alignment seed

GRGGVKRISGL Query sequence GNYGLKVISLDV Database sequence

GRGGVKRISGL Query sequence
GNYGLKVIS-L Database sequence

BLAST output

- BLAST returns the highest scoring database hits in a ranked list along with details about the target sequence and alignment statistics

Description	Max score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo sapiens]	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	100%	0	98%	AAA20133.1
Kinesin-14 heavy chain [Danio rerio]	595	88%	0	78%	XP_00320703
hypothetical protein EGK_18589	48.2	40%	0.03	32%	ELK35081.1
mKIAA4102 protein [Mus musculus]	42.7	38%	3.02	24%	EHH28205.1

Statistical significance of results

- An important feature of BLAST is the computation of statistical significance for each hit. This is described by the \mathbf{E} value (expect value)

Description	Max score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo sapiens]	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	100%	0	98%	AAA20133.1
Kinesin-14 heavy chain [Danio rerio]	595	88%	0	78%	XP_00320703
hypothetical protein EGK_18589	48.2	40%	0.03	32%	ELK35081.1
mKIAA4102 protein [Mus musculus]	42.7	38%	3.02	24%	EHH28205.1

BLAST scores and E-values

- The \mathbf{E} value is the expected number of hits that are as good or better than the observed local alignment score (with this score or better) if the query and database are random with respect to each other
- i.e. the number of alignments expected to occur by chance with equivalent or better scores
- Typically, only hits with E value below a significance threshold are reported
- This is equivalent to selecting alignments with score above a certain score threshold
- Ideally, a threshold separates all query related sequences (yellow) from all unrelated sequences (gray)

- Unfortunately, often both score distributions overlap
- The E value describes the expected number of hits with a score above the threshold if the query and database are unrelated

- Unfortunately, often both score distributions overlap
- The E value describes the expected number of hits with a score above the threshold if the query and database are unrelated

Description	Max score	Total score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo	677	677	100\%	0	100\%	NP_004512.1
	¢7E	270	1 nnor	n	noor	^^^ヘก1ว 1

In general E values <0.005 are usually significant.
To find out more about E values see: "The Statistics of Sequence Similarity Scores" available in the help section of the NCBI BLAST site:
http://www.ncbi.nlm.nih.gov/blast/tutorial/Altschul-1.html

Outline for today

- Alignment basics
- Why compare biological sequences?
- Homologue detection
- Orthologs, paralogs, similarity and identity
- Sequence changes during evolution
- Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
- Brute force alignment
- Dot matrices
- Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
- BLAST
- Practical database searching
- BLAST, PSI-BLAST and HMM approaches

Practical database searching with BLAST

Practical database searching with BLAST

- There are four basic components to a traditional BLAST search
- (1) Choose the sequence (query)
- (2) Select the BLAST program
- (3) Choose the database to search
- (4) Choose optional parameters
- Then click "BLAST"

Step 1: Choose your sequence

- Sequence can be input in FASTA format or as accession number

```
NCBI l.esn rie: = (v) |-w ln (\sqrt{y}{0}

Protein
1 ans stions of \(\mathrm{L}^{-}\)ミ
    | Sparrh Ëlea=
```

```
```

Searcti. Procin

```
```

```
Searcti. Procin
```

hemoglabin subunit beta [Homa sapiens]

```

```

N:RI Nef= remo= = = = =
analyze thls sequence
?u- BL43T

```

```

\#二,T.
den:Iy Con=ered 50%aln:
mut in -his ! emul= ni:=

```

```

MOZYYE

```

\section*{Step 2: Choose the BLAST program}

\section*{Query \\ Database}


\section*{DNA potentially encodes six proteins}



\section*{Step 3: Choose the database}

\author{
\(\mathrm{nr}=\) non-redundant (most general database) dbest = database of expressed sequence tags dbsts = database of sequence tag sites \\ gss = genomic survey sequences
}

```

CPmomic mbis Transmijf

```


```

Oftrer Datobmrges
V|IN:frtirde :r lle.r:inn 'at/M!!

```



```

 =spIFsseid = frumenm= 1nggs ifst)
 Vnmh.mnn nnm mo .se =GiTs (e.s"_nth=e=;
    ```

```

 -ligh throug`Fut jercmis sequerces 'TTCis)
 3at2-1027.Cnoco,93:,
 Srote n C E19 Benk ifcb)
    ```

```

 Sequこ`co (#jyed cites (dbos)
 wW与 c-ccnome zhotgun roads iwg=:
 =n\mp@code{utonm=-1al esmolor ionv nti}=0
    ```
```

Vonteducomt`כcin:=cquenzcomi

```


Sxi=sprul:J.t.irl \(=\) = (



protein databases


\section*{Step 4a: Select optional search parameters}


\section*{Step 4: Optional parameters}
- You can...
- choose the organism to search
- change the substitution matrix
- change the expect (E) value
- change the word size
- change the output format

\section*{Results page}


\section*{Further down the results page...}


\section*{Further down the results page...}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{NCBI Blast:gi|4504349|ref|NP_000509.1| hemoglobin} \\
\hline \(4>+\) § blast.ncbi.nlm.nih.gov/Blast.cgi & & & & & & Reader & 0 \\
\hline \multicolumn{8}{|l|}{Sequences producing significant alignments:} \\
\hline \multicolumn{8}{|l|}{Select: All None Selected:0} \\
\hline \multicolumn{8}{|l|}{it Alignments} \\
\hline Description & Max
score & Total score & Query cover & \[
\begin{gathered}
E \\
\text { value }
\end{gathered}
\] & \begin{tabular}{l}
Max \\
ident
\end{tabular} & Accession & \\
\hline - hemoglobin beta [synthetic construct] & 301 & 301 & 100\% & \(9 \mathrm{e}-103\) & 100\% & AAX37051.1 & \\
\hline - hemoglobin beta [synthetic construct] & 301 & 301 & 100\% & 1e-102 & 100\% & AAX29557.1 & \\
\hline - hemoglobin subunit beta |Homo sapiens] >refl|XP 508242.11 PREDICTED: hemoglobin s & 301 & 301 & 100\% & 1e-102 & 100\% & NP 000509.1 & \\
\hline - RecName: Full=Hemoglobin subunit beta; AltName: Full=Beta-globin; AltName: Full=Hen & 300 & 300 & 100\% & 4e-102 & 99\% & P02024.2 & \\
\hline - beta globin chain variant[Homo sapiens] & 299 & 299 & 100\% & \(5 \mathrm{e}-102\) & 99\% & AAN84548.1 & \\
\hline - beta globin [Homo sapiens] >gb|AAZ39781.1| beta globin [Homo sapiens] >gb|AAZ3978i & 299 & 299 & 100\% & \(5 \mathrm{e}-102\) & 99\% & AAZ39780.1 & \\
\hline beta-globin [Homo sapiens] & 299 & 299 & 100\% & \(5 \mathrm{e}-102\) & 99\% & ACU56984.1 & \\
\hline - hemoglobin beta chain [Homo sapiens] & 299 & 299 & 100\% & \(6 \mathrm{e}-102\) & 99\% & AAD19696.1 & \\
\hline Chain B. Structure Of Haemoglobin In The Deoxy Quaternary State With Ligand Bound Al & 298 & 298 & 99\% & 9e-102 & 100\% & \(\underline{1 C O H}\) & \\
\hline - hemoglobin beta subunit variant [Homo sapiens] >gb|AAA88054.1] beta-globin [Homo sa & 298 & 298 & 100\% & 1e-101 & 99\% & AAF00489.1 & \\
\hline Chain B. Human Hemoglobin D Los Angeles: Crystal Structure >pdbl2YRSID Chain D.H & 298 & 298 & 99\% & 2e-101 & 99\% & \(\underline{\text { 2YRS B }}\) & \\
\hline Chain B. High-Resolution X-Ray Study Of Deoxy Recombinant Human Hemoglobins Syn & 297 & 297 & 99\% & 3e-101 & 99\% & 10XU B & \\
\hline Chain B, Analysis Of The Crystal Structure, Molecular Modeling And Infrared Spectroscor: & 297 & 297 & 99\% & \(3 \mathrm{e}-101\) & 99\% & 1 HDB B & \\
\hline
\end{tabular}

\title{
Further down the results page...
}


EIDownload \(\vee\) GenPept Graphics
Next \(\Delta\) Previous
Descriptions
RecName: Full=Hemoglobin subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin beta chain
Sequence ID: sp|P02024.2|HBB GORGO Length: 147 Number of Matches: 1
Related Information
\begin{tabular}{|c|c|c|c|c|c|}
\hline Range 1: 1 to 14 & G & Graphics & & \(\checkmark\) Next Match \(\boldsymbol{A}\) & vious Match \\
\hline Score & Expect & Method & Identities & Positives & Gaps \\
\hline 300 bits(767) & \(4 \mathrm{e}-102\) & Compositional matrix adjust. & 146/147(99\%) & 147/147(100\%) & 0/147(0\%) \\
\hline
\end{tabular}

\section*{Different output formats are available}

\section*{NCBI Blast:gi|4504349|ref|NP_000509.1| hemoglobin}


Basic Local Alignment Search Tool
My NCBI
[Sign In] [Register
*NCBV/ BLAST/ blastp suite/ Formatting Results -FVGUTMRZOts
Edit and Resubmit Save Search Strategies

\(>\) Download
Change the result display back Youlvhelearn about the enhanced report Blas
Formatting options
Reforma

gi|4504349|ref|NP_000509.1| hemoglobin

\title{
E.g. Query anchored alignments
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{NCBI Blast:gi|4504349|ref|NP_000509.1| hemoglobin} \\
\hline \(4>+\) & § blast.ncbi.nlm.nih.gov/Blast.cgi & C & Reader \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Query & 1 \\
\hline Aax 37051 & 1 \\
\hline AAX29557 & 1 \\
\hline NP 000509 & 1 \\
\hline P02024 & 1 \\
\hline AAN84548 & 1 \\
\hline AAZ 39780 & 1 \\
\hline ACU56984 & 1 \\
\hline AAD19696 & 1 \\
\hline 1 COH B & 1 \\
\hline AAF00489 & 1 \\
\hline 2YRS_B & 1 \\
\hline 1DXU B & 1 \\
\hline 1 HDB B & 1 \\
\hline 1 DXV B & 2 \\
\hline 3 KMF C & 2 \\
\hline AAL68978 & 1 \\
\hline 1 NQP B & 1 \\
\hline 1K1K B & 1 \\
\hline AAN11320 & 1 \\
\hline XP 002822173 & 1 \\
\hline 1785 B & 1 \\
\hline 1YE0 B & 1 \\
\hline 1010_B & 1 \\
\hline CAA23759 & 1 \\
\hline DYE2 B & 1 \\
\hline 1Y5F B & 1 \\
\hline 1 A 00 _B & 1 \\
\hline -14BS_B & 1 \\
\hline 1ABY B & 1 \\
\hline DCMY B & 1 \\
\hline
\end{tabular}

NVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVNGNPK 60 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK TVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MVHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFKSFGDLSTPDAVMGNPK NVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFLESFGDLSTPDAVNGNPK VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK NVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK VHLTPEEKSAVTALWGKVNVDEVGGKALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK VHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK KVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVNGNPK VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLAVYPWTQRFFESFGDLSTPDAVMGNPK MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK NVHLTPVEKSAVTAXWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVFPWTQRFFESFGDLSTPDAVNGNPK MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPYTQRFFESFGDLSTPDAVMGNPK VHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK

\section*{... and alignments with dots for identities}

\section*{NCBI Blast:gi|4504349|ref|NP_000509.1| hemoglobin}
\(4 \gg\) \& blast.ncbi.nlm.nih.gov/Blast.cgi \(\quad\) \& Reader 0
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Query \\
AAX37051
\end{tabular} \\
\hline AAX29557 \\
\hline -NP 000509 \\
\hline P02024 \\
\hline AAN84548 \\
\hline AAZ39780 \\
\hline ACU56984 \\
\hline AAD19696 \\
\hline 1con_B \\
\hline AAF00489 \\
\hline 2YRS_3 \\
\hline 10xU_B \\
\hline 1 HDB B \\
\hline 1DXV B \\
\hline 3KMF_C \\
\hline AAL68978 \\
\hline 1NOP B \\
\hline 1K1K_ \\
\hline CAAN11320 \\
\hline -xp 002822173 \\
\hline 1Y85 B \\
\hline 1YE0 B \\
\hline 1010 3 \\
\hline CAA23759 \\
\hline 1YE2 B \\
\hline 1 Y 5 F B \\
\hline 1A00 B \\
\hline
\end{tabular}
\(\square\)
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK ..... 60
60
....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 60
 ..... 60
60.......
........ ..... 60
60
..................... . . . . . . . . . . . . . . . . . . . . . ..... 60
............................................................... ..... 59
59
-
M. ..... 59
. ..... 59
59-
.................................. ..... 60
.................................. ..... 59
......K ..... 59
.......v ..... 60
. ..... 60
M. ..... 5959.
M ..... 59
......v.......... x. ..... 60
M..................................................... ..... 59
1Y5F_B . ..... 59
\(1 A 00\) B M. ..... 59

\section*{Common problems}
- Selecting the wrong version of BLAST
- Selecting the wrong database
- Too many hits returned
- Too few hits returned
- Unclear about the significance of a particular result - are these sequences homologous?

\section*{How to handle too many results}
- Focus on the question you are trying to answer
- select "refseq" database to eliminate redundant matches from "nr"
- Limit hits by organism
- Use just a portion of the query sequence, when appropriate
- Adjust the expect value; lowering \(E\) will reduce the number of matches returned

\section*{How to handle too few results}
- Many genes and proteins have no significant database matches
- remove Entrez limits
- raise E-value threshold
- search different databases
- try scoring matrices with lower BLOSUM values (or higher PAM values)
- use a search algorithm that is more sensitive than BLAST (e.a. PSI-BLAST or HMMer)

\section*{Side note: Scoring matrices}
- A substitution matrix contains values proportional to the probability that amino acid \(i\) mutates into amino acid \(j\) for all pairs of amino acids
- Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments (or multiple sequence alignments) of amino acids.
- Substitution matrices should reflect the probabilities of mutations occurring through a period of evolution
- The two major types of substitution matrices are PAM and BLOSUM

\section*{BLOSUM62 is the default BLASTp scoring matrix}
- BLOSUM matrices are based on short, ungapped blocks of conserved amino acid sequences from multiple alignments
- members of a block that have a most \(X\) percent sequence identity to each other are used to generate a BLOSUMX matrix
- For example, using a cutoff of \(62 \%\) identity will generate the BLOSUM62 matrix
- PAM matrices are similar but built from multiple alignments where amino acid substitutions are at rate of 1\% (PAM 1)
- Matrix multiplication is used generate higher PAM matrices
- PAM3 = (PAM1 \(\times\) PAM1 \(\times\) PAM1) etc...

\section*{By default BLASTp Match scores come from the BLOSUM62 matrix}
```

C }
s -1 4
T -1 llll
P
A [010
G -3 0-2 -2 0-2 6
N
D -3 00 -1 (-1 -2 -1 Il 6

```

```

Q
H
R
K
M
I

```

```

v -1 -2 0
F
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 [2 -2 -2 -1 -1 -1 -1 (3)
W
Note. Some amino acid mismatches have positive scores - highlighted in red

```

\title{
Protein scoring matrices reflect the properties of amino acids
}

Twenty standard Amino Acids


\section*{Two problems standard BLAST cannot solve}
- Use human beta globin as a query against human RefSeq proteins, and blastp does not "find" human myoglobin
- This is because the two proteins are too distantly related
- PSI-BLAST at NCBI as well as hidden Markov models (HMMs) easily solve this problem
- How can we search using 10,000 base pairs as a query, or even millions of base pairs?
- Many BLAST-like tools for genomic DNA are now available such as Megablast

\section*{PSI-BLAST: Position specific íterated BLAST}
- The purpose of PSI-BLAST is to look deeper into the database for matches to your query protein sequence by employing a scoring matrix that is customized to your query
- PSI-BLAST constructs a multiple sequence alignment from the results of a first round BLAST search and then creates a "profile" or specialized position-specific scoring matrix (PSSM) for subsequent search rounds

\section*{PSI-BLAST: Position-Specific Iterated BLAST}
- Many proteins in a database are too distantly related to a query to be detected using standard BLAST. In many other cases matches are detected but are so distant that the inference of homology is unclear. Enter the more sensitive PSI-BLAST


\section*{Inspect the blastp output to identify empirical "rules" regarding amino acids tolerated at each position}









\section*{PSI-BLAST returns dramatically more hits}
- The search process is continued iteratively, typically about five times, and at each step a new PSSM is built
- You must decide how many iterations to perform and which sequences to include!
- You can stop the search process at any point - typically whenever few new results are returned or when no new "sensible" results are found
\begin{tabular}{|c|c|c|}
\hline Iteration & \begin{tabular}{l} 
Hits with \\
\(\mathrm{E}<0.005\)
\end{tabular} & \begin{tabular}{c} 
Hits with \\
\(\mathrm{E}>0.005\)
\end{tabular} \\
\hline 1 & 34 & 61 \\
\hline 2 & 314 & 79 \\
\hline 3 & 416 & 57 \\
\hline 4 & 432 & 50 \\
\hline 5 & 432 & 50 \\
\hline
\end{tabular}

Human retinol-binding protein 4 (RBP4; P02753) was used as a query in a PSI-BLAST search of the RefSeq database.

\section*{HMMER}
biosequence analvsis using orofile hidden Markov models

\section*{HMMER3: a new generation of sequence homology search software}

HMMFR is used for searching sequence databases for homologs of protein sequences, and for making protein sequence alignmerts. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs).

Compared to BLAST, FASTA, and other sequence allgrment and database search tools based on older scoring methodology, HMMER aims to be significantly more accurate and more able to catect remote homologs because of the strength of its underlying mattematical models. In the past, this strength came at significant computational expense, but in the rew HMMER3 project, HMMER is now essentially as fast as BLAST.

As part of this evolution in the HMMER software, we are committed to making the softivare available to as many scientists as possible. Earlier releases of HMMER were restricted to command line use. Tc make the soltware more accessibla to the wide scientific community, we now provide servers that allow sequence searches to be performed Interactively via the Web.

The current version is HMMER 3.0 ( 28 March 2010) and can be downloaded from the software section of the site. Previous versions of the HMMER software can be obtained Irom the archive saction.

If you have used the HMMER website, please consider citing the following reference that describes this work:

\footnotetext{
HMMER web server: interactive sequence simularty searchung 투
R.D. Finn, 1. Clerment:-, S.R. Fitcly

Nucleic Acids Research (2011) Web Server Issue 39:W29-w3/. plur
}

\section*{Download HMMER}
\(G s=\) the latest version
v3.0
Zaleace noteris (28 March 2010)


A ternative Downloed Options

\section*{s.surce}

\section*{Search}

בerform in interactive search now.
Search

Paste In your sequence or use the example
>5D/O14807 KIF22_HUMAM,
MAAGCSTCORRREMANASAAAISGAGRCRLSKIGATRRPPPARYRVANRLRFPVDGTACA SDPPCVRGMDSCSLELNVVRNHQE LKYQFDAFYGERSTQGDYYAGSVQPILRHLLECQN ASVLAYGPTGACKTHTMLGSPEOPGVIPRALMDUQLTREEGAEGRPNALSVTMSYLEIY QEXVLOLLOPASGOLVIREDCRGNILIPCLSQXPISSFADFERHFLPASRNRTVGATRLN QRSSRSHANLLVGVDQRERLAPFRQREGKLYLIDLAGSEDNRRTGNIKGLRLKESGANTS LFVLGKVVDAL NGGLPRVPYRDSKLTRLLODSLCGSAHSILLANIAPERRFYLETVSALN FAMRSKEVINRFFTNESLGPHALGPVKLSQKELLCPPEAKRARSPEEEEESPEPMMAPA SASQKLSPLQKLS5M DPAMLERLLSLDRLLASQGSQCAPLISTP \(<\) RERMVLMKTVEEKDL ELERLKTKLKELEAKMLACCKAEEKENHCPTMLRPLSHRTVTGAKPLKKAVVMPLCLLQEQ AASPAFIHII KNKGRKHKI FSI DAI FPFFKAFIMC WFICYSFFII AHGRTIKII DI INEG


Submit Rese:

Comments of quastions an the site? Send a mal so hmmer@ianelia.hhmiourg Haward Hughes Medicsi Institute
htto:/hmmer.Janella_org/results/score/9924F9AC-FEB5-11E0-A304-280C998A7913 ITSS C

\section*{HMMER}
biosequence analvsis using orofile hidden Markov models
HHMI
janelia farm
Home Search Results Sortware Hep Assut
phmmer
\begin{tabular}{|l|l|l|}
\hline Score & Taxonomy & Domain \\
Dowrioad \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline Score & Taxonomy & Domain & Dowrioad \\
\hline
\end{tabular}


\section*{Jurnp to the exact rrateh for your query arctitecture}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Domain Architectures 6} & * Hirst = Previcus Page 1 & of 7 Next * Last * \\
\hline \[
\begin{array}{|c|}
\hline 3624 \\
\text { stquevces }
\end{array}
\] & with domain architecture: Kinesin, example: 14858555013 & & Vew Scores \\
\hline Show All &  & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{|c|}
\hline 226 \\
\text { sequevces }
\end{array}
\] & with dornain architecture: Kinesin, FHA, exambiei 157125836 & View Scores \\
\hline Show All & Whosh & \\
\hline
\end{tabular}

with domain architecture: \(\mathbf{H H H}\) _3, example: 337289 C 58 희
View Scores

Exact match with query architecture: Kinesin, HHH_3, exampie: 33226504 BE ?


\section*{－}


\section*{HMMER}
biosequence analvsis using profile hidden Markov models
Home
Search Resilts Software HES AREIt

\section*{（Ecore \(/\) Taxonomy \(\mid\) Domain Dowrioad}
－Job：9924F9aC－FEBb－11E0－A304－2H0C998A／913
＊Started：2011－1D－24 23：01：15
＊Algorithm：phmmer
＊HMMER Options：－E 1 －－domE 1 －－ince 0.01 －－incdomE D．03－－mx BLOSUM62－－pextend 0．4－－popen 0.02 －－seqdb rr
T Format
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
FASTA \\
Dawr load the significant hits fram yol－ sparch as a gripped Fasia file．
\end{tabular} & 青 & \begin{tabular}{l}
Full length FASTA \\
A geioped file cor la ning the full length seciences fo signiticant seareh hits．
\end{tabular} & E \\
\hline \begin{tabular}{l}
Aligned FASTA \\
A gzpped file containing alignes siqnificant search hits in FASTA for mat．
\end{tabular} & \[
\begin{gathered}
\text { 目 } \\
\text { MSA }
\end{gathered}
\] & \begin{tabular}{l}
STOCKHOLM \\
Downicad an alignmene of signifirant hits ds a que－ed STOCKHOLM rile．
\end{tabular} & Msis \\
\hline \begin{tabular}{l}
Text \\
A slain text file conta in ng the +t alignnierts and stures．
\end{tabular} & TXI & \begin{tabular}{l}
XML \\
An XML file formated for machine parssirg of \(t=\) dala．
\end{tabular} & XYI \\
\hline \begin{tabular}{l}
JSON \\
Al－昂 resulls imformalion encoded as a single json string．
\end{tabular} & ISOV & \begin{tabular}{l}
HMM \\
Profile HMM downloads are not available．
\end{tabular} & \\
\hline
\end{tabular}

\section*{Summary}
- Alignment basics
- Why compare biological sequences?
- Homologue detection
- Orthologs, paralogs, similarity and identity
- Sequence changes during evolution
- Alignment view: matches, mismatches and gaps
- Pairwise sequence alignment methods
- Brute force alignment
- Dot matrices
- Dynamic programing (global vs local alignment)
- Rapid heuristic approaches
- BLAST
- Practical database searching
- BLAST, PSI-BLAST and HMM approaches```

