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MODULE OVERVIEW

Objective: Provide an introduction to the practice of bioinformatics
as well as a practical guide to using common bioinformatics
databases and algorithms

1.1.» Introduction to Bioinformatics

1.2.» Sequence Alignment and Database Searching

1.3 » Structural Bioinformatics

1.4» Genome Informatics: High Throughput Sequencing Applications
and Analytical Methods

WEEK TWO REVIEW

M Answers to last weeks homework:
Answers week 2

M Muddy Point Assessment (Only 25 responses):
Responses

- “More time to finish the assignment”

- “The [NCBI] sites were so slow”

- “More time with HMMER would be helpful”
- “Very nice lab”
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THIS WEEK'S HOMEWORK

M Check out the “Background Reading” material online:

» Achievements & Challenges in Structural Bioinformatics
» Protein Structure Prediction

» Biomolecular Simulation
» Computational Drug Discovery

M Complete the lecture 1.3 homework questions:
http://tinyurl.com/bioinf525-quiz3




“Bioinformatics is the application of computers
to the collection, archiving, organization, and
analysis of biological data.”

... A hybrid of biology and computer science

“Bioinformatics is the application of computers
to the collection, archiving, organization, and
analysis of biological data.”

Bioinformatics is computer aided biology!

Goal: Data to Knowledge

So what is structural bioinformatics?
... computer aided structural biology!

Aims to characterize and interpret biomolecules and
their assembles at the molecular & atomic level

“Bioinformatics is the application of computers
to the collection, archiving, organization, and
analysis of biological data.”

Bioinformatics is computer aided biology!

So what is structural bioinformatics?

Why should we care?




Why should we care?

Because biomolecules are “nature’s robots”

... and because it is only by coiling into
specific 3D structures that they are able to
perform their functions
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Structure Function

Sequence
» Unfolded chain of

* Ordered in a * Active in specific

amino acid chain precise 3D ““conformations”
* Highly mobile arrangment * Specific associations
* Inactive * Stable but dynamic & precise reactions




In daily life, we use machines
with functional structure and moving parts

Genomics is a great start ....
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... but not the end

= We want the full spatiotemporal picture, and an
ability to control it

= Broad applications, including drug design,
medical diagnostics, chemical manufacturing,
and energy

Extracted from The Inner Life of a Cell by Cellular Visions and Harvard
[YouTube link: ¥ youtube. 2 k4Pr2i8 |

Sequence } Structure Function

* Unfolded chain of * Ordered in a
amino acid chain precise 3D

* Highly mobile arrangment

* Inactive * Stable but dynamic

* Active in specific
““conformations”

* Specific associations
& precise reactions

KEY CONCEPT: ENERGY LANDSCAPE
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KEY CONCEPT: ENERGY LANDSCAPE

1 millisecond
T Barrier crossing time

~exp(Barrier Height)
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KEY CONCEPT: ENERGY LANDSCAPE
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m Barrier crossing time

Multiple Native Conformations
(e.g. ligand bound and unbound)
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OUTLINE:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure

+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure
* Modeling energy as a function of structure

» Example application areas
* Predicting functional dynamics & drug discovery

OUTLINE:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure

+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure
* Modeling energy as a function of structure

» Example application areas
* Predicting functional dynamics & drug discovery

TRADITIONAL FOCUS PROTEIN, DNA
AND SMALL MOLECULE DATA SETS
WITH MOLECULAR STRUCTURE

Protein DNA
(PDB) (NDB) (CCDB)

Small Molecules

Motivation 1:
Detailed understanding of
molecular interactions

Provides an invaluable structural
context for conservation and
mechanistic analysis leading to

functional insight.




Motivation 1:
Detailed understanding of
molecular interactions

Computational modeling can
provide detailed insight into
functional interactions, their
regulation and potential
consequences of perturbation.

Grant et al. PLoS. Comp. Biol. (2010)

126,060

Motivation 2: (1/2212017)

Lots of structural data is
becoming available

Structural Genomics has
contributed to driving
down the cost and time
required for structural
determination

Total Numter of Sruciures n KUSB “DB

Data from: http//www.rcsb.org/pdb/statistics/

(target
selection,

Motivation 2: —
Lots of structural data is
becoming available X poraT——
Structural Genomics has
contributed to driving
down the cost and time
required for structural i

determination &
PDB

Image Credit:“Structure determination assembly line” Adam Godzik

Motivation 3:

Theoretical and
computational predictions
have been, and continue
to be, enormously
valuable and influential!

SUMMARY OF KEY MOTIVATIONS

Sequence > Structure > Function
- Structure determines function, so understanding structure
helps our understanding of function

Structure is more conserved than sequence
« Structure allows identification of more distant evolutionary
relationships

Structure is encoded in sequence
+ Understanding the determinants of structure allows design and
manipulation of proteins for industrial and medical advantage
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MAJOR RESEARCH AREAS
AND CHALLENGES
Goals: Include but are not limited to:
« Analysis * Protein classification

* Visualization
» Comparison
* Prediction

* Design

Grant et al. PLoS Biology (2011)

« Structure prediction from sequence

* Binding site detection

* Binding prediction and drug design

» Modeling molecular motions

* Predicting physical properties (stability, binding affinities)
* Design of structure and function

e efc...

With applications to Biology, Medicine, Agriculture and Industry




NEXT UP:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure
* Modeling energy as a function of structure

» Example application areas

* Predicting functional dynamics & drug discovery

HIERARCHICAL STRUCTURE OF PROTEINS

Primary > Secondary > Tertiary > Quaternary
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AMINO ACIDS CAN BE GROUPED BY THE
PHYSIOCHEMICAL PROPERTIES
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AMINO ACIDS POLYMERIZE THROUGH
PEPTIDE BOND FORMATION

T » / - P o
7 7
®H,N—:H—c\ + QH,N—CH—c\ 2 ®H3N—CH—C—NH—CH—C/
0@ ||‘ o© | No®
Peptide bond B

side chains

N-terminal = C-terminal

backbone

H

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 1581/

PEPTIDES CAN ADOPT DIFFERENT
CONFORMATIONS BY VARYING THEIR
PHI & PS1 BACKBONE TORSIONS

C-terminal

N-terminal

Bond angles and lengths Peptide bond is planer
are largely invariant (Ca, C,0, N, H, Ca all
lie in the same plane)

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 |58 1/




PHI vs PSI PLOTS ARE KNOWN AS
RAMACHANDRAN DIAGRAMS

180° -
__ Antiparallel B sheet

~—Type ll turn

S paallel

3 Y lo—ahelix
Yoo I (left-handed)

« Steric hindrance dictates torsion angle preference

« Ramachandran plot show preferred regions of ¢ and ¢ dihedral
angles which correspond to major forms of secondary structure

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 1581/

MAJOR SECONDARY STRUCTURE TYPES
ALPHA HELIX & BETA SHEET

i
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Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 |58 1/

MAJOR SECONDARY STRUCTURE TYPES
ALPHA HELIX & BETA SHEET

In antiparallel 3-sheets
® Adjacent B-strands run in opposite directions
® Hydrogen bonds (dashed lines) between NH and CO
stabilize the structure
o The side chains (in green) are above and below the sheet
Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 1581/

MAJOR SECONDARY STRUCTURE TYPES
ALPHA HELIX & BETA SHEET

In parallel $-sheets
® Adjacent B-strands run in same direction
® Hydrogen bonds (dashed lines) between NH and CO
stabilize the structure
® The side chains (in green) are above and below the sheet
Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 |58 1/

What Does a Protein Look like?

* Proteins are stable (and hidden) in water




* Proteins closely interact with water

* Proteins are close packed solid but flexible objects (globular)

* Due to their large size and complexity it is often
hard to see whats important in the structure

* Backbone or main-chain representation can help
trace chain topology

* Backbone or main-chain representation can help
trace chain topology & reveal secondary structure

« Simplified secondary structure representations are
commonly used to communicate structural details

* Now we can clearly see 2°, 3° and 4° structure
* Coiled chain of connected secondary structures




DISPLACEMENTS REFLECT INTRINSIC FLEXIBILITY

N _/
Superposition of all 482 structures in RCSB PDB
(23/09/2015)

DISPLACEMENTS REFLECT INTRINSIC FLEXIBILITY

Principal component analysis (PCA) of experimental structures

KEY CONCEPT: ENERGY LANDSCAPE
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Key forces affecting structure:

* H-bonding

* Van der Waals
* Electrostatics

* Hydrophobicity

Hydrogen-  Hydrogen-
bond donor  bond acceptor
N—H------- N
& 8 &
N—Hzersms (0]
O—H v omn N
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Key forces affecting structure:

* H-bonding

* Van der Waals
* Electrostatics

* Hydrophobicity

Repulsion
AE

Attraction

A B
AE = I‘12 r6

r

—

—d— 3k<d<4A

Key forces affecting structure:

* H-bonding

* Van der Waals
* Electrostatics

* Hydrophobicity

— d——d=28A
H
/0 H\\
—C:© © N-—
No H/

carboxyl group and amino group

(some time called IONIC BONDs or SALT BRIDGES)

Coulomb’s law
Kd,4g,

q! qZ
0, 0 E=—-

E = Energy

k = constant

D = Dielectric constant (vacuum = 1; H,O = 80)
d; & g, = electronic charges (Coulombs)

r = distance (A)




Key forces affecting structure:

¢

The force that causes hydrophobic molecules or nonpolar portions of molecules to
aggregate together rather than to dissolve in water is called Hydrophobicity (Greek,
“water fearing”). This is not a separate bonding force; rather, it is the result of the
energy required to insert a nonpolar molecule into water.

* H-bonding

* Van der Waals
* Electrostatics

* Hydrophobicity

NEXT UP:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein

structure
* Modeling energy as a function of structure

» Example application areas
* Predicting functional dynamics & drug discovery

KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based
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(2). Knowledge-Based

Energy

Structure/Conformation

KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:

(1). Physics-Based
(2). Knowledge-Based

Energy

Structure/Conformation

PHYSICS-BASED POTENTIALS
ENERGY TERMS FROM PHYSICAL THEORY
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TOTAL POTENTTAL ENERGY
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Weaknesses
Fully physical detail becomes computationally intractable
Approximations are unavoidable
(Quantum effects approximated classically, water may be treated crudely)
Parameterization still required
Strengths
Interpretable, provides guides to design
Broadly applicable, in principle at least
Clear pathways to improving accuracy
Status
Useful, widely adopted but far from perfect
Multiple groups working on fewer, better approxs
Force fields, quantum
entropy, water effects
Moore’s law: hardware improving
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KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

KNOWLEDGE-BASED DOCKING POTENTIALS

Ligand
carboxylate

Aromatic
stacking

ENERGY DETERMINES PROBABILITY
(STABILITY)

Basic idea: Use probability as a proxy for energy

\/\/\/ Boltzmann:
p(r) = o ECVRT
Inverse Boltzmann:
E(r)=-RTIn[p(r)]

X

Probability Energy

Example: ligand carboxylate O to protein histidine N

Find all protein-ligand structures in the PDB with a ligand carboxylate O
1. For each structure, histogram the distances from O to every histidine N
2. Sum the histograms over all structures to obtain p(r_y)
3. Compute E(rq) from p(rg.y)

KNOWLEDGE-BASED DOCKING
POTENTIALS

“PMF”, Muegge & Martin, J. Med. Chem. (1999) 42:791

A few types of atom pairs, out of several hundred total

Nitrogen™/Oxygen” Aromatic carbons Aliphatic carbons
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i | cFcF
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0.0 ! St B 0.0 - 00 L{,J,—w_m_
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PMF (keal/mol)
PNIF (kealimol)

-1.0

Atom-atom distance (Angstroms)

E E

vdw + Erype(ij) (7;/)
pairs (ij)

prot-lig .

KNOWLEDGE-BASED POTENTIALS

Weaknesses
Accuracy limited by availability of data

Strengths
Relatively easy to implement
Computationally fast

Status
Useful, far from perfect
May be at point of diminishing returns
(not always clear how to make improvements)

NEXT UP:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure
* Modeling energy as a function of structure

» Example application areas
* Predicting functional dynamics & drug discovery




PREDICTING FUNCTIONAL DYNAMICS

* Proteins are intrinsically flexible molecules with internal
motions that are often intimately coupled to their
biochemical function

— E.g. ligand and substrate binding, conformational activation,
allosteric regulation, etc.

* Thus knowledge of dynamics can provide a deeper
understanding of the mapping of structure to function

— Molecular dynamics (MD) and normal mode analysis (NMA) are

two major methods for predicting and characterizing molecular
motions and their properties

MOLECULAR DYNAMICS SIMULATION

* Use force-field to find
Potential energy between
all atom pairs

* Move atoms to next state

* Repeat to generate
trajectory

McCammon, Gelin & Karplus, Nature (1977)
[ See: https://www.youtube.com/watch?v=ui1ZysMFcKk |

P> Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

L B e i

P> Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

B> At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

° Nucleic motion described classically
d - o o
m,wlh = —ViE(R)

° Empirical force field
BR)= ¥ E(R)+ ¥ E(R)
bonded

non - bonded

P> Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

t
P> At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

° Nucleic motion described classically
2

miﬁ: = —V,E(R)

di?
o Empirical force field
Y ER+ ¥ E(R)

bonded non bonded

P Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

Al (()
. %] FUJAI

BASIC ANATOMY OF A MD SIMULATION

P> Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

B> At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

° Nucleic motion described classically
& 5 o
it = —VE(R)
° ™ ViE(R)
a ’
P Useth- ~ -‘era‘e “..‘a e velocities and move atoms to new positions

. REPEA 1\ numerically via the “leapfrog” scheme)

i AL - AL F(t) ,
° ° v(l 9 ) = ol 5 ) - Al
: At
° r(t+At) = rt)+o(t+ TIAT




0.00 ns

MD Prediction of Functional Motions

0.00 ns.

Yao and Grant, Biophys J. (2013)

Simulations Identify Key Residues
Mediating Dynamic Activation

c d
20| K31/D146
2o GDI
& 0
T [CTP GDP
=1
ERR
o B

253035 40 4.5
“.._  Pathlength

Yao ... Grant, Journal of Biological Chemistry (2016)

EXAMPLE APPLICATION OF

MOLECULAR SIMULATIONS TO GPCRS

Binding/g#

G protein

Activation coupling,
—_— e By

GPCR

G protein

PROTEINS JUMP BETWEEN MANY, HIERARCHICALLY
ORDERED “CONFORMATIONAL SUBSTATES”

. partial unfolding,
Ly
. _ms <3¢ 3| larger structural
collective motions = ’| rearangements

localized
motions

0
\

Conformational Coordinate

ASug

H. Frauenfelder et al., Science 229 (1985) 337

Improve this side

MOLECULAR DYNAMICS IS VERY |

Example: F,-ATPase in water (183,674 atoms) for 1 nanosecond:

=> 106 integration steps
=> 8.4 * 10! floating point operations/step
[n(n-1)/2 interactions]

Total: 8.4 * 10% flop
(on a 100 Gflop/s cpu: ca 25 years!)

... but performance has been improved by use of:

multiple time stepping ca. 2.5years
fast multipole methods ca. 1vyear
parallel computers ca. 5days
modern GPUs ca. 1day

(Anton supercomputer ca. minutes)

COARSE GRAINING: NORMAL MODE ANALYSIS
(NMA)

* MD is still time-consuming for large systems

« Elastic network model NMA (ENM-NMA) is an example of a
lower resolution approach that finishes in seconds even for
large systems.

¢ 1 bead/
1 amino acid
* Connected by
springs

Atomistic Coarse Grained




NMA models the protein as a network of elastic strings

Proteinase K

NEXT UP:

» Overview of structural bioinformatics
+ Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure

* Modeling energy as a function of structure

» Example application areas
* Predicting functional dynamics & drug discovery

THE TRADITIONAL EMPIRICAL PATHTO
DRUG DISCOVERY

Compound library
(commercial, in-house,
synthetic, natural) \

High throughput screening

H1s) N

Hit confirmation

Lead compounds

(e-g, KM Ky) \

Lead optimization
(Medicinal chemistry)

y

Animal and clinical €= potent drug candidates
evaluation ("M Ky)

COMPUTER-AIDED LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Ensemble Docking

Reduce chemical waste Scci
coring

Visual
analysis

in vitro
assay’s
®00 +00ZINC

v
in vitro
assays

Facilitate faster progress

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based




SCENARIO I:
RECEPTOR-BASED DRUG DISCOVERY

Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex

PROTEIN-LIGAND DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy Potential function
Energy as function of structure

Screened Coulombic

o

Dihedral

STRUCTURE-BASED VIRTUAL SCREENING

Compound 3D structure of target
database (crystallography, NMR,

\ / modeling)

Virtual screening
(e.g., computational docking)

/ Candidate ligands

Ligand optimization
Med chem, crystallography, Experimental assay
modeling

Ligands —> Drug candidates

COMPOUND LIBRARIES

Commercial
(in-house pharma)

Government (NIH) Academia

FRAGMENTAL STRUCTURE-BASED
SCREENING

“Fragment” library 3D structure of target

Fragment docking
Compound design

Experimental assay and ligand optimization —, Drug candidates
Med chem, crystallography, modeling

ihtml

Multiple non active-site pockets identified

Small organic probe fragment affinities map multiple potential
binding sites across the structural ensemble.

h

B > ]
% @ﬁgﬁ (i |
= S. \‘\‘ 'k l I m il (!
%2 PR Tl ]‘\ (i
% B DI g
' S e T
ethanoll acetone methylamine benzenei%‘a:-{
{ A% BN oddo v
cyclohexane phenol acetamide




Ensemble docking & candidate inhibitor testing

Top hits from ensemble docking against distal pockets were tested for
inhibitory effects on basal ERK activity in glioblastoma cell lines.

Ensemble computational docking Compound effect on U251 cell line
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Proteins and Ligand are Flexible

Protein

Complex

COMMON SIMPLIFICATIONS USED IN
PHYSICS-BASED DOCKING

Quantum effects approximated classically
Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based
Experimental screening generated some ligands, but they don’t bind tightly
A company wants to work around another company’s chemical patents

A high-affinity ligand is toxic, is not well-absorbed, etc.

Scenario 2
Structure of Targeted Protein Unknown: Ligand-Based Drug Discovery

e.g. MAP Kinase Inhibitors

Using knowledge of
\ existing inhibitors to
discover more

CHEMICAL SIMILARITY
LIGAND-BASED DRUG-DISCOVERY

Compounds
(available/synthesizable)

Different
Don’t bother

Test experimentally




CHEMICAL FINGERPRINTS
BINARY STRUCTURE KEYS
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CHEMICAL SIMILARITY FROM
FINGERPRINTS
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Pharmacophore Models
Ddppako (drug) + opa (carry)

A 3-point pharmacophore

Molecular Descriptors
More abstract than chemical fingerprints

Physical descriptors
molecular weight
charge e
dipole moment I 3 )LJ‘/Tj S
number of H-bond donors/acceptors rf)\l ~F
number of rotatable bonds ) * Rotatable bonds
hydrophobicity (log P and clogP)

Topological
branching index

measures of linearity vs interconnectedness

Etc. etc.

Ill

A High-Dimensional “Chemical Space”

Each compound is at a point in an n-dimensional space
Compounds with similar properties are near each other

Descriptor 3

Descriptor 2

Point representing a
© compound in descriptor
space

Apply multivariate statistics and machine learning for descriptor-selection.
(e.g. partial least squares, support vector machines, random forest, etc.)

CAUTIONARY NOTES

 “Everything should be made as simple as it can be but not simpler”
A model is never perfect. A model that is not quantitatively accurate in
every respect does not preclude one from establishing results relevant
to our understanding of biomolecules as long as the biophysics of the
model are properly understood and explored.

* Calibration of the parameters is an ongoing and imperfect process
Questions and hypotheses should always be designed such that they do
not depend crucially on the precise numbers used for the various
parameters.

* A computational model is rarely universally right or wrong
A model may be accurate in some regards, inaccurate in others. These
subtleties can only be uncovered by comparing to all available
experimental data.




SUMMARY

Structural bioinformatics is computer aided structural
biology

Described major motivations, goals and challenges of
structural bioinformatics

Reviewed the fundamentals of protein structure

Introduced both physics and knowledge based
modeling approaches for describing the structure,
energetics and dynamics of proteins computationally

ACHIEVEMENTS CHALLENGES
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Protein families,
motifs and domains
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