THE FAR SIDE By GARY LARSON

Suddenly, a heated exchange took place
between the king and the moat contractor.

DCMB BioComputing BootCamp
Day 3, Lecture 1.

Introduction to R

Armand Bankhead
bankhead@umich.edu
8/23/2017

Slides Partially Sourced from Barry Grant and Hui Jiang

Overview

Why R?

Ways to Use R

R as a Statistical Programming Language
Writing and Running R Scripts

Data Types

Data Structures

N o U A W NhE

Vector and Matrix Operations

Why R?

* Popular in the scientific community SPSS Statistics-
R-]
* Designed to handle large datasets SAS .
Stata- ———@
* CRAN and Bioconductor open source o CraPhPad Prism oy ey Sy
package repositories é Apache Hodoon. i
* Easy to automate and work with interactively 8 omen T
. . 4. . A Java- —@
* Ris a statistical computing language : Minitab- ——®
. . . Systat- —@
* Ris a concise, powerful language—much can g MNP —e
be accomplished with few lines of code § CCwoce —o
pd Statgraphics- —@
* R can generate stunning graphics § FORTRAN- 9
O eKa-
. . 0]
* Well evolved function arguments (if you g ApacheSpar 9
want to do it you likely can) S ppache Mahou B
T flow- @
* Easy to enable others to reproduce your 1BM Watson IR
results RapidMiner- @
* Good science should be reproducible! KNIME = . : :
P) 0 25000 50000 75000

) Number of Scholarly Articles in 2016
* It's free!

https://en.wikipedia.org/wiki/R_(programming_language)

http://r4stats.com/articles/popularity/

Ways to Use R

1. Rinteractive session: submit R functions directly
to R using an R prompt

2. R Studio: integrated development environment
for R

3. Rcommand line: execute R scripts from the
command line

Ways to Use R:
R Interactive Session

e At the unix command line prompt type R

* Any R command should be executable from the command
prompt

* Useful as an interactive environment for convenience or fast
iterative development

@ bankhead @topbfx:~
[bankhead@topbfx ~]% R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-redhat-Tinux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NQO WARRANTY.
are welcome to redistribute it under certain conditions.
"Ticense() ' or 'licence()' for distribution details.

Natural Tanguage support but running in an English Tocale
R is a collaborative project with many contributors.

Type 'contributors()' for more information and
"citation()' on how to cite R or R packages 1in publications.

Type 'demo()' for some demos, 'help()' for on-Tine help, or
"help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> print(‘hello world!")
[1] "heTllo world!"™

> 2+2

(1] 4

> [

Ways to Use R:
R Studio

* Integrated development environment (IDE) provides graphical

buttons

£ Fino

* Code completion
* Interactive debugger to debug code
* Improved window organization

Visible history

0] Samcatfriong B «

(5 Source eaSve ¢

x
»in. : 0.000 wmin,

Fie [t View Project Wodopace Plots Took Melp

U) formatiot R » Bumsndy -

A /- *hen e
1 libraryiggplot?

>

2

3 view(diamonds

4 sumsary(dfamonds

5
6 summary(diamondsiprice
ves ousy

1- Ce Edtor

13 safn-"0famond Pricir

Conscle

z
: 0.000
2.910

Yy
: 0.000 win,

15t Qu.: 4.710 15T Qu.:! 4,720 1st Qu.:

vedian © 5.700 Median : 5.710 medfan @ 3.3530

Mean 3.519
3rd .010
Max, - 1.800
»12- R Console

Min AX,

326 950 2401 o 5324 18820
» avesize <+ round(mean(diamondsScarat), ¢4)
> clarity <- levels(diamondsiclarity)
> p <= gplot(carat, price,

data~dianonds, color=clarity

xlabe"Carat”™, ylabe"price
main="Diamond Pricing™)

>
> format.plot(plot=p, size=23)

* fource =

Wornpace Mistory

= Duta

CFtoade [Swee W impod Dstatets 3 Clear AN
diamonds 53540 obs. of 10 varfables
Values

avesiz 0.7979

3- Workspace and
History

|

Toes Pty Packages Melp

P lom Mtpeas QO ¥ Gearsn

Diamond Pricing

4 - Plots and files
Price + SR ”'i.': : :

Carat

Ways to Use R:
R Command Line

* R scripts can be executed from the command line
using the Rscript command or R CMD BATCH

* |deal for automating long running scripts and

breaking long scripts up into modular pieces
* screen and nohup

@ bankhead @topbfi/topBfx/bankhead/projects/dcmb/bootCamp20170821

[bankhead@topbfx bootCamp20170821]% cat helloworl1d.R
print(‘hello world!")

- -
£ + £

[bankhead@topbfx bootCamp20170821]% Rscript helloworl1d.R
[1] "hello world!™

[1] 4

[bankhead@topbfx bootCamp20170821]1% N

R as a Statistical Programming
_.anguage

R can be used to directly call statistical functions directly
from an interactive session

* log2

e sqrt

* logl0

* rnorm

* var

* mean

* mean

°* min

* max

https://cran.r-project.org/doc/contrib/Short-refcard.pdf

Some Simple R Commands

>)2+2 > exp(1)
(1] 4 [1] 2.718282

> 372 [>]Iog(2.718282)
[1] 9 1] 1

> sqrt(25) [>1]Iog:gl(10, base = 10)
1] 5

. * > log(10

> 2*(1+1) N aee e 10)
(1] 4 1

> 2*1+1 e

[1] 3

> plot(x, sin(x))

Exercise: Try these commands

Error Messages

« Sometimes the commands you enter will generate
errors. Common beginner examples include:

* Incomplete brackets or quotes e.g.
> ((4+8)*20 <enter>
+

This returns a + here, which means you need to enter the

remaining bracket - R is waiting for you to finish your input.

Press <ESC> to abandon this line if you don't want to fix it.
« Not separating arguments by commas e.g.

> plot(1:10 col="red”)

 Typos including miss-spelling functions and using wrong type
of brackets e.g.

> exp{4}

Writing and Running R Scripts

* R scripts are simple text files that contain a series of R
commands

* R Scripts allow us to:
1. Execute a series of R commands

2. Provide a written history of our work so that it is
reproducible

3. Share our work with others so that it is reproducible
* Good science is by definition reproducible!
e Comment your code! Use ‘# to include comments

* How to create an R Script: e
1. RStudio Select New Icon or type Ctrl-Shift-N
2. Edit a text file with your favorite text editor S

Writing and Running R Scripts

* R scripts can be run in several different ways:

1.

w

Using the source function in an interactive session
> source(‘helloWorld.R’)

In RStudio use the ctrl-alt-r shortcut

In Rstudio select Code -> Run Region -> Run All
From the unix command line use Rscript command
> Rscript helloWorld.R

Exercise: Write a helloWorld.R script and execute it using one of
these approaches.

5 Basic Data Typesin R

1. numeric: decimal values, default
> x=10.5
> class(x)
[1] “numeric”

2. integer: integer values
> y = as.integer(3)
> class(y)
[1] “integer”

3. complex: imaginary numbers
>z = sqrt(as.complex(-1))
> 7
[1] O+1i
> class(z)
[1] “complex”

http://www.r-tutor.com/r-introduction/basic-data-types

5 Basic Data Typesin R

4. logical: TRUE or FALSE values. Also T or F
> x=1
>y=2
>Z=X>Yy
> 2z
class(z)

[1] “logical”

5. character: a sequence of ascii character values.
Characters may be surrounded by single or
double quotes!
> x = “Joe”
> class(x)

[1] “character”

http://www.r-tutor.com/r-introduction/basic-data-types

R Data Structures

m Homogeneous Data Heterogeneous Data

1 Vector List
Matrix Data Frame

N Array List

Data Structures: Vector

e VVectors contain some number of values of the same
type.
* Vectors may be created using the combine ‘c’ function

* Examples:
> days = c(‘mon’,/tues’,/wed’,thurs’,fri’)
> myNumbers = ¢(1.5,3,4.5,6,7.5)

* Vectors may also be created as sequences using the “.’
operator

* Examples:
>1:5
(1112345

Data Structures: Vector

> days = c(‘mon’,/tues’,/wed’, thurs’,fri’)

> myNumbers = ¢(1.5,3,4.5,6,7.5)

e Vectors can be indexed using square brackets

> favoriteDay = days[5]

> favoriteDays = days[2:5]

* Negative indexes return all but the value subtracted!
> favoriteDays = days[-1]

> favoriteDays

[1] “tues” “wed” “thurs” “fri”

Data Structures: Vector

> days = c(‘mon’,/tues’,wed’,thurs’,fri’)
> myNumbers = ¢(1.5,3,4.5,6,7.5)

* Additional vector operations:

> sort(myNumbers)

[1] 1.5, 3,4.5,6,7.5

> sort(myNumbers,decreasing=TRUE)
[1]7.5,6,4.5, 3, 1.5

> rev(days)

[1] “fri” “thurs” “wed” “tues” “mon”
> length(days)

[1] 5

Data Structures: Matrix

e Matrices are two dimensional data tables that contain the
same data types

* A data matrix may be created several ways:
> m1l = matrix(1,nrow=2,ncol=2)
> m2 = matrix(1:4,nrow=2,ncol=2)
> m3 =rbind(c(1,2),c(3,4))

* Matrices may have row and column names
> colnames(m?2) = c¢(‘A’/B’)
> rownames(m?2) = ¢(‘POS’/NEG’)
>m2
A B
POS13
NEG 2 4

Data Structures: Matrix

> m4 = matrix(1:300,nrow=100,ncol=3)
> colnames(m4) = c(A’/B’,C’)

> dim(m4)

100 3

* We can access one or more values of a matrix by specifying row
and column values

>m4|[1,2]

[1] 101

>m4[1:2,1:2]

1] [,2]

(1] 1 101

[2,] 2 102

* R has head() and tail() commands like unix!

Exercise: Construct m4 and use head() and tail()

Vector and Matrix Operations

* R has arich set of vector and matrix operators

> vl=c(1,2,3)

> m1 = matrix(1:4,nrow=2,ncol=2)

* Simple math operations are applied to all values
>vl*2

[1] 2,4,6

e Standard functions are applied to each value

> log2(v1)

[1] 0.000000 1.000000 1.584963

* Linear algebra transformations are well supported
e t(m1) will return the transpose of m1
* ml* m1l will perform element-wise multiplication
* ml1l %*% m1 will perform matrix multiplication

Exercise: Use m1 * m1l and m1 %*% m1. How do the answers differ?

Special Values in R

* NA values are not available or missing values

e Often functions will specify how to treat NA values
* is.na() will return TRUE/FALSE

* NaN values are not a number
* is.nan() will return TRUE/FALSE

* Inf and —Inf values are computationally too large or too small
* is.infinite() will return TRUE/FALSE

> 271024
[1] Inf

 NULL values are empty and often used to represent zero-length
objects

* is.null() will retrun TRUE/FALSE
> dim(c(1,2,3))
NULL

Exercise: Calculate 1/0 in R. Calculate log2(-1). Calculate log2(0). What does
R return?

Data Structures: List

* Alistis a “generic vector” that may contain a variety of data types and
data structures

>y =list(1, 17, 4:5, “a”)
 List values may be named
>y=list(a=1,17,b=4:5,c="“a")
Sa

[1] 1

[[2]]

[1] 17

Sb

[1] 45

Sc

[1] “a”

Data Structures: List

>y=lista=1,17, b=4:5,c="3")

* Alist value may be accessed using a single index
> yl[3]]

[1] 45

* List values may be accessed using names

>ySbh

[1] 45

e Multiple list values may be accessed using an index but the result will be a list
> y[1:3]

Sa

[1] 1

[[2]]

[1] 17

Sb

[1] 45

Data Structures: Data Frame

* A data frame is a special kind of list containing multiple
vectors of the same length

* Vectors may contain multiple data types

* This data structure is commonly used when reading,
writing data

* Data frames may be created using the data.frame
function:

> days = c(‘mon’,/tues’,wed’)

> myNumbers = ¢(1,2,3)

> attend = ¢(TRUE,FALSE, TRUE)

> dfl = data.frame(days,myNumbers,attend)

> dfl
days myNumbers attend
1 mon 1 TRUE

2 tues 2 FRALSE
3 _wed 3 TEUE

Data Structures: Data Frame

e Data frames represent a powerful hybrid between a
matrix and a list
* We can use indexes to access specific columns

* We can use ‘S’ column names to access individual
vectors

* There are several data frame examples built into R

Exercise: Type mtcars at your R prompt. What columns does this data frame
contain? What is the average mpg of all cars? (hint: use the mean() function)

Help from within R

e Getting help for a function
> help("log")
> 71og

e Searching across packages
> help.search ("logarithm")

* Finding all functions of a particular type

> apropos ("log")

[7] "SSlogis" "as.data.frame.logical" "as.logical"
"as.logical.factor" "dlogis" "is.logical"

[13] "log" "loglO" "loglp" "logz " "lOgLik" "logb"

[19] "logical"™ "loglin" "plogis" "print.logLik" "glogis"
"rlogis"

R: Logarithms and Exponentials v

log {base} R Documentation

Logarithms and Exponentials

Description | \What the function does in general terms

log computes loganthms, by default natural logarithms, 10g10 computes common (i.e., base
10) logarithms, and 1og2 computes binary (i.e., base 2) logarithms. The general form 1og (x,
pasze) computes loganthms with base base

loglp(x) computes log(f+x) accurately also for |x| << f (and less accurately when x is
approximately -1)

exp computes the exponential function.

expmi (x) computes exp(x) - 1 accurately also for |x] << 1

Usage J How to use the function

log(x, base = exp(l))
logb(x, base = exp(l))
logl0(x)
log2 (x)

loglp(x)

exp(x)
expml (x)

Arguments | \W hat does the function need

X a numerc or complex vector.

base 3 positive or complex number: the base with respeact to which logarithms are computed.
Defaults to e=exp(1).

Details

All except 1ogb are generic functions: methods can be defined for them individually or via the
Math group generic.

1og10 and 1og2 are only convenience wrappers, but logs to bases 10 and 2 (whether
computed via 1og or the wrappers) will be computed more efficiently and accurately where
supported by the OS. Methods can be set for them indvidually (and otherwise methods for 1og
will be used)

logb is a wrapper for Log for compatibility with S_ If (S3 or S4) methods are set for 1og they
will be dispatched. Do not set S4 methods on logb itself.

All except 1og are primitive functions.

?log
R: Logarithms and Exponentials v

Value J\What does the function return

A vector of the same length as x containing the transformed values. 1og (0) gives ~Inf, and
log(x) for negative values of x is NaN. exp (-Inf) is 0.

For complex inputs to the log functions, the value is a complex number with imaginary part in
the range [-pi, piJ: which end of the range is used might be platform-specific.

S4 methods

exp, expml, log, 10910, 1og2 and loglp are S4 generic and are members of the Mach
group generic

Note that this means that the S4 generic for 1og has a signature with only one argument, x,
but that base can be passed to methods (but will not be used for method selection). On the
other hand, if you only set a method for the Math group generic then base argument of 1og
will be ignored for your class.

Source

loglp and expml may be taken from the operating system, but if not available there are
based on the Fortran subroutine d1nrel by W. Fullerton of Los Alamos Scientific Laboratory
(see http://www. netlib org/slatec/fnlib/dinrel f and (for small x) a single Newton step for the
solution of loglip(y) = x respectively.

References

Becker, R. A_, Chambers, J. M. and Wilks, A R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (for 1og, 10g10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (for
logb.)

See Also | Discover other related functions

Txig, sgrtc, Aracthmetic.

Examples | Sample code showing how it works

log(exp(3))
logi0(1e7) # = 7

X <= 10%-(142%1:9)
cbind (x, log(l+x), leglp(x), exp(x)-1, expml(x))

[Package base version 3.0.1 Index]

Additional Resources

TryR. An excellent interactive online R tutorial for beginners.
http://tryr.codeschool.com/

DataCamp. Online tutorials using R in your browser.
< https://www.datacamp.com/ >

R for Data Science. A new O'Reilly book that will teach you
how to do data science with R, by Garrett Grolemund and
Hadley Wickham.

http://r4ds.had.co.nz/

http://tryr.codeschool.com/
http://r4ds.had.co.nz/

References

* Gentleman, Robert. R Programming for
Bioinformatics. CRC Press, 2009.

