
Suddenly, a heated exchange took place
between the king and the moat contractor.

DCMB BioComputing BootCamp
Day 3, Lecture 1:

Introduction to R
Armand Bankhead

bankhead@umich.edu

8/23/2017

Slides Partially Sourced from Barry Grant and Hui Jiang

Overview

1. Why R?

2. Ways to Use R

3. R as a Statistical Programming Language

4. Writing and Running R Scripts

5. Data Types

6. Data Structures

7. Vector and Matrix Operations

Why R?

• Popular in the scientific community

• Designed to handle large datasets

• CRAN and Bioconductor open source
package repositories

• Easy to automate and work with interactively

• R is a statistical computing language

• R is a concise, powerful language—much can
be accomplished with few lines of code

• R can generate stunning graphics

• Well evolved function arguments (if you
want to do it you likely can)

• Easy to enable others to reproduce your
results

• Good science should be reproducible!

• It’s free!

http://r4stats.com/articles/popularity/

https://en.wikipedia.org/wiki/R_(programming_language)

Ways to Use R

1. R interactive session: submit R functions directly
to R using an R prompt

2. R Studio: integrated development environment
for R

3. R command line: execute R scripts from the
command line

Ways to Use R:
R Interactive Session
• At the unix command line prompt type R

• Any R command should be executable from the command
prompt

• Useful as an interactive environment for convenience or fast
iterative development

Ways to Use R:
R Studio
• Integrated development environment (IDE) provides graphical

buttons

• Code completion

• Interactive debugger to debug code

• Improved window organization

• Visible history

Ways to Use R:
R Command Line
• R scripts can be executed from the command line

using the Rscript command or R CMD BATCH

• Ideal for automating long running scripts and
breaking long scripts up into modular pieces
• screen and nohup

R as a Statistical Programming
Language
R can be used to directly call statistical functions directly
from an interactive session
• log2
• sqrt
• log10
• rnorm
• var
• mean
• mean
• min
• max

https://cran.r-project.org/doc/contrib/Short-refcard.pdf

Some Simple R Commands

> 2 + 2
[1] 4
> 3^2
[1] 9
> sqrt(25)
[1] 5
> 2*(1 + 1)
[1] 4
> 2*1 + 1
[1] 3

> exp(1)

[1] 2.718282

> log(2.718282)

[1] 1

> log(10, base = 10)

[1] 1

> log(10

+ , base = 10)

[1] 1

> x = 1:50

> plot(x, sin(x))

R Prompt!

Result of the command

Order of operator
precedence

Optional argument

Incomplete command

Exercise: Try these commands

Error Messages

• Sometimes the commands you enter will generate
errors. Common beginner examples include:
• Incomplete brackets or quotes e.g.

> ((4+8)*20 <enter>

+

This returns a + here, which means you need to enter the
remaining bracket - R is waiting for you to finish your input.

Press <ESC> to abandon this line if you don't want to fix it.

• Not separating arguments by commas e.g.

> plot(1:10 col=“red”)

• Typos including miss-spelling functions and using wrong type
of brackets e.g.

> exp{4}

Writing and Running R Scripts

• R scripts are simple text files that contain a series of R
commands

• R Scripts allow us to:
1. Execute a series of R commands
2. Provide a written history of our work so that it is

reproducible
3. Share our work with others so that it is reproducible

• Good science is by definition reproducible!
• Comment your code! Use ‘#’ to include comments
• How to create an R Script:

1. RStudio Select New Icon or type Ctrl-Shift-N
2. Edit a text file with your favorite text editor

Writing and Running R Scripts

• R scripts can be run in several different ways:
1. Using the source function in an interactive session

> source(‘helloWorld.R’)

2. In RStudio use the ctrl-alt-r shortcut

3. In Rstudio select Code -> Run Region -> Run All

4. From the unix command line use Rscript command

> Rscript helloWorld.R

Exercise: Write a helloWorld.R script and execute it using one of
these approaches.

5 Basic Data Types in R
1. numeric: decimal values, default

> x = 10.5
> class(x)
[1] “numeric”

2. integer: integer values
> y = as.integer(3)
> class(y)
[1] “integer”

3. complex: imaginary numbers
> z = sqrt(as.complex(-1))
> z
[1] 0+1i
> class(z)
[1] “complex”

http://www.r-tutor.com/r-introduction/basic-data-types

5 Basic Data Types in R
4. logical: TRUE or FALSE values. Also T or F

> x = 1
> y = 2
> z = x > y
> z
class(z)
[1] “logical”

5. character: a sequence of ascii character values.
Characters may be surrounded by single or
double quotes!
> x = “Joe”
> class(x)
[1] “character”

http://www.r-tutor.com/r-introduction/basic-data-types

R Data Structures

Dimension Homogeneous Data Heterogeneous Data

1 Vector List

2 Matrix Data Frame

N Array List

Data Structures: Vector

• Vectors contain some number of values of the same
type.

• Vectors may be created using the combine ‘c’ function
• Examples:
> days = c(‘mon’,’tues’,’wed’,’thurs’,’fri’)
> myNumbers = c(1.5,3,4.5,6,7.5)
• Vectors may also be created as sequences using the ‘:’

operator
• Examples:
> 1:5
[1] 1 2 3 4 5

Data Structures: Vector

> days = c(‘mon’,’tues’,’wed’,’thurs’,’fri’)

> myNumbers = c(1.5,3,4.5,6,7.5)

• Vectors can be indexed using square brackets

> favoriteDay = days[5]

> favoriteDays = days[2:5]

• Negative indexes return all but the value subtracted!

> favoriteDays = days[-1]

> favoriteDays

[1] “tues” “wed” “thurs” “fri”

Data Structures: Vector

> days = c(‘mon’,’tues’,’wed’,’thurs’,’fri’)
> myNumbers = c(1.5,3,4.5,6,7.5)
• Additional vector operations:
> sort(myNumbers)
[1] 1.5, 3, 4.5, 6, 7.5
> sort(myNumbers,decreasing=TRUE)
[1] 7.5, 6, 4.5, 3, 1.5
> rev(days)
[1] “fri” “thurs” “wed” “tues” “mon”
> length(days)
[1] 5

Data Structures: Matrix

• Matrices are two dimensional data tables that contain the
same data types

• A data matrix may be created several ways:
> m1 = matrix(1,nrow=2,ncol=2)
> m2 = matrix(1:4,nrow=2,ncol=2)
> m3 = rbind(c(1,2),c(3,4))

• Matrices may have row and column names
> colnames(m2) = c(‘A’,’B’)
> rownames(m2) = c(‘POS’,’NEG’)
> m2

A B
POS 1 3
NEG 2 4

Data Structures: Matrix

> m4 = matrix(1:300,nrow=100,ncol=3)

> colnames(m4) = c(‘A’,’B’,C’)

> dim(m4)

100 3

• We can access one or more values of a matrix by specifying row
and column values

> m4[1,2]

[1] 101

> m4[1:2,1:2]

[,1] [,2]

[1,] 1 101

[2,] 2 102

• R has head() and tail() commands like unix!

Exercise: Construct m4 and use head() and tail()

Vector and Matrix Operations

• R has a rich set of vector and matrix operators

> v1 = c(1,2,3)

> m1 = matrix(1:4,nrow=2,ncol=2)

• Simple math operations are applied to all values

> v1 * 2

[1] 2,4,6

• Standard functions are applied to each value

> log2(v1)

[1] 0.000000 1.000000 1.584963

• Linear algebra transformations are well supported
• t(m1) will return the transpose of m1
• m1 * m1 will perform element-wise multiplication
• m1 %*% m1 will perform matrix multiplication

Exercise: Use m1 * m1 and m1 %*% m1. How do the answers differ?

Special Values in R
• NA values are not available or missing values

• Often functions will specify how to treat NA values
• is.na() will return TRUE/FALSE

• NaN values are not a number
• is.nan() will return TRUE/FALSE

• Inf and –Inf values are computationally too large or too small
• is.infinite() will return TRUE/FALSE

> 2 ^ 1024

[1] Inf

• NULL values are empty and often used to represent zero-length
objects
• is.null() will retrun TRUE/FALSE

> dim(c(1,2,3))

NULL

Exercise: Calculate 1/0 in R. Calculate log2(-1). Calculate log2(0). What does
R return?

Data Structures: List

• A list is a “generic vector” that may contain a variety of data types and
data structures

> y = list(1, 17, 4:5, “a”)

• List values may be named

> y = list(a = 1, 17, b = 4:5, c = “a”)

$a

[1] 1

[[2]]

[1] 17

$b

[1] 4 5

$c

[1] “a”

Data Structures: List
> y = list(a = 1, 17, b = 4:5, c = “a”)

• A list value may be accessed using a single index

> y[[3]]

[1] 4 5

• List values may be accessed using names

> y$b

[1] 4 5

• Multiple list values may be accessed using an index but the result will be a list

> y[1:3]

$a

[1] 1

[[2]]

[1] 17

$b

[1] 4 5

Data Structures: Data Frame

• A data frame is a special kind of list containing multiple
vectors of the same length
• Vectors may contain multiple data types

• This data structure is commonly used when reading,
writing data

• Data frames may be created using the data.frame
function:

> days = c(‘mon’,’tues’,’wed’)
> myNumbers = c(1,2,3)
> attend = c(TRUE,FALSE,TRUE)
> df1 = data.frame(days,myNumbers,attend)

Data Structures: Data Frame

• Data frames represent a powerful hybrid between a
matrix and a list
• We can use indexes to access specific columns

• We can use ‘$’ column names to access individual
vectors

• There are several data frame examples built into R

Exercise: Type mtcars at your R prompt. What columns does this data frame
contain? What is the average mpg of all cars? (hint: use the mean() function)

Help from within R

• Getting help for a function
> help("log")

> ?log

• Searching across packages
> help.search("logarithm")

• Finding all functions of a particular type
> apropos("log")

[7] "SSlogis" "as.data.frame.logical" "as.logical"

"as.logical.factor" "dlogis" "is.logical"

[13] "log" "log10" "log1p" "log2" "logLik" "logb"

[19] "logical" "loglin" "plogis" "print.logLik" "qlogis"

"rlogis"

?log

What the function does in general terms

How to use the function

What does the function need

What does the function return

Discover other related functions

Sample code showing how it works

• TryR. An excellent interactive online R tutorial for beginners.

< http://tryr.codeschool.com/ >

DataCamp. Online tutorials using R in your browser.

< https://www.datacamp.com/ >

R for Data Science. A new O’Reilly book that will teach you

how to do data science with R, by Garrett Grolemund and

Hadley Wickham.
< http://r4ds.had.co.nz/ >

Additional Resources

http://tryr.codeschool.com/
http://r4ds.had.co.nz/

References

• Gentleman, Robert. R Programming for
Bioinformatics. CRC Press, 2009.

