

DCMB BioComputing BootCamp
Day 3, Lecture 2:

R Control Structures and
Functions

Armand Bankhead

bankhead@umich.edu

8/23/2017

Slides Partially Sourced from Barry Grant and Hui Jiang

Overview

1. Working Directory

2. Reading and Writing Data in R

3. Factors

4. Using Indexes

5. Merging Data Frames

6. Functions

7. Program Control Structures

The R Working Directory
• R executes commands from a ‘working directory’

• scripts, input files, output files

• absolute and relative directories may be specified

• Use getwd() to display current working directory

> getwd()

[1] “C:/Users/bankhead/Documents”

• Use setwd() to change your working directory

> setwd(“../Desktop/armandsFolder”)

• Use dir() to list files and folders in your working
directory

Exercise: Create a directory using the
mkdir command and navigate to that directory

Writing Data To Text Files

• First lets create something to write as a text file

> m4 = matrix(1:300,nrow=100,ncol=3)

> colnames(m4) = c(‘A’,’B’,C’)

> m4 = data.frame(m4,D = c(rep(‘X’,50),rep(‘Y’,50)))

• Use write.table() to write data to a file
• Many arguments! Use ?write.table to find out more

> write.table(m4, ‘myData.txt’, quote=F,
row.names=F,sep=“\t”)

> dir()

[1] “myData.txt”

Reading Data From Text Files

• Use read.delim() to read data from a file

> m5 = read.delim(‘myData.txt’)

> dim(m5)

> head(m5)

• By default the first row is read in as column names

• Our data appears to be read in correctly but R has
converted our text data into something called a
factor

> m5$D

Data Structures: Factors

• Factors are used to break complex data up into discrete
categories

• This comes in handy when we need to group samples
for statistical analysis (e.g. fitting linear models)

• Adding new values can generate an errors!

• By default R will convert non-numeric data into factors
• Use options(stringsAsFactors=FALSE) to over ride!

> options(stringsAsFactors = FALSE)

> m5 = read.delim(‘myData.txt’)

> m5$D

Using Indexes

• Indexing is a powerful tool for filtering large data
frames or matrices

• There are two central ways to index:
1. Logical vectors:

> m5$A < 10

[1] TRUE TRUE TRUE ….

2. Integer vectors:

> which(m5$A < 10)

[1] 1 2 3 4 5 6 7 8 9

Using Indexes

• We can combine multiple
conditions use the &, |, and parens

> m5$A < 10 & M5$B > 205
> m5$A < 10 & M5$B > 205 | M5$D ==
‘Y’
> m5$A < 10 | m5$D == ‘Y’ & m5$A < 55

• Be aware of operator precedence

• Use the sum command to count
how many positive values survive

• Indexes can be used to index
vectors, matrices, or data frames

> idx = m5$A < 10 & m5$B > 205

> subMatrix = m5[idx,]

https://www.programiz.com/r-programming/precedence-associativity

Merging Data Frames

• Use merge() to join together data from two different
matrices or data frames

• Important: both matrices must contain unique row
identifiers to join on!

> df1 = data.frame(gene = c(‘AKT1’,’ERBB2’,’EGFR’),
log2rpkm = c(5,.5,10))

> df2 = data.frame(gene = c(‘AKT1’,ERBB2’,’EGFR’), entrez
= c(207,2064,1956))

> combined = merge(df1,df2,by=‘gene’)

Exercise: What happens if gene is not unique?

Add a duplicate gene name and find out.

Functions

• Functions allow us to break our R scripts up into modular pieces

• Modular program design has already been discussed in unix (day1) and
python (day2)

• Benefits to our code include:
• Program design
• Readability
• Re-use
• Trouble-shooting

• Functions are specified using the ‘function’ key word

myFunction = function(arg1,arg2,…) {

statements

}

• When multiple arguments are specified R will match first by name,
prefix matching arguments, then by position

Functions

> sq1 = function(x) return(x * x)

> sq1 = function(x) x * x

> randomValues = rnorm(1000)

> randomValuesSquared = sq1(randomValues)

> myAnalysis = function() {

vector1 = randomValues

vector2 = randomValuesSquared

result = cor(vector1,vector2)

}
Exercise: Create an R script contains the myAnalysis function
What correlation value is generated?

Program Control Structures

• R programs need not be completely sequential

• Besides functions, program flow may be modified
using control structures

1. apply
2. if/else/else if
3. for
4. while

• Other important R commands that can alter
program flow:

1. break – exit loop
2. next – skip to the next iteration

Program Control Structures:
apply
• Use the apply function to iterate through a

data.frame, matrix, or arrays
• Use lapply() to iterate through lists or vectors

• apply function takes at least 3 values
1. data frame/matrix
2. 1 or 2 indicating rows or columns respectively
3. function to ‘apply’ to each value (standard or custom)

> m4 = matrix(1:300,nrow=100,ncol=3)

> rowMeans = apply(m4,1,mean)

> columnMeans = apply(m4,2,mean)
Exercise: Run the code above.
What data structures are rowMeans and columnMeans?
Are rows are average larger or columns?

Program Control Structures:
if/else/else if
• ‘if’ statements allow us to condition our program flow

• basic syntax:

if(condition) {

statement1

}

else if(condition){

statement2

}

else {

statement3

}

• conditions must be TRUE or FALSE

• statements are a series of R commands

https://www.programiz.com/r-programming/if-else-statement

Program Control Structures:
if/else/else if
• Example if statement

m5 = read.delim(‘myData.txt’)

if(ncol(m5) == 4 && is.factor(m5$D)) {

print(‘factors!’)

}

else {

print(‘no factors!’)

}

• Multiple conditions can be combined using:
• II OR
• && AND
• ! NOT
• () parens

https://www.programiz.com/r-programming/if-else-statement

Program Control Structures:
for
• ‘for’ loops allow us to iterate our code

• Basic syntax:

for(counter in vector) {

statements

}

• vectors can represent a list of numbers (e.g. 1:10)
or arbitrary data types (e.g. c(‘mon’,’tues’,’wed’,…))

Program Control Structures:
for
• Example #1:

for(i in 1:5) {

print(i:5)

}

• Example #2:

m5 = read.delim(‘myData.txt’)

for(column in 1:ncol(m5)) {

print(mean(m5[,column]))

}

• ‘break’ can be used to exit loop structure

• We could have used apply!

Program Control Structures:
while
• while() loops allow iteration until a condition is met

• Basic syntax:

while(condition) {

statements

}

To exit the loop structure

• ‘break’ can be used to exit loop structure

• set condition to be false

Exercise (if time)

• The unique() function can be used to get the
unique values in a vector

• The CO2 data set contains 84 measurements from
an experiment comparing the C02 uptake of
Echinochloa crus-galli sourced from Quebec and
Mississippi. Plants were measured chilled and
nonchilled.

• Using the CO2 data set determine if the average
expression of chilled plants from Quebec is higher
than plants from Mississippi.

Closing Remarks/Advice

• Comment your code

• Short programs are better

• Plan!

• Be prepared to iterate

References

• Gentleman, Robert. R Programming for
Bioinformatics. CRC Press, 2009.

• Some Examples Sourced from Barry Grant and Hui
Jiang

