
Online “Remote”
Repositories

GitHub and Bitbucket centralized Git repositories for
dissemination and collaboration

 Alan Boyle
apboyle@umich.edu

 http://boylelab.org

apboyle
Typewritten Text
Presentation by: Barry Grant (bjgrant@umich.edu)

apboyle
Typewritten Text

Recap: Client-Server vs Distributed VCS

For distributed version control systems like Git a
“remote repository” (e.g. an online Git repo at

GitHub or Bitbucket) promotes further
dissemination and collaboration.

Client-server approach Distributed approach

Your
Directory

‘Staging
Area’

Local
Repository

add

status

checkout

commit

Your
Directory

‘Staging
Area’

Local
Repository

add
commit

status

Remote
Repository

checkout

clone

pull

push

GitHub & Bitbucket
GitHub and Bitbucket are two popular hosting services for
Git repositories. These services allow you to share your
projects and collaborate with others using both ‘public’ and
‘private’ repositories*.

https://github.com https://bitbucket.org

https://github.com
https://bitbucket.org

What is the big deal?

• At the simplest level GitHub and Bitbucket offer backup of
your projects history and a centralized mechanism for
sharing with others by putting your Git repo online.

• GitHub in particular is often referred to as the “nerds
FaceBook and LinkedIn combined”.

• At their core both services offer a new paradigm for open
collaborative project development, particularly for software.

• In essence they allow anybody to contribute to any
public project and get acknowledgment.
[We will demo this later!]

Public contributing by ‘fork & pull’

For any public project on GitHub or BitBucket you can make any
change you like - that is you don’t first need permissions to
contribute your improvements/bug-fixes/ideas etc.

• There are two mechanisms for doing this:

1. For trusted “collaborators” (via a shared repository and
regular commit & push steps)

2. Joe public (via a different ‘fork & pull request’ approach)

You don't have to beg for permission (just submit a pull request)
on GitHub or BitBucket and your changes with attribution will be

in the project and its history once approved!

First sign up for a GitHub account
https://github.com

https://github.com

Pick the FREE plan!

Your GitHub homepage
Check your email for verification request

Skip the hello-world tutorial
https://guides.github.com/activities/hello-world/

https://guides.github.com/activities/hello-world/

Name your repo
demo1_github

Lets push an existing repository
Change back in your Terminal/MobilXterm App

> cd ~/Desktop/git_class # Your local repo
> git remote add origin https://github.com/
 YourGitHubUserName/demo1_github.git
> git push -u origin master

(Tip: you can get the long URL in step2
here from your GitHup page)

> cd ~/Desktop/git_class # Your local repo
> git remote add origin https://github.com/
 YourGitHubUserName/demo1_github.git
> git push -u origin master

Congratulations!
 You just pushed your local repo to GitHub!!

Check it out in your web browser…

Change back in your Terminal/MobilXterm App

Lets push an existing repository

Lets edit README online
Specifically lets add some Markdown content

Lets also edit locally…

> mv README README.md # Move to Markdown
> git status
> git add README.md README
> git push -u origin master

What happened and why?

And rename README to README.md

We need to pull changes first!

> git pull origin master # Sync from GitHub
> git status # What does the msg mean?

> git push -u origin master # Sync to GitHub

Success!
Lets look at how GitHub presents your commit history

https://github.com/biobootStudent/demo1_github
apboyle
Typewritten Text

Demo 2

Do it Yourself!

https://github.com/bioboot/demo2-github

https://github.com/bioboot/demo2-github

Summary: Forking, Pull requests
& code review

• Using these three steps you can contribute any public
project even though you don’t have write access.

• You first “fork” the repo you are interested in. This creates
a completely separate copy of the repo by cloning it and
adding a copy to YOUR GitHub (or Bitbucket) account.

• You then make your changes (in your forked repo) and
submit a pull request back to the original repo.

• These undergo code review and, if approved,
subsequent merging into the original repo.

Side-Note: Keeping your fork up to date

> git remote add upstream https://github.com/
bioboot/demo2-github.git
> git remote -v
> git pull upstream master

Can you now push to ‘upstream’?

• When the central repository is updated with someone
else’s code (after your fork was created), these new
commits do not magically appear on your fork.

• You will need to add a link to the original upstream
central repository to be able to pull changes.

Optional: Further self exploration of
BitBucket/GitHub/Git features

• Issues are integrated into repos and enable bug tracking,
feature requests, to-do items, questions etc. on a per
project basis. E.G.

https://bitbucket.org/Grantlab/bio3d/issues

• Websites and Wikis. For example I have course websites
hosted on GitHub and authored collaboratively via git. See:

https://github.com/bioboot/web-2015
http://w16.bioinfquiz.org

• Some git commands to play with:

> git show
> man git-blame

> git log --stat
> git log --graph --oneline

https://bitbucket.org/Grantlab/bio3d/issues
https://github.com/bioboot/web-2015
http://w16.bioinfquiz.org

Side-Note: Identifying how to
contribute to an open source project
• Oftentimes open source projects place a

CONTRIBUTING.md file in the root directory.

• It explains how a potential contributor should format
code and submit patches etc. Here is a fine example
from the ggplot2 R package.

• From a maintainer's point of view, the document
succinctly communicates how best to collaborate.

• And for a contributor, one quick check of this file verifies
their submission follows the maintainer's guidelines.

https://github.com/hadley/ggplot2/blob/master/CONTRIBUTING.md
https://github.com/hadley/ggplot2

Summary
• Git is a popular ‘distributed’ version control

system that is lightweight and free

• GitHub and BitBucket are popular hosting
services for git repositories that have changed the
way people contribute to open source projects

• Introduced basic git and GitHub usage and
encouraged you to adopt these ‘best practices’
for your future projects.

Learning Resources
• Set up Git. If you will be using Git mostly or entirely via

GitHub, look at these how-tos.
< https://help.github.com/categories/bootcamp/ >

• Getting Git Right. Excellent Bitbucket git tutorials
< https://www.atlassian.com/git/ >

• Pro Git. A complete, book-length guide and reference to Git,
by Scott Chacon and Ben Straub.

< http://git-scm.com/book/en/v2 >

• StackOverflow. Excellent programming and developer Q&A.
< http://stackoverflow.com/questions/tagged/git >

https://help.github.com/categories/bootcamp/
https://www.atlassian.com/git/
http://git-scm.com/book/en/v2
http://stackoverflow.com/questions/tagged/git

Learning git can be painful!
However in practice it is not nearly as crazy-making as
the alternatives:

• Documents as email attachments

• Hair-raising ZIP archives containing file salad

• Am I working with the most recent data?

• Archaelogical “digs” on old email threads and
uncertainty about how/if certain changes have been
made or issues solved

Finally Please remember that GitHub
and BitBucket are PUBLIC and that
you should cultivate your professional

and scholarly profile with intention!

Side-Note: Changing your
default git text editor

• You can configure the default text editor that will
be used when Git needs you to type in a
message.

> git config --global core.editor nano

• If not configured, Git uses your system’s default
editor, which is generally Vim.

