pca.tor.Rd
Performs principal components analysis (PCA) on torsion angle data
.
# S3 method for tor pca(data, ...)
data | numeric matrix of torsion angles with a row per structure. |
---|---|
... | additional arguments passed to the method |
Returns a list with the following components:
eigenvalues.
eigenvectors (i.e. the variable loadings).
scores of the supplied data
on the pcs.
the standard deviations of the pcs.
the means that were subtracted.
Grant, B.J. et al. (2006) Bioinformatics 22, 2695--2696.
Barry Grant and Karim ElSawy
torsion.xyz
, plot.pca
,
plot.pca.loadings
, pca.xyz
##-- PCA on torsion data for multiple PDBs attach(kinesin) gaps.pos <- gap.inspect(pdbs$xyz) tor <- t(apply( pdbs$xyz[, gaps.pos$f.inds], 1, torsion.xyz, atm.inc=1)) pc.tor <- pca.tor(tor[,-c(1,233,234,235)]) #plot(pc.tor) plot.pca.loadings(pc.tor)detach(kinesin) if (FALSE) { ##-- PCA on torsion data from an MD trajectory trj <- read.dcd( system.file("examples/hivp.dcd", package="bio3d") ) tor <- t(apply(trj, 1, torsion.xyz, atm.inc=1)) gaps <- gap.inspect(tor) pc.tor <- pca.tor(tor[,gaps$f.inds]) plot.pca.loadings(pc.tor) }